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Abstract

The glycoprotein (GP)Ib-IX receptor complex plays a critical role in platelet physiology and 

pathology. Its interaction with von Willebrand factor (VWF) on the subendothelial matrix 

instigates platelet arrest at the site of vascular injury, and is vital to primary hemostasis. Its 

reception to other ligands and counter-receptors in the blood stream also contribute to various 

processes of platelet biology that are still being discovered. While its basic composition and its 

link to congenital bleeding disorders were well documented and firmly established more than 25 

years ago, recent years have witnessed critical advances in the organization, dynamics, activation, 

regulation and functions of the GPIb-IX complex. This review summarizes important findings and 

identifies questions that remain about this unique platelet mechanoreceptor complex.
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Introduction

Platelets play an invaluable role in hemostasis. After vessel injury, platelets arrest, activate, 

and form a platelet plug essential for sealing the site of insult and preventing excessive blood 

loss. However, insufficient or excessive platelet activation can both lead to pathologies. 

Therefore, platelet activity is tightly regulated. Platelets express a wide variety of receptors 

that enable their response to diverse physiological and pathological stimulants. The 

glycoprotein (GP)Ib-IX complex is the second most abundant platelet surface receptor [1, 2]. 

GPIb-IX is a major platelet mechanoreceptor and participates in several diverse functions 

including adhesion, activation, clearance, and thrombopoiesis. This review covers GPIb-IX’s 

structure and function, with an emphasis on advances made in the last decade.

Structure and organization of GPIb-IX

GPIb-IX is a highly integrated hetero-tetrameric receptor complex containing three unique 

subunits: GPIbα, GPIbβ, and GPIX, arranged in a 1:2:1 stoichiometry[3]. Each subunit is an 
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independently expressed transmembrane protein with a short cytoplasmic tail, a single 

transmembrane domain, and a glycosylated extracellular domain[4]. Efficient expression of 

the GPIb-IX complex on the platelet membrane depends on co-expression of all subunits[5, 

6]. GPIb-IX also associates with GPV, likely at a 1:1 stoichiometry, but the association is 

relatively weak and can be disrupted by nonionic detergents[7].

GPIbα is the “business end” of the complex, by far the largest subunit, and responsible for 

binding to almost all known ligands of the complex. At its extracellular N-terminus, GPIbα 
begins with a ~45-kDa domain containing 7 leucine-rich repeats (LRR), also known as the 

ligand-binding domain (LBD) (Fig. 1). The C-terminal portion of the LBD contains a small 

“thumb” region crucial for effective binding to the A1 domain of von Willebrand factor 

(VWF)[8]. Following the LBD is a short anionic stretch involved in thrombin binding and a 

flexible stalk known as the macroglycopeptide or sialomucin region, spanning 30–40 nm[4]. 

The sialomucin region is characterized by a variable number of tandem repeats and its 

excessive O-glycosylation which, by some estimates, accounts for as much as 70% of the 

entire sialic acid content on the platelet surface[9]. It helps raise the LBD high above the 

platelet membrane and facilitates its interaction with various ligands and counter-receptors 

in circulation. The stretch closest to the platelet membrane contains the quasi-stable 

mechanosensory domain (MSD), the structure of which remains to be determined[10, 11]. 

The MSD contains the shedding cleavage site by ADAM17, the physiological sheddase of 

GPIbα[12–14]. The extracellular domains of GPIbβ and GPIX are smaller than that of 

GPIbα; each of them contains one LRR sequence[15].

The transmembrane (TM) domains of GPIb-IX’s constituent subunits are highly conserved 

and contribute to the structural organization of the complex. The organization and assembly 

of GPIb-IX have been reviewed extensively elsewhere[16]. Briefly, the TM domains of 

GPIbα, GPIbβ, and GPIX associate to form a four-helical bundle, stabilizing the complex 

and facilitating formation of disulfide linkages between GPIbα and each GPIbβ subunit[3, 

17]. GPIX and GPIbβ are also associated through noncovalent interactions between their 

extracellular domains[15]. Aside from stability granted by this interaction, disruption of the 

specific interfaces between GPIX and GPIbβ significantly decreases surface expression of 

the complex[15, 18]. The GPIbβ and GPIX extracellular domains are directly adjacent to the 

MSD of GPIbα (Fig. 1). Their association in the complex was recently proposed to be of 

significant functional consequence[19], although direct evidence for such an association is 

still missing. A summary of the structural features and binding partners for GPIb-IX is 

included in Figure 1.

