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Abstract

Objective: To explore and apply multimodel inference to test the relative contributions of latent 

genetic, environmental and direct causal factors to the covariation between two variables with data 

from the classical twin design by estimating model-averaged parameters.

Methods: Behavior genetics is concerned with understanding the causes of variation in 

phenotypes and the causes of covariation between two or more phenotypes. Two variables may 

correlate as a result of genetic, shared environmental or unique environmental factors contribute to 

variation in both variables. Two variables may also correlate because one or both directly cause 

variation in the other. Furthermore, covariation may result from any combination of these sources, 

leading to 25 different identified structural equation models. OpenMx was used to fit all these 

models to account for covariation between two variables collected in twins. Multimodel inference 

and model averaging were used to summarize the key sources of covariation, and estimate the 

magnitude of these causes of covariance. Extensions of these models to test heterogeneity by sex 

are discussed.

Results: We illustrate the application of multimodel inference by fitting a comprehensive set of 

bivariate models to twin data from the Virginia Twin Study of Psychiatric and Substance Use 

Disorders. Analyses of body mass index and tobacco consumption data show sufficient power to 

reject distinct models, and to estimate the contribution of each of the five potential sources of 

covariation, irrespective of selecting the best fitting model. Discrimination between models on 

sample size, type of variable (continuous versus binary or ordinal measures) and the effect size of 

sources of variance and covariance.
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Conclusions: We introduce multimodel inference and model averaging approaches to the 

behavior genetics community, in the context of testing models for the causes of covariation 

between traits in term of genetic, environmental and causal explanations.
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INTRODUCTION

Data from the classical twin design, i.e., from monozygotic and dizygotic twins, are 

commonly used to estimate the role of genetic and environmental factors in explaining 

variation and covariation in human traits. Typically, univariate (or mono-phenotype) 

modeling proceeds by fitting a standard biometrical model with three sources of variance (A: 

additive genetic factors, C: shared environmental factors and E: unique environmental 

factors, known as the ACE model) to twin data, and examining the significance of each of 

the sources of variance by fitting submodels (Maes 2005) or estimating likelihood-based 

confidence intervals (Neale et al. 1997). This is a manageable task as it requires fitting only 

three (AE, CE and E) submodels when the model has up to three sources of variance. Note 

that alternatively, models may include dominance genetic variance D instead of C, although 

additional relatives types would be needed to estimate both sources of variance 

simultaneously. When each twin is measured on two variables (referred to hereafter as 

bivariate) context, these models are extended to estimate the contributions of ACE variance 

components to the covariance between traits, in addition to the ACE components of each of 

the two variables. Furthermore, the covariance between the two traits may be modeled as 

direct causal paths, instead of or in addition of shared latent factors. Thus there are five 

parameters to consider when describing the covariance between two variables. We show in 

Appendix I that all models with any three of these parameters are identified (i.e., fitting them 

will yield a unique estimate for each parameter. For example, bidirectional causation and 

genetic correlation or pleiotropy. However, selecting the best model from the 25 possible 

models and submodels remains a challenge. Accordingly, we explore model averaging as a 

statistical method that may help to obtain a balanced overall view of the processes that may 

have generated the data.

For many years, the Cholesky decomposition of covariance matrices was popular in 

Behavior Genetics. The model specifies that covariance between m variables is due to m 

factors which have a factor loading pattern where the first factor affects all variables, the 

second affects all except the first variable, and so on until the last factor (which influences 

only the last variable). Models for twin data would assume this structure for covariance due 

to each of the A, C and E components of variance, so it became known as the ‘triple 

Cholesky’. While the model is suitable for longitudinal data, several articles have noted 

statistical problems (Carey 2005, Wu et al. 2013, Verhulst et al. 2019).

Typically, submodels are tested, either based on pre-set hypotheses or on results from the 

fitted model, and/or confidence intervals around the model parameters are estimated. Results 

sections generally include estimates of the best fitting model with confidence intervals, 
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although sometimes results from a full model with confidence intervals on all parameters are 

also presented. In some studies, direction of causation models are chosen to test more 

directly whether the data are consistent with one variable being a direct cause of the other 

variable. These direction-of-causation (DOC) models may or may not be compared with 

models estimating sources of covariance directly (Heath et al. 1993, Duffy et al. 1994). 

Model selection is usually done by likelihood ratio tests or by selecting the model with the 

best parsimony measure, often operationalized as the lowest Akaike’s Information Criterion 

(AIC) or Bayesian Information Criterion (BIC). However, in many instances, no single 

model stands out as more strongly supported by the data than are others. Selection of a best-

fitting model becomes difficult, and resolution between alternatives may require collection 

of more data with either the same design or an extended one. Such worthwhile efforts 

typically take considerable time and money, and the impatient or impoverished researcher 

may lack either or both. This raises the question as to whether novel statistical methods can 

provide a glimpse of what such efforts would bring. The aim here is not to provide a 

comprehensive simulation study of multiple methods, but simply to explore one of them in 

the context of real data from a genetically-informative study.

The method used here is multimodel inference, which deals specifically with these types of 

scenarios where many alternative models could be fitted to a dataset (Burnham et al. 2004). 

These methods may be especially useful in cases where not all parameters of interest can be 

estimated simultaneously due to under-identification of the full model. The approach 

involves fitting all possible (identified) bivariate twin models that include different 

combinations of the parameters of interest. AIC (minus twice the log-likelihood of the data 

minus twice the degrees of freedom) is calculated for each of the alternative models. These 

statistics can then be used to obtain average parameter estimates by weighting them 

according to their AIC fit. This process of model-averaging thus generates an averaged 

picture of the parameter estimates, along with their standard errors. It also allows to obtain 

simultaneous estimates of more parameters than would ordinarily be identified, and typically 

estimated in alternative models.

