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Abstract

The endocannabinoid system (ECS) is a widespread neuromodulatory network involved both in 

the developing CNS as well as playing a major role in tuning many cognitive and physiological 

processes. The ECS is composed of endogenous cannabinoids, cannabinoid receptors and the 

enzymes responsible for the synthesis and degradation of endocannabinoids. In addition to its 

endogenous roles, cannabinoid receptors are the primary target of Δ9-tetrahydrocannabinol (THC), 

the intoxicating component of cannabis. In this review, we will summarize our current 

understanding of the ECS. We will start with a description of ECS components and their role in 

synaptic plasticity and neurodevelopment, and then discuss how phytocannabinoids and other 

exogenous compounds may perturb the ECS, emphasizing examples relevant to psychosis.
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Introduction:

The endocannabinoid system (ECS) plays a central role in the developing nervous system 

while in the mature nervous system it modulates neuronal activity and network function. The 

ECS is comprised of endogenous cannabinoids (endocannabinoids), cannabinoid receptors, 

and the proteins that transport, synthesize and degrade endocannabinoids. It is important to 

appreciate that most components of the ECS are multifunctional. Thus, rather than being a 

discrete, isolated system, the ECS influences, and is influenced by, many other signaling 

pathways. This is especially important to consider when assessing the effects of ECS 
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targeting drugs. While cannabis contains many bioactive compounds, most of the 

psychoactive effects classically associated with cannabis appear to be mediated through the 

interaction of Δ9-tetrahydrocannabinol (THC), the major psychotropic constituent of 

cannabis, with cannabinoid receptors. Cannabidiol (CBD) is another constituent of cannabis, 

present at variable levels, which interacts with the ECS as well as other neuromodulatory 

systems. CBD has attracted immense recent interest as a therapeutic agent, including as a 

treatment for psychosis [1], although the molecular target(s) of CBD remain to be elucidated 

[2]. The ECS has captured the interest of scientists and physicians studying schizophrenia 

for several reasons: acute administration of THC recapitulates some symptoms of 

schizophrenia in a dose-dependent fashion [3, 4], endocannabinoid levels are altered in 

schizophrenia and change during treatment with antipsychotic drugs [5], and heavy 

adolescent cannabis use increases the risk to develop schizophrenia, or more severe 

schizophrenia later in life [6]. In this article we will review key aspects of ECS, with an 

emphasis on those aspects that are particularly relevant for schizophrenia and psychosis.

Cannabinoid receptors:

CB1 and CB2 are the best-characterized cannabinoid receptors. Both are G protein-coupled 

receptors (GPCRs), primarily coupling to inhibitory G proteins. They inhibit adenylyl 

cyclase and certain voltage-sensitive calcium channels, stimulate mitogen-activated proteins 

kinases (MAP kinases) and inwardly rectifying potassium channels (GIRKs), and recruit 

beta-arrestins, among other actions [7]. The diversity of CB1 signaling is enhanced by their 

propensity to heterodimerize with other GPCRs, including D2 dopamine, hypocretin, and 

opioid receptors (see below[8]). CB1 receptors are particularly enriched in the nervous 

system, but are also present in diverse organs including liver, adipose tissue, skin, etc. In 

adult CNS neurons, CB1 is most abundant on certain GABAergic interneurons [9]. However, 

functional CB1 is found on a wide range of other neurons, including glutamatergic, 

cholinergic, glycinergic, serotonergic, etc, across the brain (e.g., [10]). In neurons, CB1 

receptors are particularly enriched on synaptic terminals [11], reflecting their major role in 

modulating synaptic transmission, however they are also expressed at functionally important 

levels on neuronal somata and dendrites [12–14] and some mitochondria [15]. In addition, 

functional CB1 receptors are expressed by some astrocytes [16]. Expression of CB1 on 

oligodendrocytes, oligodendrocyte precursors, and microglia, is much less and their 

physiological role(s) are still being defined [17–19]. CB2 receptors are primarily expressed 

in cells of immune origin [20, 21] including microglia [22, 23], though they may also be 

expressed in neurons [24], particularly in pathological states [25]. Microglial CB2 receptor 

activation is generally anti-inflammatory [26]. Thus, an interesting and unexplored question 

is if CB2 activation during maternal infection lessens the risk for psychotic disorders in the 

offspring [27].