GPIb-IX mutations in congenital diseases

The earliest recognition of GPIb-IX’s importance in hemostasis dates back to 1948 and the 

first description of the rare but severe bleeding condition, Bernard-Soulier syndrome (BSS), 

a congenital disorder presenting as bleeding and macrothrombocytopenia[20]. However, it 

was not until the 1970s that deficiency or dysfunction of GPIb-IX platelet was identified as 

the causative factor in BSS[21]. The etiological link between GPIb-IX deficiency and BSS 

was further cemented when BSS-like phenotypes were observed in knockout mice missing 

either GPIbα or GPIbβ[22–24]. BSS platelets are characterized by impaired ristocetin- and 
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thrombin-induced aggregation. Genetic sequencing of BSS patients has identified mutations 

in genes encoding all three GPIb-IX subunits. Overall, the symptoms in BSS patients and the 

phenotypes of knockout mice are consistent with the requirement of expression of all 

subunits for efficient expression of GPIb-IX in the plasma membrane of transfected 

mammalian cells[5].

Pulse labeling studies indicate that GPIb-IX assembles initially in the endoplasmic reticulum 

(ER), with additional glycosylation modification including sialylation occurring in the Golgi 

compartment[25, 26]. Unassembled subunits, particularly GPIbα, are targeted for rapid 

degradation in the lysosome[25]. Recent studies have begun to identify the cellular 

machinery involved in folding and assembly of GPIb-IX, or degradation of misassembled 

GPIb-IX. For instance, mice with an inducible knockout of heat shock protein gp96/grp94, a 

molecular chaperone in the ER and a critical component of the unfolded protein response 

(UPR), present a phenotype indistinguishable from that of BSS[27]. Most mice missing core 

1 β1,3-galactosyltransferase in their hematopoietic system and therefore extended or 

branched O-glycans on their platelets die perinatally from hemorrhage[28, 29], but the few 

survivors exhibit BSS-like phenotypes including bleeding, macrothrombocytopenia and 

markedly reduced expression of GPIbα on platelets[28]. The importance of O-glycans to 

GPIb-IX expression in platelets can be attributed to the stabilization of the MSD in GPIbα 
by sialic acids on these O-glycans, as removal of sialic acids by neuraminidase results in 

unfolding of the MSD and increased ectodomain shedding of GPIbα[30, 31].

Rapid degradation of newly synthesized GPIbα in the absence of other subunits suggests 

that unassembled GPIbα contains a region that can be recognized by the cellular machinery 

but is masked by the associated GPIbβ and GPIX. Recent studies suggest that such region is 

located in the MSD, since removal or replacement of the MSD, but not any other domains, 

resulted in significant increase of GPIbα expression in transfected mammalian cells without 

GPIbβ and GPIX[6, 19]. As the MSD is quasi-stable, it is conceivable that, in the absence of 

adjoining GPIbβ and GPIX extracellular domains, the isolated MSD could readily unfold 

and thus induce the unfolded protein response (UPR) in the ER[19].

Investigations of GPIb-IX mutations in BSS patient platelets and transfected cells suggest 

three general types of mutations that reduce the expression and/or function of GPIb-IX. Type 

1 mutations disrupt the interaction between GPIb-IX subunits and include all frameshift or 

nonsense mutations in extracellular (including signal sequence) or TM domains of GPIb-IX. 

These mutations abolish the interaction between the TM domains and prevent stable 

assembly of the native complex[16]. Type 2 mutations include missense mutations in the 

LBD of GPIbα that impair ligand-binding activity. Many of these mutations interfere with 

the folding or stability of the LBD, which presumably induces UPR and markedly reduces 

GPIbα expression[32]. Type 3 mutations do not impact GPIb-IX expression and assembly, 

but instead abolish signaling. To-date, the sole example of this type is a homozygous 

nonsense mutation at residue Gln545 in the GPIbα cytoplasmic domain[33]. Platelets from 

the BSS patient bearing this mutation exhibit normal levels of GPIb-IX, consistent with 

earlier findings that the cytoplasmic domain of GPIbα does not participate in complex 

assembly or expression. Like other BSS patients, this patient responds poorly to ristocetin or 

thrombin stimulation. In this case, poor response is likely due to defects in GPIb-IX signal 
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transduction, as the truncation at Gln545 eliminates the binding site for Filamin A (FlnA) 

(Fig. 1b) and possibly other signaling molecules[33].

In most cases BSS is inherited as an autosomal recessive disorder, presumably because 50% 

of the normal gene dose is enough to sustain platelet genesis and function. However, for 

several missense mutations in the LBD of GPIbα and a number of Type 1 mutations in 

GPIbβ, BSS is transmitted in an autosomal dominant manner[34, 35]. Many of these 

patients present mild macrothrombocytopenia and markedly reduced but detectable 

expression level of GPIb-IX. On the other hand, patients with 22q11 deletion syndrome 

(22q11DS) lack 0.7–3 million base pairs in their eponymous chromosome, which 

encompasses the GP1BB gene that encodes GPIbβ. Typically being hemizygotes for 

GP1BB, these patients have larger platelets, lower platelet counts, and bleed more 

excessively after reparative cardiac surgery[36]. However, a recent analysis found no 

correlation of the GP1BB copy number with either macrothrombocytopenia or bleeding[37].