In the paper, we illustrate the use of multimodel inference and model averaging in a bivariate 

analysis of genetically informative data with a focus on exploring the sources of covariation 

between two variables. Our aims are to: i) show how to fit the 25 alternative identified 

bivariate twin models and submodels; ii) evaluate which sources of covariance are most 

consistent with the data through multimodel inference; iii) estimate the magnitude of each of 

the sources of covariation using model averaging; iv) explore the covariance between obesity 

and smoking quantity; and v) consider the statistical power to reject alternative models. We 

chose obesity and smoking quantity because both variables are at times analyzed as 

continuous or as binary/ordinal measures.

METHODS

Subjects

The phenotypic data analyzed here were collected from twins participating in the Virginia 

Adult Twin Study of Psychiatric and Substance Use Disorders, a study of ~8000 adult male 

and female same sex and opposite sex twin pairs ascertained from a population-based twin 
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registry (Kendler et al. 2006). For these analyses, data were extracted from the first wave of 

the female study for height & weight, and the third and fourth waves for smoking behaviors. 

In the male and opposite sex twin pairs study (the MMMF study), height and weight data 

came from waves 1 and 2, and smoking data form waves 2 and 3.

Measures

We chose to analyze two continuous variables, first body mass index (BMI, calculated from 

self-report weight/height2), a commonly used measure of obesity. Second, we used number 

of cigarettes or their equivalent for alternative tobacco products smoked per day, a measure 

of tobacco quantity (ITOB). We set non-smokers to zero for these illustrative analyses, even 

though we are aware that number of cigarettes smoked is conditional on having initiated 

smoking and should ideally be analyzed as a conditional variable (Maes et al. 2004, Neale et 

al. 2006a, Neale et al. 2006b). We further generated ordinal and binary variables by placing 

thresholds on the continuous distributions of BMI (BMIo=0: bmi<18.5, 1: bmi>=18.5 & 

<25, 2: bmi>=25 & <30, 3: bmi>=30 for the ordinal measure; BMIb=0: bmi<25, 1: 

bmi>=25 for the binary measure). For ITOB, we also created a four-category variables 

(ITOBo) with 0 for those who have not initiated tobacco, 1 for those who smoked fewer than 

10 cigarettes (or equivalents in alternative tobacco products), 2 for having smoked between 

10 and 30 cigarette equivalents per day, and 3 for smoking more than 30 cigarettes per day; 

and a binary variable (ITOBb), where those in the first two categories were scored 0 versus 

those in the upper two categories scored 1. Binary variables were created to have an 

approximately even split.

Statistical Analyses

Sources of covariation—Structural equation modeling of genetically informative data 

was used to model the contributions of genetic and environmental factors to the liability of 

two variables, assuming an underlying threshold model when fitting to binary or ordinal data 

(Neale et al. 1992). Additive genetic factors A refer to the cumulative small effects of a large 

number of genetic loci. Shared (or between-family) environmental effects C make nuclear 

family members relatively more similar, whereas unique (or within-family) environmental 

factors E are unique to individuals within a family and contribute to differences between 

family members. Traditional bivariate twin models assume that each of the three sources of 

variance (ACE) contribute to the variances of each of the phenotypes as well as to their 

covariance, typically parameterized as a ‘triple Cholesky’ decomposition. Models can be re-

parameterized as correlated factor models. Figure 1 shows alternative representations of a 

model for bivariate twin data. A separate class of bivariate twin models often applied to two 

variables are the causal models (Heath, Kessler 1993), which can be used to test whether the 

data are consistent with: i) a direct causal effect of one variable on the other, or ii) vice-

versa, or iii) reciprocal causation between the two variables. It is important to note that twin 

data can reject simple models about the direction of causation between two variables, even 

with cross-sectional data, and that power to discriminate between alternative models 

increases with the difference between the MZ and the DZ correlations for the two variables. 

Covariation between two variables of interest can thus result from shared genetic factors, 

parameterized as a correlation between the latent genetic factors of two variables (ra). In 

addition to or alternatively, shared environmental factors may contribute to variance in both 
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phenotypes, as represented by rc, and similarly can unique environmental factors (re). 

Finally, there may be a direct causal path from variable one to variable two, referred to as 

b21, or there may be reverse causation, referred to as b12. These five sources of covariance 

are illustrated in Figure 2.

Model selection—In most situations where one is interested in understanding the etiology 

of a correlation between two variables, there is little a priori knowledge of which sources of 

variance might contribute, or the relative strengths of these influences. This agnostic 

situation often leads investigators to several flawed strategies to distill the model fitting 

results. A researcher may arbitrarily pick a full correlated factors model or a causal model 

with assumed direction of causation, or may fit submodels by dropping some parameters 

based on, e.g., their statistical significance or interpretability. Others may proceed by 

systematically testing all submodels or a limited set of specific hypotheses. Here, we instead 

take a more a-theoretical approach. We fit all possible identified models, i.e., all models with 

up to three of the five specified sources of covariance (ra, rc, re, b21 & b12), resulting in 25 

models. The first set includes only one of the five sources. The second set of ten models 

includes any two of the five sources, and the third includes three sources (see Figure 3). 

Models with more than three parameters are not identified. The mxCheckIdentification(see 

Appendix 1) function in the OpenMx package (Neale et al. 2016) shows that models 

including any combination of up to three sources of covariance are identified with data from 

the classical twin study. Thus, we set out to fit each of the 25 possible models to our 

continuous and derived categorical variables and to obtain empirical evidence of the best 

fitting model(s). The estimates from these models are then weighted by their degree of 

support (better fitting models get heavier weights) using multi-model inference to deliver 

model-averaged estimates. The different measures were used to illustrate model averaging 

for three types of data.