Because of the likely association between cannabis use and increased risk for psychosis and 

schizophrenia [28], substantial efforts have been directed towards identifying genetic 

polymorphisms in the CB1 gene (CNR1) influencing schizophrenia risk, interactions 

between substance abuse and schizophrenia, and modulation of therapeutic response to 

antipsychotics. Overall, summarizing a complex literature, no CNR1 coding polymorphisms 

have emerged from these studies, and the noncoding polymorphisms reported tend to be 

Lu and Mackie Page 2

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



present in subpopulations or have not been robustly repeated in follow up studies. A 

comprehensive review on the topic was recently published [29].

Signaling:

As mentioned above, CB1 and CB2 receptors primarily couple to inhibitory G proteins 

(Gi/o) and engage the pathways associated with Gi/o [7]. CB1 and CB2 receptors also 

recruit beta arrestins and signal through arrestin-dependent pathways [30, 31]. Under some 

conditions, cannabinoid receptors can also stimulate cAMP formation and engage Gq/11 

pathways [32, 33]. Interestingly astrocyte CB1 receptors strongly couple to Gq/11 [16]. Like 

all GPCRs, CB1 and CB2 receptors show functional selectivity, where different ligands may 

engage different signaling pathways [8]. Functional selectivity is best visualized by 

accepting the concept that GPCRs assume multiple conformations, with different 

conformations coupling with varying efficiencies to distinct intracellular signaling effectors 

[34, 35]. Different ligands will favor ensembles of distinct conformations, thus structurally 

dissimilar agonists may stimulate very different signaling pathways, resulting in divergent 

biological effects [34–36]. In addition, cannabinoid receptor ligands vary in their intrinsic 

efficacy (maximum activation of a particular signaling pathway). Importantly, THC is a low 

efficacy CB1 agonist, while 2-arachidonoyl glycerol (an endogenous cannabinoid, see 

below) and most synthetic CB1 agonists are high efficacy agonists. Thus, functional 

selectivity as well as the differences in intrinsic efficacy among various cannabinoid receptor 

ligands emphasizes the importance in preclinical studies of appropriately matching the 

ligand that will be used with the question being asked. For example, studying the response to 

a highly efficacious synthetic cannabinoid may not be the proper approach to understanding 

the consequences of THC, a low efficacy agonist [37, 38]. Conversely, the neuropsychiatric 

consequences of consumption of “spice” cannabinoids (highly efficacious synthetic 

cannabinoids) may be very different from those of THC from cannabis [39].

Allosteric modulation:

THC and the endocannabinoids interact with CB1 and CB2 receptors at their orthosteric 

sites. However, the large size of GPCRs gives ample opportunity for sites where other 

molecules can bind and, under favorable conditions, modulate the function of the receptor. 

While not much is known about allosteric modulation of CB2 receptors, several positive and 

negative allosteric modulators of CB1 receptors have been described. Classically, allosteric 

modulators may affect the kinetics of orthosteric ligand binding, affect the efficiency of 

receptor activation, or both. An important feature of allosteric modulators is “probe 

dependence”. This refers to how an allosteric modulator affects signaling for a specific 

orthosteric agonist. For example, an allosteric modulator may alter THC signaling, but not 

endogenous cannabinoid signaling. An important potential endogenous negative allosteric 

modulator for CB1 is the steroid hormone, pregnenolone [40–42]. Some (though not all [43–

45]) investigators have found that pregnenolone decreases signaling of THC via CB1 

receptors. It has not been established if pregnenolone modulates CB1 signaling activated by 

endogenous cannabinoids. A second negative allosteric modulator of CB1 receptors is CBD, 

which attenuates CB1 activation by THC and endogenous cannabinoids in multiple in vitro 
assays [46, 47]. Negative allosteric modulation of CB1 by CBD may explain why some, but 
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not all studies ([48–50]), find that CBD-containing strains of cannabis (or co-administration 

of CBD with THC) may produce less extreme psychoactivity and why frequent consumption 

of high CBD cannabis may be less detrimental than similar consumption of low CBD 

cannabis [51, 52].