Mutations in GPIbα can also lead to alterations in its binding to VWF. Under normal 

physiological conditions, plasma VWF is auto-inhibited and does not spontaneously bind to 

GPIbα and platelets. However, in platelet-type von Willebrand disease (PT-VWD), 

mutations in GPIbα cause spontaneous association with plasma VWF, somehow overcoming 

VWF autoinhibition. Four reported PT-VWD mutations are localized to the thumb region of 

GPIbα’s LBD[38]. Mouse models expressing these mutations largely recapitulate major 

symptoms observed in human patients[39, 40]. While these mutations likely cause structural 

or conformational alteration in the LBD[41], a fifth mutation, a 27-bp deletion at the 

junction of the sialomucin region and MSD of GPIbα, was also reported in one patient 

diagnosed with PT-VWD[42]. However, no follow-up studies have been reported, and the 

structural basis for this mutation’s effect on VWF binding remains to be seen. For 

comparison, a large deletion of the sialomucin region including the region in question does 

not alter ristocetin-mediated VWF binding under static conditions[43].

Platelet mechanosensation via GPIb-IX

When the endothelium suffers damage, the wound must be quickly sealed. In order to 

prevent significant blood loss, platelets must recognize endothelial damage, arrest, and 

remain in place long enough to begin forming a platelet plug under significant shear from 

blood flow. Although platelets activate readily at the site of injury, it is also critical that they 

remain inert in circulation. In mammalian platelets, GPIb-IX facilitates binding to damaged 

endothelia and mediates a force-dependent response. Although several receptors on platelets 

stabilize the adhesion of platelets to subendothelial matrix, these receptors cannot initiate 

thrombus formation without an initial interaction between GPIb-IX and collagen-tethered 

VWF, especially in high-shear regions of the vasculature[44, 45].

Although the GPIb-IX/VWF interaction has been recognized as the key event in sensing and 

responding to shear stress for over 25 years[1], a unified mechanism for GPIb-IX activation 

by ligand binding under shear has remained elusive until recently. In the early 2000s, a 

“clustering model” of GPIb-IX activation was proposed[46]. This model explained the 

observation that monoclonal antibodies (MAbs) targeting the LBD of GPIbα can activate 

GPIb-IX, provided they are bivalent (not monomeric Fab fragments)[47, 48]. Under this 
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model, MAbs binding to two copies of GPIbα (one with each Fab) induces lateral 

dimerization or “clustering” of GPIb-IX and subsequent clearance[49]. However, the 

clustering model falls short of unifying all available evidence regarding GPIb-IX 

mechanosensation and activation. It offers no explanation for why MAbs targeting other 

regions of GPIb-IX don’t induce receptor activation[50], does not account for the well-

established requirement of shear in VWF-mediated GPIb-IX signaling[1], and does not 

address numerous observations that the extracellular domains of GPIbβ participate in GPIb-

IX signaling[14, 24, 51]. Thus, evidence for clustering of GPIb-IX in the membrane alone 

may not be sufficient to demonstrate activation of the receptor complex.

Recent studies using single-molecule optical tweezers to “pull” on the LBD of GPIbα have 

identified a force-sensitive domain in GPIbα’s extracellular domain that unfolds when 

pulling force is applied to anchored GPIb-IX from the LBD. Unfolding was localized to the 

juxtamembrane mechanosensory domain (MSD) between the sialomucin region and the TM 

domain[10]. The MSD unfolds under a continuous pulling force of ~15 pN[11, 14, 52]. 

Although the precise boundary of the MSD is not settled, estimates based on mutagenesis 

and fitting of single-molecule data estimate that the MSD spans about 60 residues. Recent 

studies indicate that this domain is structured and quasi-stable, and its stability is altered by 

O-glycosylation therein[10, 30].

The trigger model of GPIb-IX activation—In the mid-1990s, Kroll et al. described the 

mechanism of platelet shear-sensitivity as follows, “The initial shear-induced triggering 
event has so far been elusive…one hypothesis proposed to explain the mechanism of shear-
induced platelet activation states that platelet GPIbα, following shear-induced binding of 
vWF, undergoes a conformational change that…triggers signals for cellular activation.” In 

their 2016 study, Deng et al. proposed the trigger model of GPIb-IX activation. Applying 

physiological shear stress to platelet-rich plasma, they demonstrate that VWF binding to the 

LBD leads to shear-dependent MSD unfolding and platelet signaling including elevation of 

intracellular calcium, P-selectin exposure, and surface desialylation[14]. Within the MSD, 

which is poorly conserved between species, a short 12-residue segment immediately 

preceding the TM domain exhibits remarkable sequence conservation in mammals (Fig 2). 

