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Abstract

PNPLAG6-related disorders include several phenotypes, such as Boucher—Neuhduser syndrome,
Gordon Holmes syndrome, spastic paraplegia, photoreceptor degeneration, Oliver-McFarlane
syndrome and Laurence-Moon syndrome. In this study, detailed clinical evaluations and genetic
testing were performed in five (4 Chinese and 1 Caucasian/Chinese) syndromic retinal dystrophy
patients. Genotype-phenotype correlations were analyzed based on review of the literatures of
previously published PNPLAGrelated cases. The mean age of patients and at first visit were 20.8
years (11, 12, 25, 28, 28) and 14.2 years (4, 7, 11, 24, 25), respectively. They all presented with
severe chorioretinal dystrophy and profoundly decreased vision. The best corrected visual acuity
(BCVA) ranged from 20/200 to 20/2000. Systemic manifestations included cerebellar ataxia,
hypogonadotropic hypogonadism and hair anomalies. Six novel and three reported pathogenic
variants in PNPLA6 (NM_001166111) were identified. The genotypes of the five cases are:
€.3134C>T (p.Serl045Leu) and ¢.3846+1G>A, ¢.3547C>T (p.Arg1183Trp) and ¢.1841+3A>G,
€.3436G>A (p.Alall46Thr) and ¢.2212-10A>G, ¢.3436G>A (p.Alal146Thr) and ¢.2266C>T
(p.GIn756%), ¢.1238_1239insC (p.Leud414Serfs*28) and ¢.3130A>G (p.Thrl044Ala). RT-PCR
confirmed that the splicing variants indeed led to abnormal splicing. Missense variants
p.Thrl044Ala, p.Serl045Leu, p.Alal146Thr, p.Arg1183Trp and ¢.3846+1G>A are located in
Patatin-like phospholipase (Pat) domain. In conclusion, we report the phenotypes in five patients
with PNPLAG associated syndromic retinal dystrophy with variable systemic involvement and
typical choroideremia-like fundus changes. Ocular manifestations may be the first and the only
findings for years. All of our patients carried one severe deleterious variant (stop-gain or splicing
variant) and one milder variant (missense variant). Retinal involvement was significantly
correlated with severe deleterious variants and variants in Pat domain.
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Introduction

Patatin-like phospholipase domain containing 6 (PNVPLAG®) is a highly conserved
phospholipase also known as neuropathy target esterase (NTE), which deacetylates
intracellular phosphatidylcholine to produce glycerophosphocholine(Zaccheo et al., 2004;
Sogorb et al., 2016; Glynn, 2003). The PNPLAGE gene maps to chromosome 19p13.2, and
five different transcripts have been identified, with the longest transcript, transcript variant 1
(NM_001166111), encoding a protein of 1,375 amino acids. PNPLAG plays an important
role in multiple systems and is speculated to be involved in phosphatidylcholine metabolism,
neuronal development, intercellular membrane trafficking, axon maintenance and is the
target in organophosphate-induced delayed neuropathy (OPIDN)(Synofzik et al., 2014;
Richardson et al., 2013).

PNPLAG6 was first linked to disease in 2008(Rainier et al., 2008), and has been identified in
patients diagnosed with Boucher—Neuh&user syndrome, Gordon Holmes syndrome, spastic
paraplegia, retinal degeneration, Oliver-McFarlane syndrome and Laurence-Moon
syndrome(Synofzik et al., 2014; Hufnagel et al,, 2015; Kmoch et al., 2015; Synofzik et al.,
2015). PNPLAG6-related disorders have variable clinical phenotypes and span a phenotypic
continuum characterized by variable combinations of cerebellar ataxia, chorioretinal
dystrophy, hypogonadotropic hypogonadism, peripheral neuropathy, hair anomalies, short
stature, and intellectual disability. No obvious genotype—phenotype correlation has been
proposed in patients with PNPLAG variants and all the associated diseases are very rare.
Overlapped phenotypic features exist among different symptoms and therefore it is
challenging to make a diagnosis based on clinical manifestations(Synofzik et al., 2015).