Multimerization and cannabinoid receptor-interacting proteins:

Like other GPCRs [53], cannabinoid receptors can associate with other GPCRs, a process 

termed dimerization or multimerization. Association of cannabinoid receptors with other 

GPCRs has the potential to greatly enrich their signaling repertoire. While both CB1 and 

CB2 have been found to associate with other GPCRs [54, 55], this has been more widely 

studied with CB1 receptors. Prominent association partners of CB1 receptors include D2 

dopamine receptors [56, 57], orexin A receptors [58], adenosine 2A receptors [59], and delta 

opioid receptors [60, 61], among others. In addition to other GPCRs, cannabinoid receptors 

interact with several proteins that may regulate their function. Particularly notable 

interacting proteins include CRIP1a/b [62, 63], SGIP1 [64], and GASP1 [65]. A major 

function of CRIP1a appears to be competition with beta-arrestin for binding to the distal C-

terminus of CB1. This impairs CB1 signaling and slows CB1 desensitization and 

internalization [66, 67]. SGIP1 also competes with beta-arrestin binding and in doing so 

slows desensitization of CB1 receptors and decreases ERK1/2 signaling [64]. GASP1 has 

been implicated in down regulating CB1 receptors during chronic cannabinoid treatment 

[68]. It should be noted that while there is firm biochemical and functional evidence that 

CRIP1a, SGIP1, and GASP1 modulate CB1 receptor function, these are multifunctional 

proteins with targets other than CB1 receptors [69–71].

Endocannabinoids:

Narrowly defined, endogenous cannabinoids (endocannabinoids, eCBs) are signaling lipids 

that activate cannabinoid receptors. While 2-arachidonoyl glycerol (2-AG) [72–74] and 

anandamide (N-arachidonoyl ethanolamine, AEA) [75] are the two best known eCBs, other 

structurally related lipids also engage cannabinoid receptors (e.g., N-arachidonoyl dopamine 

[76]). Conversely, 2-AG and AEA have the potential to activate a wide range of GPCRs, 

nuclear receptors, and ion channels [77–79], although when considering this literature 

careful examination needs to be given to the experimental design and physiological 

relevance of the results. In addition, 2-AG is an important intermediate in lipid metabolism, 

particularly as a source of arachidonic acid for prostaglandin synthesis [80]. Thus, this is 

another example where maneuvers to increase or decrease eCB levels will have far-reaching 

effects extending beyond CB1 and CB2 receptors. This is particularly important to keep in 

mind when interpreting the results of experiments that perturb the synthesis or degradation 

of eCBs. As discussed below, despite their structural similarity, 2-AG and AEA are 

synthesized and degraded by different pathways and have distinct physiological roles. 

Interestingly, of the two eCBs, anandamide appears to be more involved in schizophrenia 

[1].

Lu and Mackie Page 4

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



eCB synthesis:

Most of what we know about eCB synthesis comes from investigations of mature nervous 

system and heterologous expression systems. These studies have led to the concept that the 

dominant form of eCB synthesis is “on demand” [81]. The principal of on demand synthesis 

is that the eCB exists as a precursor in membrane lipids and is liberated by the activation of 

enzymes, typically lipases, that are triggered by a specific signal (e.g., G proteins or 

elevation of intracellular calcium (see below)). This contrasts to classic neurotransmitters 

that are synthesized and stored in vesicles. The “made on demand” feature of eCBs means 

that eCBs are released in a very precise temporal and spatial fashion. This contrasts strongly 

with the administration of exogenous cannabinoid ligands, such as THC or rimonabant, 

where receptor engagement will be indiscriminate and sustained (minutes or longer for 

exogenous cannabinoids, seconds or less for eCBs). Thus, it is unsurprising that the effects 

of systemically administered cannabinoids may differ from the effects of physiologically 

released eCBs. This is one motivation spurring research into drugs that directly target 

ongoing eCB signaling, such as inhibitors of eCB transport or degradation or cannabinoid 

receptor allosteric modulators.