Exposure of this region, dubbed the “trigger sequence”, following MSD unfolding appears 

to be the crucial step in GPIb-IX activation. Deletion of the MSD leaving only the trigger 

sequence leads to constitutive ligand-free activation of GPIb-IX in CHO cells expressing this 

mutant[14]. IL4R-IbαTg mice express a chimeric GPIbα in which most of the extracellular 

domain has been replaced by that of the α-subunit of the interleukin-4 receptor (IL4R) 

leaving only the trigger sequence. These mice have a significantly lower platelet count and 

their platelets have a higher base level of activation[14, 53]. Utilizing a biomembrane force 

probe instrument to measure force and cell signaling at the single-cell and single-molecule 

level, the Zhu group characterized pulling force regimens for recombinant A1 domain or 

anti-GPIbα antibodies binding to an immobilized platelet. An extension event consistent 

with unfolding of the MSD for a certain time period, and sometimes in conjunction with 

unfolding of the LBD, was required to induce intracellular calcium flux in the platelet, thus 

providing additional evidence linking MSD unfolding to GPIb-IX signaling[52]. Together, 

these data support a trigger model of GPIb-IX signaling, wherein a pulling force exerted on 
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GPIbα through the LBD leads to unfolding of the MSD, exposure of the trigger sequence, 

activation of the receptor, and subsequent platelet signaling and/or clearance (Fig. 3). Under 

this model, collagen-anchored VWF binds to the LBD and shear from blood flow may 

provide the force required to unfold the MSD, thereby activating GPIb-IX.

Triggering thrombocytopenic disorders—In addition to GPIb-IX’s role in normal 

hemostasis, the trigger model also explains several GPIb-IX-centric disease states. GPIb-IX 

is a common target for autoantibodies in patients with immune thrombocytopenia (ITP). The 

presence of antibodies against GPIb-IX is strongly associated with refractoriness to common 

first-line immunosuppressive treatments like intravenous immunoglobulin (IVIg) and 

corticosteroids[54]. Antibodies targeting the LBD of GPIbα can activate the receptor and 

cause platelet desialylation[55, 56]. In the case of IVIg-resistant ITP, the dimeric structure of 

activating anti-LBD MAbs permits them to crosslink platelets via GPIb-IX[56]. Under 

physiological shear, this generates a pulling force on GPIbα, activating GPIb-IX via MSD 

unfolding and inducing immune-independent clearance. Furthermore, if an antibody’s 

unbinding force from the LBD is insufficient to sustain the force applied by physiological 

shear, it will not induce GPIb-IX-mediated clearance[56]. Thus, it appears that the defining 

characteristic of an activating ligand to GPIb-IX is the ability to bind to the LBD and sustain 

at least 15 pN of force, the amount required to unfold the MSD.

Association of VWF and GPIbα underlies many thrombocytopenic and thrombotic 

disorders. In contexts where VWF binds spontaneously to GPIbα in bloodstream, 

multimeric VWF may act as a crosslinking ligand capable of forming VWF-platelet complex 

and activating GPIb-IX therein. Ristocetin (used as an antibiotic) can induce the VWF-

GPIbα interaction in the absence of shear and was pulled from clinical use because it caused 

thrombocytopenia[57]. Injection of botrocetin, a snake venom that causes spontaneous 

VWF-GPIbα interaction, induces acute thrombocytopenia in animals[58]. Patients with type 

2B VWD exhibit spontaneous VWF-GPIbα binding and, similar to the effects of anti-GPIb-

IX antibodies in ITP patients, present with accelerated platelet clearance, reduced 

thrombopoiesis, and thrombocytopenia[59]. Transgenic mice expressing type 2B VWF or 

PT-VWD mutant GPIbα exhibit thrombocytopenia partly due to clearance of large VWF-

platelet complexes[40, 60]. The etiology of the bleeding disorder thrombotic 

thrombocytopenia purpura (TTP) follows a similar pattern. In individuals with TTP, a 

deficiency of functional ADAMTS13 prevents cleavage of ultra-long (UL)VWF, permitting 

spontaneous binding to GPIbα and subsequent thrombocytopenia. Not unrelatedly, increased 

or altered hemodynamic shear produced by mechanic pumps in circulatory support devices 

such as ventricular assist devices and extracorporeal membrane oxygenation machine likely 

activate VWF, induce formation of VWF-platelet complexes, and result in undesired 

thrombocytopenic and thrombotic complications[61, 62]. Moreover, pathological binding of 