Multimodel inference and model averaging—We use multimodel inference methods 

to summarize the goodness-of-fit of the models and to calculate weights used in model 

averaging to obtain the ‘best’ estimates of the parameters of interest (Burnham, Anderson 

2004, Symonds et al. 2011, Kirkpatrick et al. 2015). Multimodel inference uses AIC to 

compare different models by rank ordering models by AIC and calculating the difference (Δ) 

in AIC of each model and the model with the lowest AIC. This difference in AIC is then 

translated into an Akaike weight which has a value between 0 and 1 with the sum of the 

Akaike weights of all models being 1, and can be interpreted as the probability that a given 

model is the model that best approximates the data. Models with Δ less than 2 are typically 

considered as good as the best model, those with Δ greater than 10 are substantially poorer 

than the best AIC model. Multimodel inference approaches also generate a ‘confidence set’ 

of best approximating models by summing the Akaike weights of ranked models until the 

cumulative weight exceeds 0.95 (or alternative chosen level), concluding that one of the 

models in this set is the best approximating model (Symonds, Moussalli 2011). We can also 

use the model weights to assess the relative importance of each of the relevant parameters, 

by summing the Akaike weights for each model that includes the parameter. These summed 

weights can be considered as probabilities that the parameter is in the best fitting model. The 

best estimates of the model parameters are derived from weighted averages of the parameter 
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values across models, a procedure known as model averaging. We used full-model averaging 

where inference is based on all models by summing the products of Akaike weights with the 

estimates from each model, so that models that do not include a particular parameter 

(because it was set to zero) do not contribute to the calculation of the average estimate of 

that parameter.

Model Specification in OpenMx—Twenty-five genetic models were evaluated, starting 

with a ‘triple correlated factors’ model, which is a fully saturated biometrical genetic factor 

ACE model, specified as correlated factors ra, rc, and re. The remaining set of 24 models 

can be grouped in sets of three each. The first set includes any two of the three correlated 

factors, followed by a set of models including only one of the three correlated factors. Next 

are a series of hybrid models that include at least one correlated factor, and at least one 

causal path. This series includes two sets of three models, each with two correlated factors, 

and one causal path, a set of three models with one of the correlated factors and two causal 

paths, and two sets of three models, each with one correlated factor, and one causal path. 

Finally included are the three DOC models with only one or two causal paths. Scripts for the 

analyses were written for OpenMx (Neale, Hunter 2016, Boker et al. 2011) and are available 

online at http://hermine-maes.squarespace.com (Maes 2018). These scripts incorporate a 

recently released model averaging function in OpenMx, called mxModelAverage(). This 

function (see Appendix 2) generates tables of: Akaike weights for each of the fitted models, 

model-wise estimates and sampling variances, and model-averaged point estimates and their 

standard errors. To calculate model-average estimates, only models are included in which 

the parameter is freely estimated. Models were specified as correlated factors models, which 

result in non-negative estimates of the variance components. Although models with direct 

variance estimation have better statistical properties for testing significance of model 

parameters (Wu, Neale 2013, Visscher 2006), model averaging methods implemented in 

OpenMx currently do not allow negative variances.

Sex Limitation—A common feature of behavior genetic models is testing for sex 

differences in the means and variance components. We illustrate this by considering data on 

female and male twin pairs separately or jointly. In the latter case, standard tests for sex 

differences in the magnitude and nature of the sources of variance are incorporated. The 

simplest model constrains parameters pertaining to variances and covariances across sex (no 

sex differences in variances and covariances). Quantitative sex differences can be tested by 

estimating separate parameters for male and female variance components and causal paths 

(Neale, Cardon 1992, Neale et al. 2006c). To evaluate additional qualitative sex differences, 

covariances across males and females between genetic or shared environmental factors can 

be estimated freely in opposite sex twin pairs. As is the case in testing sex heterogeneity for 

a single variable using the classical twin design, there is not enough information to 

simultaneously estimate the correlation between genetic factors across sex and that between 

shared environmental factors. Instead alternative models are fitted estimating the degree of 

overlap in either genetic or shared environmental factors across sex. In practice, we can 

evaluate the significance of sex differences in the first of the 25 models by fitting four sex-

limitation models (no sex differences, quantitative sex differences only, and adding genetic 

or shared environmental qualitative sex differences), to guide fitting models to both sexes 
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simultaneously. The main effects of sex and other potential covariates are straightforward to 

include in these models.

RESULTS

Descriptive Statistics

Data on BMI were available for 7,840 twins (3,455 females, 4,385 males) and on tobacco 

quantity for 6,516 twins (2,774 females, 3,742 males). Table 1 presents means for 

continuous variables (Table 1a) and frequencies for derived ordinal and binary variables 

(Table 1b). The continuous variables were divided by a constant to obtain variances near 1 to 

aid optimization. Observed values were higher for males and females for both BMI and 

tobacco quantity. Table 2 shows the pattern of twin correlations (cross-twin within-trait, 

Table 2a), which suggested primarily genetic influences and unique environmental 

influences on both variables and minor contributions of shared environmental factors. 

Phenotypic (within-twin cross-trait) correlations (Table 2b) and cross-twin cross-trait 

correlations (Table 2c) between BMI & ITOB suggested modest covariation between the two 

traits with different patterns for females, males and opposite sex twins. Note that these 

variables were chosen as illustrative examples.

Model fitting and model averaging

First, we illustrate the process of fitting the 25 alternative bivariate models to BMI-ITOB 

data of female twins, and generating multimodel statistics and model-averaged parameter 

estimates. Fit statistics of the 25 models were rank ordered starting with the one with the 

lowest value of AIC (see Table 3a). Delta AIC values were calculated as the difference in 

AIC between each of the models and the most parsimonious one. Models with cumulative 

Akaike weights up to .95 are considered to be in the Confidence set. Akaike weights were 

summed for all models that contain a parameter of interest to generate a probability that that 

parameter was in the best fitting model. When fitting bivariate models to data of MZ & DZ 

same-sex female twins (N= 1139 twin pairs), results suggested little discrimination between 

alternative models as shown by delta AIC values less than 4, and most models (23 out of 25) 

being considered in the confidence set. Note that for females the phenotypic correlation 

between the two traits was small and not significantly different from 0, resulting in each of 

the five possible covariance parameters doing equally well in accounting for it, as shown by 

probabilities of ~.40 for each of the five sources of covariance to be in the best fitting model. 