There are multiple synthetic pathways for producing eCBs, with importance of each 

pathway varying between tissues and across development, as well as potentially in certain 

pathological states. The canonical pathway for generating 2-AG is a two-step pathway 

involving removal of the inositol triphosphate from arachidonoyl-containing phosphatidyl 

inositol bis phosphate (PIP2) followed by removal of the acyl group in the 1 position by a 

diacylglycerol lipase (DAG lipase) [82]. There are two isoforms of diacylglycerol lipase—

DAG lipase alpha and DAG lipase beta [83]. Both are abundant in brain, with DAG lipase 

alpha generally more important for synaptic production of 2-AG and DAG lipase beta more 

important for microglial formation of 2-AG [84–86]. Precise synaptic localization of DAG 

lipase alpha appears to involve homer proteins [87] and disrupted synaptic localization of 

DAG lipase alpha is associated with neurological diseases [88]. Behavioral and 

physiological deficits associated with mis-targeted DAG lipase alpha often improve after 

inhibition of 2-AG degradation, highlighting a therapeutic approach that deserves additional 

investigation [88].

The canonical pathway for AEA production is hydrolysis of N-arachidonoyl phosphatidyl 

ethanolamine (NAPE) by a NAPE-PLD [89], though additional pathways are well described 

and may function in a tissue-specific fashion [90–92]. In terms of site of AEA synthesis, 

NAPE-PLD is predominately a presynaptic protein [93], thus AEA synthesized by NAPE-

PLD [94] is unlikely to have a major role as a retrograde neuromodulator (see below).

Most studies measuring eCB synthesis and release rely on tissue disruption, extraction, and 

chromatography followed by mass spectrometry (e.g., [31]). These techniques are 

destructive, thus they don’t permit sequential observation of the same tissue over time and 

are limited in spatial resolution to ~1 mm. The recent development and ongoing 

optimization of fluorescent cannabinoid-receptor based probes for eCB detection will 

undoubtedly refine our understanding of the site(s) of eCB synthesis [95].

Lu and Mackie Page 5

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



eCB transport:

Transport of eCBs across the cell membrane is important following their synthesis and in 

preparation of their degradation. eCBs are synthesized from phospholipids on the inner 

leaflet of the membrane, thus for eCBs to act on adjacent cells a mechanism for their exit 

from the cell is necessary [96, 97]. Similarly, eCB degrading enzymes are primarily 

intracellular, so a process for eCB entry into cells is necessary to terminate their action. The 

polar nature of eCBs prevents their passage across cell membranes by simple diffusion and 

there is little evidence for ATP- or Na2+-requiring eCB transporters, suggesting that carrier-

mediated facilitated diffusion as the likely mechanism for transmembrane eCB transport 

(reviewed by [98]). Substantial evidence suggests that both anandamide and 2-AG are 

transported by the same endocannabinoid membrane transporter (EMT) [99]. The notion 

that inhibiting eCB uptake as a strategy for prolonging eCB action for therapeutic gain has 

motivated the development of EMT inhibitors. Since eCB transport is driven by the 

concentration gradient, a drug that inhibits eCB degradation will also inhibit uptake. This is 

especially evident for anandamide [99], and less so for 2-AG [99], perhaps reflecting distinct 

short-term fates of transported anandamide and 2-AG (e.g., different intracellular 

sequestering mechanisms). Thus, careful experimentation is necessary (e.g., examining 

initial rates of uptake and inhibition of eCB degrading enzymes, conducting experiments in 

cells lacking eCB degradative enzymes, determining inhibition of eCB efflux, etc.) to 

identify authentic EMT inhibitors. Taking these considerations into account several series of 