VWF to GPIbα also appears to be a mechanism of thrombocytopenia during infection of 

malaria parasite or dengue virus [63, 64]. It should be nonetheless noted that, although 

desialylated VWF binds GPIbα spontaneously, neuraminidase can induce platelet clearance 

in a VWF-independent manner by directly desialylate O-glycans in GPIbα[30].
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Ligand- and shear-free mechanisms of GPIb-IX activation—Recent studies suggest 

that GPIbα ectodomain shedding mediated by ADAM17 and desialylation-dependent 

unfolding of the MSD are unique mechanisms of GPIb-IX activation which proceed in 

congruence with the trigger model of GPIb-IX activation, but without the requirement of 

shear.

In addition to the trigger sequence, the MSD of GPIbα also contains the cleavage site for the 

metalloproteinase ADAM17 (Fig. 2), which continuously sheds the majority of the 

extracellular domain of GPIbα (known as glycocalicin) from the platelet surface[12]. 

Although the shedding cleavage site is still accessible when the MSD is folded, consistent 

with constant shedding of glycocalicin from resting platelets, shear-induced MSD unfolding 

may further expose this sequence to ADAM17[14]. Since glycocalicin contains the LBD, 

ectodomain shedding of GPIbα via ADAM17 reduces the association of VWF multimer 

with the platelet and is thought as a means to down-regulate formation of the VWF-platelet 

complex. On the other hand, as the shedding cleavage site is N-terminal to the trigger 

sequence, upon cleavage by ADAM17, the structure of the MSD may be disrupted, exposing 

the trigger sequence and inducing GPIb-IX signaling (Fig. 3B). Indeed, GPIbα mutants 

disrupting the MSD’s structure and exposing the trigger sequence lead to ligand-free 

signaling and platelet clearance[14]. Shedding of GPIbα is an important event linked to 

platelet clearance, especially in the context of platelet storage[65]. The extent of GPIbα 
shedding is tightly correlated to the platelet storage lesion and inhibition of shedding has 

been proposed as a potential strategy for improving the survival of stored platelets. Blocking 

GPIbα shedding with metalloproteinase inhibitors or a GPIbα-specific MAb 5G6 improves 

the survival of in vitro aged platelets[66, 67] (Fig. 3B).

As previously mentioned, the MSD of GPIbα contains several O-glycosylation sites. 

Neuraminidase, a glycolytic enzyme released by some bacterial infections and from platelets 

endogenously, hydrolyzes the glycosidic linkages to sialic acids in branched glycans and 

exposes the penultimate galactoses. Injection with exogenous neuraminidase leads to 

thrombocytopenia in animal models[68], and platelet neuraminidase appears to be critically 

involved in clearance[31, 55, 69]. Galactoses exposed by neuraminidase can mark platelets 

for clearance in the liver, in which the Ashwell-Morell receptor, macrophage galactose 

lectin, and other receptors have been implicated[29, 31, 70, 71]. Given the high percent of 

total platelet sialic acid that is bound to GPIbα, it is conceivable that galactoses on 

desialylated GPIbα may be important for recognition by clearance receptors. However, no 

direct evidence for the interaction of desialylated GPIbα with a clearance receptor has been 

reported. It is noteworthy that while most of these clearance receptors are oligomeric and 

prefer to bind multiple galactoses on N-glycans with high affinity, murine GPIbα does not 

contain the canonical N-glycosylation sites (i.e. NxS/T). A recent study has identified that 

neuraminidase-mediated desialylation of O-glycans on GPIbα induces MSD unfolding and 

GPIb-IX signaling[30]. Here, GPIb-IX-mediated intracellular signaling includes further 

platelet desialylation, which could conceivably lead to desialylation of N-glycans of other 

glycoproteins on the platelet membrane, which can be recognized by clearance receptors.

Quach and Li Page 7

J Thromb Haemost. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Signaling of GPIb-IX

In addition to its adhesive functions, GPIb-IX activation and associated signaling are vital to 

the initiation of platelet activation during primary hemostasis. During this phase, VWF-

dependent GPIb-IX activation leads to inside-out activation of the platelet integrin 

αIIbβ3[72, 73], formation of platelet microparticles[74, 75], TXA2 synthesis and release[76, 

77], degranulation[77], desialylation via NEU1[55], and many other procoagulant 

phenomena. Many of these phenomena have also been observed when GPIb-IX is activated 

by anti-LBD MAbs[55, 56].