In this situation, simpler models (those with fewer parameters that generate covariance) did 

better as they are less penalized when calculating AIC. Results from analyses in same-sex 

male data (N= 1,497 twin pairs) were more informative. First, several models could be 

rejected based on the difference in fit, resulting in 17 models included in the confidence set. 

The models retained had mostly two or three sources of covariance. The best fitting models 

are most likely to include the ra parameter (p=.57), suggesting that at least some genetic 

factors were shared between the traits, with an equal chance of including re, b21 & b12 

(p=.50).
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Testing sex limitation

When analyzing both sexes jointly and including opposite sex twins, we evaluated first 

whether sources of variance and covariance in males and females were of the same 

magnitude (quantitative sex differences) and the same kind (qualitative sex differences, 

where either genetic or shared environmental correlations across sex are estimated). We 

fitted the four sex limitation models using the triple correlated factors model. When 

quantitative and qualitative sex differences were found, these parameters were included in 

the remaining 24 alternative models. Although it is theoretically possible to fit all 25 models 

in all 4 sex difference scenarios, we reduced the model set to focus on the causal and 

correlational relationships rather than on sex differences. We present results for fitting the 25 

models under two of the four sex limitation scenarios: only quantitative sex differences, and 

including additional qualitative sex differences by estimating the genetic correlations across 

sex. When allowing only quantitative sex differences, 13 models were retained in the 

confidence set and the probability that the best fitting model contained ra was .71, with the 

next most likely parameter accounting for covariance being b21 at .56 probability. In models 

with both quantitative and qualitative sex differences, thus estimating more parameters, 15 

models were in the confidence set with an .84 probability that ra was included in the best 

fitting model. In analyses that include tests of sex heterogeneity, models in the confidence 

set were more likely to include ra than any other parameter to account for the covariation 

between the variables, similar to the results from the male only analyses. Furthermore, most 

models with only one parameter accounting for covariance between variables did not make it 

into the confidence set, suggesting that at least two parameters are necessary to account for 

the observed covariance.

Modeling continuous, ordinal or binary variables

In addition to fitting the set of 25 models to continuous variables, we fitted them to ordinal 

and binary measures derived from the continuous ones for three main reasons, to: illustrate 

the practical use of the scripts, to evaluate ii) the consistency of the results and iii) the power 

to discriminate between alternative models. Results are presented in Table 4. We repeated 

the series of analyses with data of females (top left) and males (top right) separately, 

followed by analyzing males and females jointly to allow testing for heterogeneity by gender 

(bottom half of table 4). We show results for both the full sex limitation model (quantitative 

and qualitative genetic sex differences, bottom left) and a quantitative sex differences model 

only (bottom right), as the former fit best for the continuous measures and the latter for the 

ordinal/binary measures. For each analysis we present models ranked by their AIC value 

(with the best fitting model first), the fit of the first model and difference in fit compared to 

the first model. Models considered to be in the confidence set according to the multimodel 

inference criteria are bolded. When comparing results for continuous, ordinal or binary 

measures, typically the number of models in the confidence set increased for ordinal/binary 

scenarios. Except for the analyses in females only, the same models appeared consistently 

outside the confidence set. The rank order of the models (from best to least well fitting) was 

far from consistent across type of variable analyzed, possibly due to small differences in 

AIC, suggesting limited discrimination between models.
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Graphing model-averaged parameter estimates

Finally, we present model averaged parameter estimates, where estimates of parameters of 

each of the models are weighted by their AIC, a ‘penalized’ goodness-of-fit index, in Figure 

4 (4a: females, 4b: males, 4c: males & females with full sex limitation and 4d:males & 

female with quantitative sex differences). Figures 4a & 4b show the proportions of variance 

accounted for by genetic (a2, shared environmental c2 and unique environmental e2 factors 

for the first variable (here BMI), the proportions for the second variable (here ITOB), and 

the parameters accounting for covariance (ra, rc, re, b21 & b12) between the two variables. 

Note that the latter five can go negative, possibly resulting in cancelling each other out when 

looking at phenotypic correlations. For females, genetic factors accounted for most of the 

variance (~.8 for BMI, ~.6 for ITOB), with negligible shared environmental contributions for 

BMI but suggestive for ITOB. Estimates of genetic covariance were consistently positive, 

those for unique environmental covariance consistently negative, and those for shared 

environmental covariance inconsistent & unstable, likely due to the lack of shared 

environment variance for BMI. However, none of the covariance paths, including causal path 

estimates, was significant. The pattern of results for males was similar, except that there was 

no evidence of c2 for ITOB either. When dropping c2 from the model altogether, the 

estimated positive genetic covariance and negative unique environmental covariance 

approached significance, but causal paths remained non-significant and were inconsistent 

across the two levels of measurement (results not shown).

Graphs for estimates of full sex limitation models include additional parameters, starting 

with estimates of the genetic correlations across sex for each variable, followed by a2, c2 and 

e2 variance components for the two variables for males and females, and the parameters 

accounting for covariance between variables. The latter include sex-specific causal paths in 

both directions, sex-specific unique environmental covariance, shared environmental 

covariance constrained across sex, and four genetic covariance parameters depending across 

sex. In the quantitative sex differences model, genetic correlations across sex are fixed to 1 

and genetic covariance parameters constrained to be equal across sex. Given that none of the 

covariance parameters is statistically significant in these analyses, we limit our discussion of 

the results to the fact that the genetic covariance between BMI and ITOB approached 

significance, which was consistent with most models in the confidence set across analyses 

including ra.