EMT inhibitors have been developed and tested in a variety of physiological and behavioral 

systems. Generally, EMT inhibitors increase eCB levels, potentiate eCB actions and produce 

cannabimimetic effects (e.g., [100–102]). Progress in this field will be greatly aided by the 

identification of the EMT.

eCB degradation:

eCB signaling is frequently terminated by hydrolysis of the arachidonic group from either 

the glycerol (2-AG) or ethanolamine (AEA). 2-AG hydrolysis is primarily carried out in the 

CNS by monoacyl glycerol lipase (MAGL) or ABDH6 [103, 104], while fatty acid amino 

hydrolase (FAAH) primarily terminates AEA action [105]. MAGL is found at the highest 

levels presynaptically [106], while ABHD6 is mostly found in dendrites [104] suggesting 

the two different 2-AG degrading enzymes have fundamentally different functions. 

Importantly, the arachidonic acid liberated by the hydrolysis of AEA or 2-AG can serve as a 

substrate for cyclooxygenases to produce prostaglandins and related molecules [80]. 

Another route of transformation of eCBs is their direct metabolism by COX-2 to produce 

prostamides (from AEA) [107] or prostaglandin glycerol esters (2-AG) [107–109]. Thus, 

degradation of eCBs is not simply the termination of signaling but may be a transition to a 

new type of signaling.

eCB’s as retrograde messengers:

A major function of the ECS in the mature nervous system is as a retrograde messenger 

mediating several forms of eCB-mediated synaptic plasticity [110]. Here, eCBs synthesized 

by the post-synaptic cell travel retrogradely across the synapse to activate presynaptic 
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cannabinoid receptors, suppressing neurotransmission from CB1-expressing terminals. 

There are both transient and long-lasting forms of eCB-mediated synaptic plasticity. Both 

forms involve stimulation of the post-synaptic neuron (either by depolarization and calcium 

influx or activation of a Gq/11-linked GPCR). The two transient forms are denoted 

depolarization-stimulated suppression of excitation (DSE, if excitatory transmission is 

suppressed) or depolarization-stimulated suppression of inhibition (DSI, if inhibitory 

transmission is suppressed) and metabotropic-stimulated suppression of excitation (MSE, if 

excitatory transmission is suppressed) or metabotropic-stimulated suppression of inhibition 

(MSI, if inhibitory transmission is suppressed). These processes act on a time scale of tens 

of seconds [111]. Certain repetitive forms of low frequency stimulation of excitatory 

synapses lead to a persistent eCB-mediated long-term depression (LTD) [112, 113]. In this 

case, LTD induction depends on sustained eCB production. However, once LTD is 

established, it is independent of eCBs or CB1 receptors. The implications of eCB-mediated 

synaptic plasticity are dependent on the activity of the CB1-expressing synapse (e.g., if the 

synapse is not active, there will be little effect) and the relationship between the inputs 

driving eCB synthesis and the presynaptic terminals expressing CB1 receptors [114].

Non-retrograde effects of eCB’s on neuronal excitability:

While much attention is paid to the role of eCBs as retrograde messengers, it is important to 

appreciate eCBs modify neuronal excitability in other ways. These can be summarized as (1) 

direct modulation of ion channels, (2) activation of GIRK channels, and (3) enhancement of 

a hyperpolarization-activated cation channels (Ih). eCBs also modulate several important ion 

channels, including 5HT3 [115], TRPV1 [116], GABA-A [79], glycine [117] and many 

others [118]. As always, it is important to establish the parameters under which such 

modulation is relevant in vivo as some of these effects require high eCB concentrations. 