Several downstream signaling mediators of GPIb-IX have been identified including: Ca2+, 

Src family kinases, phospholipase C, PI3K; mitogen-activated protein kinase (MAPK) 

pathway; and LIM kinase pathway[78]. In particular, numerous studies have been published 

investigating the role of the regulatory protein 14-3-3ζ, which binds to the cytoplasmic tails 

of both GPIbα and GPIbβ[79, 80](Fig. 1b). Multiple binding sites for 14-3-3ζ have been 

found in the GPIbα cytoplasmic domain, and some of them may overlap or be in proximity 

to binding sites for PI3K and FlnA [78, 81]. Studies of transfected cells expressing GPIb-IX 

and αIIbβ3 suggest that 14-3-3ζ’s interaction with GPIbα is necessary for VWF-induced 

activation of αIIbβ3 binding to fibrinogen[72]. Consistently, addition of membrane-

permeable peptides that are derived from the GPIbα intracellular tail and competitively 

inhibit 14-3-3ζ’s interaction with GPIbα to platelets inhibits ristocetin-induced platelet 

aggregation [82, 83]. It appears that 14-3-3ζ is involved in GPIb-IX-mediated platelet 

signaling, while another study suggests that sequestration of 14-3-3ζ by GPIbα may 

counteract αIIbβ3 activation[84]. It has also been reported that GPIbα-bound 14-3-3ζ 
regulates adhesion to VWF [81–83, 85, 86] and platelet apoptosis[87, 88]. The distinctions 

between GPIb-IX signaling pathways leading to platelet clearance and platelet activation 

remain unclear.

Additional functions of GPIb-IX

The best-established and most extensively studied functions of GPIb-IX are in the context of 

hemostasis, where it mediates binding to vascular damage via VWF and initiates platelet 

signaling. However, GPIb-IX interacts with several other ligands and counter-receptors (Fig. 

1), and ongoing work continues to reveal diverse roles for GPIb-IX in thrombosis, 

inflammation, and platelet genesis[74].

The leukocyte integrin αMβ2 (Mac-1) interacts with GPIbα, allowing leukocytes to adhere 

and migrate along sites where of vascular injury where platelets are accumulating[89]. 

Inhibition of this binding inhibits stable interactions between leukocytes and platelets, 

reducing leukocyte accumulation at the site of injury[90]. This implies that the αMβ2-GPIbα 
interaction is vital to leukocyte adhesion and the inflammatory response to vascular injury. 

Alternatively, mice with mutant αMβ2 deficient in GPIbα binding or αMβ2 knockout mice 

have delayed thrombosis, and it has been suggested that inhibition of the αMβ2-GPIbα 
interaction has therapeutic potential as an anti-thrombotic[91].

GPIbα is the high-affinity platelet receptor of thrombin[92]. GPIbα binding to thrombin 

promotes thrombin’s cleavage and activation of PAR1, its low-affinity platelet receptor, and 
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GPIb-IX-mediated signaling plays a role in cooperation with PAR1 signaling[93, 94]. 

Relatedly, recent animal studies suggest that the modest increase in acute coronary 

syndromes associated with the use of oral thrombin inhibitors involves the GPIbα-thrombin 

interaction[95].

GPIb-IX has been implicated in platelet generation and regulation of platelet size. The 

primary role for GPIb-IX in platelet genesis appears to be in thrombopoiesis, rather than 

megakaryopoiesis. Although BSS mice develop normal megakaryocytes (MKs), their 

proplatelet formation is impaired[96]. Shear flow is important for the development of 

proplatelets from MKs, especially in the context of in vitro platelet production. Interestingly, 

VWF binding to GPIbα under shear has been implicated in this process, and inhibition of 

GPIbα ectodomain shedding in MK cultures improves yields of functional platelets[97]. 

Thrombopoiesis is also altered in the context of type 2B VWD, wherein patients’ MKs have 

disordered demarcation membrane systems, smaller proplatelets, and abnormal granule 

distribution[98]. In a mouse model of type 2B VWD, proplatelet formation is significantly 

reduced, likely as a result of upregulation of the LIM kinase pathway and actin 

disorganization[99]. Altogether these data suggest an important role for GPIb-IX, and 

specifically the VWF-GPIbα interaction, in MK response to shear and regulation of 

proplatelet formation and fragmentation.

Recent studies have also utilized the IL4R-IbαTg mice to implicate GPIbα in the process of 

platelet accumulation to the liver in the context of liver production of thrombopoietin or non-

alcoholic fatty liver diseases[100, 101]. In these cases, GPIbα appears to mediate association 

of platelets with cells in the liver, such as hepatocytes and Kupffer cells. Curiously, mice 

lacking P-selectin, VWF, or Mac-1, all of which are known ligands of GPIbα, do not show 

delays in the onset of liver diseases[101]. This suggests on these cells the existence of a new 

counter-receptor for GPIbα, the identity of which remains to be discovered.