To the best of our knowledge, only about 65 cases with biallelic PNPLAE variants have been
reported worldwide (hgmd.org) (Zheng et al., 2018; D’ Amore et al., 2018; Coutelier et al.,
2018; Stone et al., 2017; Teive et al., 2018; Hufnagel et al., 2015; Tarnutzer et al., 2015;
Kmoch et al., 2015; Koh et al., 2015; Synofzik et al.,, 2014; Topaloglu et al., 2014; Fogel et
al., 2014; Deik et al., 2014; Yoon et al., 2013; Rainier et al., 2008; Patsi et al., 2018;
Wiethoff et al., 2017; Langdahl et al., 2017; O’Neil et al., 2019; Salgado et al., 2019;
DeNaro et al., 2018; Rainier et al., 2011). Most previous studies on PNPLAG-related
disorders were performed in the western population, and only one Chinese patient was
available(Zheng et al., 2018). Chorioretinal dystrophy is a common clinical feature shared
by Boucher—Neuhduser syndrome (BNS), Oliver-McFarlane syndrome (OMS) and
Laurence-Moon syndrome (LMS). We find that vision impairment is often the initial
symptom. However, an awareness of the PNPLA6G-related disorders is low among
ophthalmologists and the PNPLAE syndromes are prone to be misdiagnosed because of their
rarity and complexity. Frequently, previous reports lacked detailed description of ocular
manifestations in PNPLAG-related disorders. In this study, we report the detailed clinical
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features, especially ocular features, in four Chinese patients and one Caucasian/Chinese
patient with biallelic PNPLAG variants. Additionally, we provide an up to date review of all
published PNPLAG-related cases to date.

2. Materials and Methods

2.1. Recruitment of subjects

Participants were enrolled at Peking Union Medical College Hospital (PUMCH), Beijing,
China and from the Oregon Health & Science University (OHSU) — Casey Eye Institute,
Portland, Oregon, USA. This study was approved by the Institutional Review Board of
PUMCH and OHSU and adhered to the tenets of the Declaration of Helsinki. Written
informed consent was obtained from each participant.

2.2. Clinical evaluations

Detailed medical history and family history were obtained for all affected patients. Full
ophthalmological examinations, including best corrected visual acuity (BCVA), intraocular
pressure, detailed slit-lamp examination, dilated indirect ophthalmoscopy, fundus
photography (Topcon, Tokyo, Japan and Optos Inc., Marlborough, MA, USA), static
perimetry (Octopus, Interzeag, Schlieren, Switzerland or Humphrey, Zeiss, Dublin,
California, USA) or kinetic perimetry, optical coherence tomography (OCT; Heidelberg
HRT 11, Heidelberg, Germany), fundus autofluorescence imaging (Heidelberg HRT I,
Heidelberg, Germany and Optos Inc., Marlborough, MA, USA), full-field
electroretinography (ERG; Roland Consult, Wiesbaden, Germany). Magnetic resonance
imaging (MRI) of the brain and hormonal studies were conducted for all patients.

2.3. Genetic testing

Peripheral blood samples were collected, and genomic DNA was extracted from all affected
subjects and unaffected available family members with the QIlAamp DNA Blood Midi Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s protocol. A customized retinal
disease gene target capture with next-generation sequencing was performed first in two
patients as previously described(Jiang et a/., 2015). And multiplex ligation-dependent probe
amplification (MLPA) was performed in the same two patients with SALSA multiplex
ligation-dependent probe amplification probe mix P366-A2 CHM-RP2-RPGR (Lot A2—
0614; MRC-Holland, Amsterdam, the Netherlands) according to the manufacturer’s
instructions. The detailed procedure of MLPA was described previously(Zhou et al., 2017).
Subsequently, all patients” DNA underwent whole exome sequencing (WES). Starting with
200ng high quality genomic DNA, libraries were constructed using KAPA HyperPlus Kits
(Kapa Biosystems) by following the manufacture’s instruction. The post-PCR library was
then used for exome capture using the Fulgent WESPIlus panel, an enhanced design based on
IDT xGen Exome Research Panel v1.0 (Fulgent Genetics), and xGen Hybrdization and
Wash Kit (Integrated DNA Technologies). Enriched samples were sequenced with 2x150bp
on an lllumina NovaSeq6000 (Illumina Inc).
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2.4. Bioinformatics analysis