Activation of GIRK channels by CB1 receptors is a well-described signaling pathway (e.g., 

[119]). Thus, it is not surprising that eCBs produced by high levels of neuronal activity 

activate somatic CB1 receptors to open GIRK channels [12, 13]. This may function in a cell 

autonomous [12] (i.e., slow-self inhibition) or non-cell autonomous [13] fashion. Ih is a 

dendritically enriched cation channel that regulates dendritic excitability and plays a central 

role in synaptic plasticity and learning [120] and enhancing its activity impairs learning. Ih 

activation by CB1 receptors has been proposed as a possible mechanism for THC-impaired 

learning [14]. Coupling of Ih to dendritic CB1 receptors involves a signaling cascade 

consisting of c-Jun-N-terminal kinase 1 (JNK1), guanylyl cyclase, cGMP, hyperpolarization-

activated cyclic nucleotide-gated (HCN) channels to enhance Ih [14].

Interactions between eCBs and exogenous cannabinoids (THC and spice 

compounds):

The varying efficacies of 2-AG, AEA, THC, and the synthetic cannabinoids used 

recreationally (“spice”) gives rise to several potentially important and interesting 

interactions. For example, THC is a fairly potent, low efficacy agonist while 2-AG is less 

potent, but a highly efficacious agonist [121]. Thus, under conditions where either CB1 

receptor density or post-receptor coupling is limited, THC may antagonize endogenous 2-
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AG signaling e.g., [97]. This THC/ 2-AG interaction may explain some interesting human 

behavioral data where even very high doses of the CB1 antagonist rimonabant weakly 

antagonize the subjective effects of THC [122]. Conversely, rimonabant may have profound 

effects on THC-induced physiological changes (e.g., heart rate) at considerably lower doses 

[123]. This likely varies across synapses as sometimes THC mimics 2-AG effects [124]. On 

the other hand, spice compounds are high efficacy agonists, fully and indiscriminately 

activating CB1 receptors and countering AEA signaling (AEA is a low efficacy agonist) 

[125, 126].

Dynamic expression of ECS during brain development:

ECS is present from the earliest stage of pregnancy, in the preimplantation embryo and 

uterus [127], placenta [128] and in the developing fetal brain [129]. In human fetal brains, 

CB1Rs can be detected at week 14 of gestation, with preferential expression in the cerebral 

cortex, hippocampus, caudate nucleus, putamen and cerebellar cortex, mirroring their adult 

distribution. By week 20, intense expression is evident in CA2–CA3 of hippocampus and in 

the basal nuclear group of the amygdala [130, 131]. While there are differences according to 

brain region, generally, AEA is present at low concentrations in the brain at mid-gestation 

and gradually increases through the perinatal period and into adolescence, until adult levels 

are reached [132]. On the other hand, fetal 2-AG levels gradually increase through the 

prenatal period, surging at birth [132, 133]. Notably, 2-AG concentrations (2–8 nmol/g 

tissue) are approximately 1000-fold higher than those of AEA (3–6 pmol/g tissue) 

throughout brain development [102]. The mechanisms regulating 2-AG and AEA synthesis 

in the developing prenatal brain remain to be defined.

The dynamic expression of the ECS and its roles in various aspects of neural development 

have been summarized in several comprehensive reviews [134–136]. Here we will focus on 

recent mechanistic insights on how eCBs influence growth cone behaviors during axonal 

pathfinding [137–139]. CB1 receptor activation induces growth cone collapse in developing 

GABAergic neurons [138], as well as in cortical excitatory neurons [140]. After post-mitotic 

glutamatergic neurons become polarized and their projecting axons reach their target zones, 

CB1R is enriched in long-range axonal tracts including the corticothalamic and corticospinal 

tracts [141–143]. This ‘atypical’ (versus the adult situation) CB1R expression pattern in 

long-range glutamatergic axons disappears after birth. Constitutive genetic deletion of CB1R 

or prenatal CB1R pharmacological blockade in mice increases the number of axons with 

aberrant trajectories in the corpus callosum and leads to abnormal fasciculation of long-

range axons [141, 142]. Similar to CB1R, the prenatal distributions of DAGLalpha/beta and 