Platelets have diverse roles in the progression of several cancers, interacting with tumor cells 

in many capacities. Studies in the 1980s and 1990s implicated GPIb-IX (specifically its 

interaction with VWF) in tumor cell-induced platelet aggregation (TCIPA), indicating that 

inhibition of the GPIbα-VWF interaction interferes with TCIPA[102, 103]. Further, VWF−/− 

mice or IL4R-IbαTg mice show reduced metastasis[104, 105]. A comprehensive model of 

cancer cell expression of VWF, binding to platelets, and the mechanism by which these 

interactions promote metastasis is an ongoing area of research.

Modulation of GPIb-IX

Many adhesion receptor complexes mediate bidirectional signal transduction, as exemplified 

by the outside-in and inside-out activation of integrins. In this review, “GPIb-IX activation” 

refers to outside-in activation - the induction of GPIb-IX-mediated intracellular signaling as 

a result of its binding to ligands. Thus far, GPIbα is the only subunit of GPIb-IX 

demonstrated to mediate receptor activation, containing both the MSD and the binding site 

for all known ligands. Unfolding of the MSD appears as a critical step in this process, 

converting the ligand-binding status under shear into a distinct conformational state that 

could be detected by and propagated through the rest of GPIb-IX. The extracellular domains 

of GPIX and GPIbβ are proximal to the MSD of GPIbα (Fig. 3), and even assuming full 
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extension of the MSD, ~10 residues of the Trigger sequence could be in direct contact with 

them[15, 16]. However, the contributions of GPIbβ and GPIX to receptor activation and 

signaling remain ambiguous. Recent evidence suggests that GPIbβ and GPIX extracellular 

domains are malleable and could undergo conformational changes[18]. Several studies 

indicate that RAM.1, a MAb targeting the extracellular domain of GPIbβ, abolishes GPIb-

IX signaling including intracellular Ca2+ flux and changes in morphology without an effect 

on ligand binding[14, 24, 51] (Fig. 3A). Data from our lab indicate that another anti-GPIbβ 
MAb, 3G6, can amplify or “potentiate” GPIb-IX activation by VWF and anti-LBD MAbs 

including degranulation, desialylation, and morphological changes (Quach et al. manuscript 

submitted). Although these findings clearly implicate GPIbβ in the modulation of GPIb-IX 

signaling, the precise role of GPIbβ in GPIb-IX signal transduction, and the nature of the 

contacts between GPIbβ and the MSD remain elusive. Similarly, the role of GPV in GPIb-

IX function is another area where our understanding is currently evolving. Genetic ablation 

of GPV accelerates GPIbα/thrombin-dependent platelet activation, and GPV−/− mice exhibit 

faster occlusion times than wild-type[106, 107]. Thus, GPV may dampen GPIb-IX 

activation and signaling, but the underlying molecular mechanism remains elusive.

Is there inside-out modulation of GPIb-IX activity?—Inside-out activation of an 

adhesion receptor was first reported for integrin αIIbβ3 when its binding affinity (not avidity) 

for ligands was substantially increased as a result of mutations in its cytoplasmic domains. 

This inside-out activation, in which conformational changes in the membrane-proximal 

portion of the integrin extend allosterically to its membrane-distal ligand-binding domain, is 

an important physiological step during platelet activation. It was reported in early 2000’s 

that transfected cells expressing GPIb-IX with mutations in the cytoplasmic domains to 

perturb its interaction with 14-3-3 proteins exhibited altered binding to VWF in the presence 

of ristocetin or altered adhesion to VWF under flow conditions[82, 108, 109]. Based on 

these results, a toggle switch model in which switching of 14-3-3ζ binding between GPIbα 
and GPIbβ determines the binding affinity of GPIbα, or its accessibility, to VWF by an 

inside-out mechanism was proposed in 2005 [78, 82]. However, as of the time of this 

publication, this model has not seen any follow-up in the literature, including details 

describing the changes in interactions between 14-3-3ζ and its multiple binding sites in 

GPIbα and GPIbβ. Unlike the case of αIIbβ3 inside-out activation, it remains unclear how a 

change in the GPIbα cytoplasmic domain induces a conformational change in the LBD or a 

change in its accessibility, particularly through the long sialomucin region. Thusfar, there 

have been no reports of the LBD exhibiting two distinct binding affinities to VWF or a 

specific shielding mechanism for the LBD.