Estimating power for bivariate models

We simulated data with the same pattern of correlations as the real data example to evaluate 

the power to discriminate between alternative models. As any combination of three 

parameters out of ra, rc, re, b21 & b12 can account for any pattern of covariation between 

two measures, we only list power to reject models with one or two of the five parameters 

(see Table 5, associated OpenMx script in appendix 3). The real data example had sufficient 

power to reject most models with a single parameter accounting for the covariance than with 

two parameters. Furthermore, power is greater to reject ra, rc or re, compared to causal 

paths b21 & b12.
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DISCUSSION

Most prior genetic epidemiological modeling of the causes of covariation between two 

variables measured in twins have used one of two approaches. Usually, a triple Cholesky 

decomposition model is fit, followed up with fitting submodels based on a stated hypothesis 

or more or less well defined criteria. Within this approach, non-significant parameters may 

be fixed to zero to obtain a better fitting model. Occasionally, direction of causation models 

are fit, typically with a particular direction of causation. Most reports then present parameter 

estimates and confidence intervals of the best fitting or most parsimonious model. 

Sometimes a full model’s estimates would also be included with confidence intervals, 

leading to potentially non-significant parameters being retained, but resulting in less bias in 

estimates of the significant parameters. This strategy may, by chance, result in the selection 

of the best possible model, in terms of goodness-of-fit and parsimony, for the data, and the 

most accurate parameter estimates, but it also may not.

The multimodel inference approach presented in this paper attempts to avoid bias due to 

selective model fitting, but rather fits a set of identified models to the same data, selects all 

the models that are consistent with the data, and calculates the model averaged parameters 

by taking into account the goodness-of-fit of all considered models. We illustrated here how 

this can be done with data from the classical twin design, and how it can be extended to 

testing for heterogeneity (by sex) using the opensource software OpenMx for which scripts 

are freely available.

Even though causes of covariation between obesity and smoking behavior are of substantial 

interest, the current application was chosen for illustrative purposes, and we therefore did 

not go into the background literature on this topic nor discussed the results in light of 

previous findings. However, results from the range of analyses and associated power 

analyses performed provide some insight into modeling the causes of covariation using the 

classical twin design, in particular with respect to the power of these studies as a function of 

sample size, type of variable analyzed and accommodation for sex heterogeneity. Due to the 

relative complexity of the model and the vast number of possible scenarios and values to 

consider for each of the parameters of the model, a formal simulation study is beyond the 

scope of this paper. The results confirm those of previous studies, that stronger conclusions 

can be drawn from studies using continuous measures compared to those using ordinal or 

binary measures (Neale et al. 1994). Genuinely continuous measures yield both greater 

power to discriminate between alternative models, and more precise parameter estimates. A 

more novel finding is that with reasonable sample sizes of pairs for typical twin studies, the 

power to discriminate between alternative models likely depends on the magnitude and the 

nature of the phenotypic covariance between the two measures, and will be explored with 

other data and other variables for which evidence of covariation exists.

In summary, we chose to present the multimodel framework using real data, to illustrate the 

use of these new features in OpenMx (Neale, Hunter 2016, Boker, Neale 2011). This paper 

hopes to introduce multimodel inference and model averaging approaches to the behavior 

genetics community, in the context of testing models for the causes of variation and 

covariation in traits in term of genetic, environmental and causal explanations.
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Limitations

This study should be interpreted in the context of some potential limitations. First, nicotine 

use is a complex variable. As noted above, biometrical models for data on substance use 

should ideally differentiate between substance initiation and quantity once initiated, as the 

liabilities to them may not be unidimensional. In principle, a better approach would be a 

trivariate analysis including initiation as a separate variable in the model (and code use 

quantity as missing data). However, doing so would greatly increase the model’s complexity 

and decrease its value as an illustration. We intend to extend the current methods to 

incorporate such types of analysis. Second, the statistical power of any study depends 

heavily on sample size. Although the data analyzed here come from a well-powered 

population-based study, the sample still required voluntary participation, and the females-

only part of the study occurred several years prior to that of males. The larger sample of 

male-male and opposite sex pairs than female-female, was by design due to the lower 

statistical power to study disorders such as depression that occur with lower frequency in 

males. Although the design may have been sub-optimal for detecting sex differences in BMI 

and smoking, they were found for means, variances and components of variance. 

Furthermore, it was clear from the current analyses that power is also substantially greater 

when analyzing continuous measures versus ordinal or binary measures, consistent with 

previous simulation studies (Neale, Eaves 1994). However, it is important not to analyze 

ordinal variables as if they were continuous, because doing so violates methodological 

assumptions necessary for robust estimation of effect sizes and accurate statistical inference. 

It should also be noted that DOC models have not been used extensively as their power 

depends heavily on differential genetic architecture of the phenotypes under study (Heath, 

Kessler 1993). Finally, we note that ‘there is no such thing as a free lunch ‘in model-fitting. 

Model averaging appears to help distinguish between models and may support a model that 

could not be identified by the data being analyzed. It is, alas, no substitute for improving 

research design by including other types of relative, repeated measures, or experimental 

interventions. It is through the combination of these approaches that consistency across 

multiple lines of evidence may be achieved. Such agreement is prerequisite for the safe 

application of empirical scientific results to health care policy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Alternative representations of bivariate twin models: triple Cholesky (top) and correlated 

factors model (bottom)

Maes et al. Page 13

Behav Genet. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Sources of covariation, identifiable with data from the classical twin design, representing 5 

of the 25 identified bivariate submodels
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Figure 3: 
Models with any two (top) or any three (bottom) sources of covariation between two 

variables
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Figure 4: 
Model-averaged parameter estimates from fitting bivariate models to data of females (4a), 

males (4b), jointly with full sex limitation (4c) and with quantitative sex differences only 

(4d) for continuous, ordinal and binary measures of BMI & ITOB (need to add error bars)
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Table 1:

Descriptive Statistics for continuous (1a) and ordinal/binary (1b) measures of BMI and ITOB for total sample 

and by sex

1a

Variable N Mean StdDev Minimum Maximum

total BMI 7840 24.77 4.51 14.41 54.64

BMIc 7840 6.19 1.13 3.60 13.66

ITOB 6516 15.77 18.77 0.00 165.60

ITOBc 6516 0.79 0.94 0.00 8.28

female BMI 3455 23.31 4.69 14.41 51.60

BMIc 3455 5.83 1.17 3.60 12.90

ITOB 2774 11.70 15.21 0.00 80.00

ITOBc 2774 0.58 0.76 0.00 4.00

male BMI 4385 25.93 4.00 15.39 54.64

BMIc 4385 6.48 1.00 3.85 13.66

ITOB 3742 18.79 20.51 0.00 165.60

ITOBc 3742 0.94 1.03 0.00 8.28

1b

total female male

BMIo 7840 N % 3455 N % 4385 N %

0 260 3.32 224 6.48 36 0.82

1 4224 53.88 2351 68.05 1873 42.71

2 2460 31.38 564 16.32 1896 43.24

3 896 11.43 316 9.15 580 13.23

BMIb N % N % N %

0 4484 57.19 2575 74.53 1909 43.53

1 3356 42.81 880 25.47 2476 56.47

ITOBo 6516 N % 2774 N % 3742 N %

0 1474 22.62 942 33.96 532 14.22

1 2021 31.02 798 28.77 1223 32.68

2 1884 28.91 749 27 1135 30.33

3 1137 17.45 285 10.27 852 22.77

ITOBb N % N % N %

0 3495 53.64 1740 62.73 1755 46.9

1 3021 46.36 1034 37.27 1987 53.1

BMI: body mass index; BMIo: ordinal BMI measure; BMIb: binary BMI measure

ITOB: tobacco quantity: ITOBo: ordinal ITOB measure; ITOBb: binary ITOB measure
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Table 2:

Product-moment, polychoric & tetrachoric correlations for measures of BMI and ITOB by zygosity and sex: 

twin (within-trait cross-twin) correlations (2a), phenotypic (cross-trait within-twin) correlations (2b) and 

cross-trait cross-twin correlations (2c)

2a

MZ DZ MZf DZf MZm DZm Dzo

BMI 0.64 0.41 BMI 0.81 0.38 0.73 0.30 0.31

BMIo 0.59 0.43 BMIo 0.79 0.37 0.73 0.32 0.32

BMIb 0.70 0.48 BMIb 0.84 0.47 0.75 0.37 0.34

ITOB 0.51 0.34 ITOB 0.61 0.36 0.59 0.27 0.24

ITOBo 0.64 0.40 ITOBo 0.76 0.45 0.68 0.32 0.28

ITOBb 0.68 0.49 ITOBb 0.73 0.61 0.79 0.42 0.31

2b

total female male same-sex female male

BMI-ITOB 0.10 0.03 0.08 BMI-ITOB 0.11 0.02 0.09

BMIo-ITOBo 0.11 0.01 0.07 BMIo-ITOBo 0.14 0.00 0.10

BMIb-ITOBb 0.10 0.01 0.05 BMIb-ITOBb 0.10 −0.02 0.08

2c

MZ DZ MZf DZf MZm DZm Dzo

BMI-ITOB 0.03 0.09 BMI-ITOB 0.04 0.02 0.13 0.04 0.09

BMIo-ITOBo 0.02 0.11 BMIo-ITOBo 0.05 −0.02 0.15 0.04 0.07

BMIb-ITOBb −0.02 0.10 BMIb-ITOBb 0.03 −0.04 0.15 0.06 0.07

MZ: monozygotic twins; DZ: dizygotic twins; m: male; f: female; o: opposite sex twins
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Table 3:

Model fitting and model averaging results of bivariate models to data of females (3a), and males (3b) for 

continuous measures of BMI & ITOB

3a

model AIC delta Akaike Weight inConfidenceSet ra rc re b21 b12

Fe 9031.36 0.00 0.07 * 0.07 0.00 0.00 0.07 0.00 0.00

Fc 9031.60 0.24 0.06 * 0.13 0.00 0.06 0.00 0.00 0.00

Her 9031.70 0.33 0.06 * 0.19 0.00 0.00 0.06 0.00 0.06

Fce 9031.70 0.33 0.06 * 0.25 0.00 0.06 0.06 0.00 0.00

Fae 9031.74 0.38 0.06 * 0.31 0.06 0.00 0.06 0.00 0.00

Hao 9031.74 0.38 0.06 * 0.36 0.06 0.00 0.00 0.06 0.00

Heo 9031.74 0.38 0.06 * 0.42 0.00 0.00 0.06 0.06 0.00

Har 9031.78 0.42 0.06 * 0.48 0.06 0.00 0.00 0.00 0.06

Dor 9031.84 0.48 0.05 * 0.53 0.00 0.00 0.00 0.05 0.05

Fa 9031.94 0.57 0.05 * 0.59 0.05 0.00 0.00 0.00 0.00

Hcr 9032.02 0.66 0.05 * 0.64 0.00 0.05 0.00 0.00 0.05

Dr 9032.40 1.04 0.04 * 0.68 0.00 0.04 0.00 0.00 0.04

Do 9032.49 1.13 0.04 * 0.72 0.00 0.00 0.00 0.04 0.00

Hco 9032.62 1.26 0.04 * 0.75 0.00 0.04 0.00 0.04 0.00

Fac 9033.56 2.20 0.02 * 0.78 0.02 0.02 0.00 0.00 0.00

Face 9033.62 2.26 0.02 * 0.80 0.02 0.02 0.02 0.00 0.00

Haco 9033.62 2.26 0.02 * 0.82 0.02 0.02 0.00 0.02 0.00

Hceo 9033.62 2.26 0.02 * 0.84 0.00 0.02 0.02 0.02 0.00

Hacr 9033.62 2.26 0.02 * 0.87 0.02 0.00 0.00 0.00 0.02

Haer 9033.62 2.26 0.02 * 0.89 0.02 0.00 0.02 0.00 0.02

Haor 9033.62 2.26 0.02 * 0.91 0.02 0.00 0.00 0.02 0.02

Hcor 9033.62 2.26 0.02 * 0.93 0.00 0.02 0.00 0.02 0.02

Heor 9033.62 2.26 0.02 * 0.96 0.00 0.00 0.02 0.02 0.02

Hcer 9033.62 2.26 0.02 0.00 0.02 0.02 0.00 0.02

Haeo 9033.74 2.38 0.02 0.02 0.00 0.02 0.02 0.00

1.00 0.38 0.38 0.44 0.38 0.40

3b

model AIC delta Akaike Weight inConfidenceSet ra rc re b21 b12

Dor 14757.76 0.00 0.10 * 0.10 0.00 0.00 0.00 0.10 0.10

Heo 14757.76 0.00 0.10 * 0.19 0.00 0.00 0.10 0.10 0.00

Fae 14757.76 0.01 0.10 * 0.29 0.10 0.00 0.10 0.00 0.00

Har 14757.76 0.01 0.10 * 0.38 0.10 0.00 0.00 0.00 0.10

Her 14757.76 0.01 0.10 * 0.48 0.00 0.00 0.10 0.00 0.10
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model AIC delta Akaike Weight inConfidenceSet ra rc re b21 b12