MAGL are localized to long-range glutamatergic axons [133, 142]. While MAGL is co-

expressed with both CB1R and DAGLalpha in cultured cortical neurons, MAGL is 

differentially recruited to the consolidated axon shaft [133]. Thus, CB1Rs, transported by 

Kinesin 1-mediated axonal transport [144], are maintained inactive by the absence of 2-AG 

(owing to the presence of active MAGL) while undergoing vesicular transport along the 

consolidated axon. The absence of MAGL at the growth cones lifts the restriction on CB1R 

signaling, allowing CB1R to be activated by cell autonomous 2-AG production. Taken 

together, the subcellular localization of ECS components are well positioned to modulate the 

process of neural circuit wiring. An open question is how THC or synthetic cannabinoids 
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consumed by the mother affects these CB1Rs and the long-term consequences of their 

engagement by THC.

CB1R activation induces retraction of actin-rich growth cones and results in aberrant 

projections [138–140]. Non-muscle myosin II (NM II) is molecular motor protein linked to 

actin filaments and has the contractile properties to dynamically control the actomyosin 

network and thus cell morphology [145]. NMII is an ATPase and is activated by the 

phosphorylation of its regulatory light chain to enable actomyosin contractility. The rapid 

remodeling of axon morphology by eCBs involves atypical coupling of activated CB1Rs to 

heterotrimeric G12/G13 proteins. G12/G13 then activate Rho-GTPase and Rho-associated 

kinase (ROCK) to phosphorylate NM II, triggering rapid contraction of the actomyosin 

cytoskeleton [139]. Furthermore, Njoo et al. [146] found that CB1R complexes with several 

members of the Wiskott-Aldrich syndrome protein family verprolin homologous protein 1 

(WAVE1) complex and the Rho-GTPase Rac1. WAVE1-complex is known to be involved in 

actin nucleation. Through this complex, eCBs directly impact actin polymerization and 

stability by functionally modulating Rac1 and WAVE1 activity, leading to growth cone 

collapse, as well as retraction of synaptic spines of mature neurons. In addition, CB1R can 

act in concert with the adhesion molecule deleted in colorectal cancer (DCC; a receptor for 

the axonal guidance molecule, netrin-1) influencing axonal growth cone behavior [140]. 

Slits, a family of secreted chemorepellent proteins, and their receptors, Roundabout (Robo), 

play critical roles in axonal guidance [147, 148]. eCBs can configure Slit2/Robo1 signaling 

to modulate axon patterns. Pharmacologically increasing 2AG via a selective MAGL 

inhibitor JZL184 [149], increases Slit2 levels in oligodendrocytes and Robo1 in axonal 

growth cones. The neuronal increase of Robo1 depends on CB1R activating ERK1/2 and 

JNK pathways. Taken together, the ECS is dynamically and spatially posited to regulate 

axon outgrowth, navigation, and synaptogenesis by modulating cytoskeleton stability and 

levels of axon guidance/adhesion molecules. While the above discussion focuses on the 

effects of cannabinoids on early CNS development, it is likely several of the same principals 

underlie potential detrimental effects of adolescent cannabinoid exposure in specific brain 

regions such as the prefrontal cortex (e.g., [150]).

Summary:

The ECS has been implicated in the risk for developing schizophrenia, perturbing the ECS 

(i.e., through cannabis use) may influence the course of psychoses, and acute intoxication 

with natural or synthetic cannabinoids can induce transient psychotic symptoms. Through 

the ECS’s role in the developing nervous system, it is well positioned to interact with factors 

that may predispose an individual to developing psychotic disease and the course of that 

disease. The ECS’s involvement in multiple aspects of neuronal function provides a means 

by which its disruption will alter sensory processing and may predispose to psychotic 

symptoms. An important unresolved question is whether manipulating ECS will be 

beneficial in treating psychiatric diseases where psychosis is a prominent feature.
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