It is noteworthy that 14-3-3ζ’s association with GPIb-IX affects its binding to VWF 

multimers but not recombinant A1 domain of VWF [108]. In addition, RAM.1 significantly 

reduces adhesion of platelets or cells expressing wild-type GPIb-IX, but not cells expressing 

GPIb-IX with certain cytoplasmic mutations affecting 14-3-3ζ association, to VWF under 

flow conditions[85]. Yet RAM.1 does not affect the binding affinity of purified GPIb-IX to 

VWF or recombinant A1-A2-A3 fragment[110]. Thus, it appears that 14-3-3ζ modulates the 

binding avidity, rather than affinity, of GPIb-IX to VWF. As 14-3-3ζ mediates GPIb-IX 

signaling, perturbing its association with GPIb-IX may alter the morphology of the host cell, 
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the spatial distribution of GPIb-IX therein, and subsequently cell association to VWF 

multimers or cell adhesion to VWF. In other words, 14-3-3ζ’s effect on VWF binding/

adhesion may be due to GPIb-IX-mediated signaling rather than inside-out regulation of 

GPIb-IX.

Conclusion

The GPIb-IX complex on the platelet surface is critical to many aspects of platelet 

physiology, including platelet recruitment to vascular injuries, platelet activation, and 

platelet clearance. It is also implicated in thrombosis, inflammation, and many other 

associated pathologies. In particular, spontaneous or aberrant association of VWF with 

GPIbα is a key feature in many pathological contexts, including type 2B VWD, TTP, and 

likely other thrombotic thrombocytopenic disorders. Recent elucidation of interactions 

between GPIbα and the other subunits of GPIb-IX, particularly the identification and 

characterization of the MSD therein, has provided a new framework for future investigations 

of functions and regulations of GPIb-IX.
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Figure 1. Organization and structure of GPIb-IX.
Cartoon illustration of the GPIb-IX complex including GPIbα (black), GPIbβ (green), GPIX 

(red). The N-terminal LBD of GPIbα is labeled, the membrane-proximal MSD is 

highlighted in purple, and the trigger sequence therein is highlighted in blue. The complex is 

held together by strong associations among the transmembrane domains as well as weak 

associations between GPIbβ and GPIX extracellular domains and potentially the MSD of 

GPIbα. Binding partners of the GPIbα LBD are listed to the right, including thrombin and 

VWF-A1. Intracellularly, 14-3-3ζ interacts with the intracellular tails of GPIbβ and GPIbα. 

FlnA binds to the tail of GPIbα. Binding partners for which a specific binding site has not 

been identified are listed in gray.
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Figure 2. Multiple sequence alignment of the GPIbα MSD.
(A) MSD sequence of GPIbα orthologs from various species. The MSD, transmembrane 

domain (TMD), and trigger sequence are demarcated. Residues with identity match to the 

human sequence are listed in red. The triangle denotes the ADAM17 shedding cleavage site 

in human GPIbα. (B) Phylogenetic tree constructed from multiple sequence alignment of 

trigger sequences for each of the species in (a).
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Figure 3. Activation and regulation of GPIb-IX signaling.
(A) The Trigger model of GPIb-IX activation. Binding of VWF or anti-LBD antibodies to 

the LBD of GPIbα under physiological shear induces MSD unfolding. Neuraminidase (Neu) 

treatment in the absence of shear also induces MSD unfolding. Unfolding of the MSD leads 

to exposure of the trigger sequence therein, likely inducing a conformational change in the 

adjoining GPIbβ/GPIX and subsequent GPIb-IX signaling into the cell. This activation is 

modulated by anti-GPIbβ MAbs 3G6 (which potentiates activation) and RAM.1 (which 

inhibits activation). MPαC competitively inhibits 14-3-3ζ binding to the intracellular tail of 

GPIbα, diminishes its downstream signaling, and reduces cell adhesion to VWF. The 

membrane-proximal MSD is highlighted in purple, and the trigger sequence therein is 

highlighted in blue (B) Ectodomain shedding of GPIb-IX induced by ADAM17 cleavage of 

a site within the MSD induces shear-independent activation. Shedding can be inhibited by 

the anti-MSD MAb 5G6 or metalloproteinase inhibitors such as GM6001. Note that 

unfolding of the MSD facilitates ADAM17-mediated shedding of GPIbα.

Quach and Li Page 21

J Thromb Haemost. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Structure and organization of GPIb-IX
	GPIb-IX mutations in congenital diseases
	Platelet mechanosensation via GPIb-IX
	The trigger model of GPIb-IX activation
	Triggering thrombocytopenic disorders
	Ligand- and shear-free mechanisms of GPIb-IX activation

	Signaling of GPIb-IX
	Additional functions of GPIb-IX
	Modulation of GPIb-IX
	Is there inside-out modulation of GPIb-IX activity?


	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.