Hao 14757.77 0.01 0.10 * 0.57 0.10 0.00 0.00 0.10 0.00

Fa 14758.91 1.15 0.05 * 0.62 0.05 0.00 0.00 0.00 0.00

Hceo 14759.74 1.99 0.04 * 0.66 0.00 0.04 0.04 0.04 0.00

Heor 14759.75 1.99 0.04 * 0.70 0.00 0.00 0.04 0.04 0.04

Haor 14759.75 1.99 0.04 * 0.73 0.04 0.00 0.00 0.04 0.04

Hcor 14759.75 1.99 0.04 * 0.77 0.00 0.04 0.00 0.04 0.04

Hacr 14759.76 2.00 0.04 * 0.80 0.04 0.00 0.00 0.00 0.04

Haco 14759.76 2.00 0.04 * 0.84 0.04 0.04 0.00 0.04 0.00

Haeo 14759.76 2.00 0.04 * 0.87 0.04 0.00 0.04 0.04 0.00

Face 14759.76 2.01 0.04 * 0.91 0.04 0.04 0.04 0.00 0.00

Haer 14759.76 2.01 0.04 * 0.94 0.04 0.00 0.04 0.00 0.04

Hcer 14759.77 2.01 0.03 * 0.98 0.00 0.03 0.03 0.00 0.03

Fac 14760.90 3.14 0.02 0.02 0.02 0.00 0.00 0.00

Fc 14766.27 8.51 0.00 0.00 0.00 0.00 0.00 0.00

Hco 14767.35 9.59 0.00 0.00 0.00 0.00 0.00 0.00

Fce 14767.82 10.06 0.00 0.00 0.00 0.00 0.00 0.00

Do 14768.17 10.41 0.00 0.00 0.00 0.00 0.00 0.00

Hcr 14768.20 10.45 0.00 0.00 0.00 0.00 0.00 0.00

Dr 14772.31 14.55 0.00 0.00 0.00 0.00 0.00 0.00

Fe 14777.12 19.36 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.57 0.20 0.50 0.50 0.50

Twenty-five genetic models were evaluated, starting with a ‘triple correlated factors’ model, referred to here as Face, with F referring to correlated 
Factors, and ace to ra, rc, and re respectively. Submodels include any two of three correlated factors (Fac, Fae, Fce), or one of three correlated 
factors (Fa, Fc, Fe). The three DOC models (acronyms starting with D) include one or two causal paths where o refers to the b21 path and r to the 

b12 path (Dor, Do & Dr). Hybrid models (acronyms starting with H) include one or two correlated factors, and one or two causal paths: 6 models 

with 2 correlated factors and 1 causal path, (Haco, Haeo Hceo, Hacr, Haer, Hcer), 3 models with 1 correlated factor and 2 causal paths (Haor, Hcor, 
Heor), and 6 models with 1 correlated factor and 1 causal path (Hao, Hco Heo, Har, Hcr, Her).
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Table 4:

Model fitting results of bivariate models to data of females (3a), males (3b), jointly with full sex limitation 

(3c) and with quantitative sex differences only (3d) for continuous, ordinal and binary measures of BMI & 

ITOB

con AIC & Δ ord AIC & Δ bin AIC & Δ con AIC & Δ ord AIC & Δ bin AIC & Δ

Fe 9031.36 Fe 7379.84 Fe 3933.83 Dor 14757.76 Fa 12324.89 Fc 7077.78

Fc 0.24 Har 0.98 Dr 0.05 Heo 0.00 Her 0.46 Dor 1.00

Her 0.33 Fae 1.06 Fc 0.08 Her 0.01 Hao 0.47 Fce 1.13

Fce 0.33 Hao 1.06 Do 0.14 Fae 0.01 Heo 0.48 Fa 1.55

Fae 0.38 Heo 1.06 Fa 0.18 Har 0.01 Fae 0.48 Hco 1.65

Heo 0.38 Her 1.13 Dor 1.47 Hao 0.01 Har 0.48 Hcr 1.71

Hao 0.38 Fa 1.24 Har 1.66 Fa 1.15 Dor 0.52 Heo 1.98

Har 0.42 Fc 1.25 Fac 1.82 Hceo 1.99 Fac 1.91 Her 1.98

Dor 0.48 Dr 1.30 Hao 1.87 Heor 1.99 Face 2.45 Fac 2.00

Fa 0.57 Do 1.33 Fce 1.96 Haor 1.99 Hceo 2.45 Fae 2.01

Hcr 0.66 Fce 1.47 Her 1.99 Hcor 1.99 Hacr 2.45 Hao 2.01

Dr 1.04 Dor 1.61 Fae 1.99 Hacr 2.00 Heor 2.45 Har 2.18

Do 1.13 Hcr 2.43 Heo 2.00 Haco 2.00 Hcer 2.45 Face 2.99

Hco 1.26 Hco 2.72 Hcr 2.05 Haeo 2.00 Haco 2.45 Hcer 2.99

Fac 2.20 Face 2.98 Hco 2.06 Face 2.01 Hcor 2.46 Hceo 2.99

Hacr 2.26 Haor 2.98 Face 3.42 Haer 2.01 Haor 2.46 Haco 2.99

Haco 2.26 Haco 2.98 Hcor 3.42 Hcer 2.01 Haer 2.46 Hacr 2.99

Hceo 2.26 Haer 2.98 Hacr 3.42 Fac 3.14 Haeo 2.48 Haer 2.99

Hcor 2.26 Hceo 2.98 Haco 3.42 Fc 8.51 Fc 3.43 Hcor 2.99

Heor 2.26 Hacr 2.98 Hcer 3.42 Hco 9.59 Hco 4.85 Haor 2.99

Face 2.26 Hcor 2.98 Hceo 3.42 Fce 10.06 Hcr 5.17 Heor 3.00

Haor 2.26 Hcer 2.98 Heor 3.42 Do 10.41 Fce 5.31 Haeo 3.34

Haer 2.26 Heor 2.99 Haer 3.42 Hcr 10.45 Do 5.99 Dr 3.35

Hcer 2.26 Haeo 3.06 Haor 3.42 Dr 14.55 Dr 7.46 Do 3.93

Haeo 2.38 Fac 3.24 Haeo 3.44 Fe 19.36 Fe 15.85 Fe 7.45

Fae 38358.34 Hcor 31523.38 Fc 17743.78 Har 38366.31 Hcor 31521.33 Hao 17744.04

Har 0.02 Har 1.17 Fce 2.13 Hceo 0.21 Hacr 0.58 Har 0.10

Hao 0.08 Dor 1.21 Fa 4.08 Haeo 0.21 Haco 0.96 Haco 0.26

Fa 1.47 Fce 1.27 Hcor 4.29 Hcor 0.53 Face 2.57 Fa 0.93

Heor 1.78 Fae 1.30 Fac 5.35 Haco 0.77 Har 2.72 Fae 1.10

Face 1.94 Hao 1.30 Hceo 5.40 Hao 0.77 Hceo 3.57 Hacr 1.22

Haco 1.94 Fa 1.53 Hcer 5.64 Hacr 0.93 Haor 3.58 Hceo 1.74

Hacr 1.96 Fc 1.74 Har 5.85 Face 1.07 Hao 4.54 Fac 2.09

Fac 3.18 Hceo 2.42 Hao 5.87 Fae 1.19 Fae 4.77 Hcer 2.10

Haeo 3.94 Hcr 2.58 Fae 6.04 Haor 2.34 Fac 5.30 Face 2.14
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con AIC & Δ ord AIC & Δ bin AIC & Δ con AIC & Δ ord AIC & Δ bin AIC & Δ

Haor 3.94 Heor 2.87 Heor 6.82 Hcer 2.85 Heor 5.58 Hcor 2.17

Haer 3.95 Face 3.09 Her 6.89 Haer 2.85 Haer 6.09 Haeo 2.53

Hcor 4.09 Haco 3.11 Face 7.12 Her 3.61 Hcer 6.13 Haor 2.81

Hceo 4.27 Hco 3.14 Haco 7.12 Heor 3.73 Heo 6.67 Haer 3.23

Hcer 5.22 Hacr 3.17 Heo 7.25 Heo 5.48 Dor 6.86 Heor 3.32

Fce 5.44 Hcer 3.27 Hacr 7.31 Fac 6.86 Her 7.00 Her 3.71

Fc 5.72 Fac 3.54 Haer 8.09 Dor 7.35 Haeo 8.20 Heo 3.82

Hcr 5.98 Her 4.26 Haor 8.10 Fa 8.20 Fc 8.36 Hco 4.87

Hco 6.84 Heo 4.93 Dr 8.29 Do 20.50 Hco 10.04 Dr 5.03

Her 7.50 Haor 5.10 Dor 8.40 Hco 21.87 Fa 10.71 Dor 5.20

Heo 9.78 Haer 5.23 Haeo 8.46 Dr 23.79 Fce 11.05 Do 5.31

Dor 11.32 Haeo 5.31 Hco 8.49 Hcr 25.12 Hcr 11.75 Fc 5.33

Do 23.65 Do 13.69 Do 8.69 Fc 26.88 Do 16.67 Hcr 6.52

Dr 26.96 Dr 14.27 Hcr 9.95 Fe 28.14 Dr 17.49 Fe 7.19

Fe 31.68 Fe 17.34 Fe 10.53 Fce 28.89 Fe 20.23 Fce 9.17

AIC: Akaike’s Information Criterion for first model; Δ: difference in AIC compared to first model; models including ra highlighted
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Table 5:

Power to reject models based on simulated data, corresponding to the pattern of correlations observed for real 

data example.

simulation parameters

vA1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

vC1 0 0 0 0 0 0 0 0 0

vE1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

vA2 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55

vC2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

vE2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

ra 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

rc 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

re 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

b21 −0.2 −0.2 −0.2 0 0 0 0.2 0.2 0.2

b12 −0.2 0 0.2 −0.2 0 0.2 −0.2 0 0.2

fit 4551.22 4330.78 4118.98 4330.78 4330.78 4330.78 4118.98 4330.78 4551.22

power to reject models including sources of covariance

b21 0.48 0.09 0.87 0.53 0.1 0.9 0.48 0.09 0.87

b12 0.37 0.42 0.37 0.08 0.09 0.08 0.77 0.81 0.77

ra 1 0.12 1 0.97 0.6 1 0.11 1 1

rc 1 0.66 1 1 0.91 1 0.4 1 1

re 1 0.93 0.1 0.46 0.71 1 0.94 1 1

b21 & b12 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

b21 & ra 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

b21 & rc 0.34 0.08 0.67 0.39 0.09 0.73 0.34 0.08 0.67

b21 & re 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

b12 & ra 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

b12 & rc 0.17 0.2 0.17 0.07 0.08 0.07 0.42 0.48 0.42

b12 & re 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06

ra & rc 1 0.13 1 0.98 0.66 1 0.12 1 1

ra & re 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

rc & re 0.94 0.38 0.05 0.11 0.27 0.86 0.44 0.98 1
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