After sequencing, the reads were obtained and aligned to assembly hg19 of the human
genome using NextGENe V2.3.4. Base quality recalibration and local realignment were
performed by the Genome Analysis Tool Kit. Variants were called using NextGENe V2.3.4.
Variant frequency data were obtained from public and internal control databases including
the Exome Aggregation Consortium (ExAC) database, dbSNP database, ClinVar database,
the Human Gene Mutation Database (HGMD) and 1000 Genomes Project. Variants with a
frequency higher than 0.5% were filtered out. Annotate Variation (ANNOVAR) was used to
annotate protein-altering changes and doNSFP (contains SIFT, PolyPhen-2, LRT, Mutation
Taster) was used to predict the pathogenicity about the deleteriousness of variants.

2.5. Sanger sequencing and segregation analysis

Sanger sequencing was performed to validate the variants identified by WES. Polymerase
chain reactions (PCR) primer pairs were designed on Primer 3 software (http://bioinfo.ut.ee/
primer3-0.4.0/) for each exon of interest. After PCR amplification, the amplicons were
sequenced on an Applied Biosystems 3730XL Genetic Analyzer (Applied Biosystems,
Foster City, CA). The sequences were assembled and analyzed using Lasergene SeqMan
software (DNASTAR, Madison, WI, USA). All available family members were Sanger
sequenced in order to perform segregation tests.

2.6. RNA analysis

Total RNAs were extracted from the periphery blood samples of the patients and unaffected
control subjects using the QlAamp RNA Blood Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. Single-stranded cDNA was synthesized from RNA
using GoScript Reverse Transcription System (Promega, Madison, USA) according to
manufacturer’s protocol. RT-PCR primers were designed on Primer 3 software to amplify
the segments encompassing splicing variants. After PCR amplification, the amplicons were
sequenced on an Applied Biosystems 3730XL Genetic Analyzer (Applied Biosystems,
Foster City, CA). The sequences were assembled and analyzed using Lasergene SeqMan
software (DNASTAR, Madison, WI, USA).

2.7. Statistical analysis

All patients with biallelic PNPLAG variants in the reported literatures and this study were
enrolled to take genotype-phenotype analysis. Chi-square test and Fisher’s exact test were
applied to compare the differences between ocular involved patient group and the without
ocular phenotype group using the SPSS version 19.0. Pvalue < 0.05 was considered
statistically significant.

3. Results

3.1. Clinical findings

A total 3 males and 1 female from 4 unrelated Chinese families and 1 female with mixed
Caucasian/Chinese background are recruited for this study (Figure 1A). The detailed clinical
findings of 5 patients were summarized in Table 1. The mean age of patients was 20.8 years
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(range, 4-28). The mean age at first visit was 14.2 years (range, 7-25). P1, P2, P3 and P5
were followed for 5, 4, 3 and 21 years, respectively. All patients had night blindness and
vision impairment since childhood. BCVA ranged from 20/200 to 20/2000. Color fundus
photography revealed severe chorioretinal dystrophy with scattered pigment clumps or areas
of chorioretinal dystrophy with visible sclera (Figure 2A). Fundus autofluorescence (FAF)
photographs displayed extensive hypofluorescence (Figure 2B). OCT indicated
disorganization and thinning of outer retina, outer retinal tubulations, loss of external
limiting membrane, ellipsoid and interdigitation zone, thinning of the retinal pigment
epithelium (RPE) and choriocapillaris (Figure 2C). Full-field ERGs were recorded in four
patients (P1, P2, P4, P5) and three patients (P1, P2, P3) showed extinguished scotopic and
photopic responses and P5 had remarkably reduced cone and rod responses at age 9. Three
patients (P2, P3, P5) were able to take visual field test and two (P2, P3) presented with
severe visual field defects (Figure 3). Visual fields of P2 indicated tunnel vision (OD) and
residual 5° central and upper nasal quadrants (OS). Visual fields of P3 remained about 2°
(OD) and 5° (OS) using a size III, white stimulus. Visual fields in P5 between the ages of 20
and 25 demonstrated intact responses to a VV4e target peripherally but variably responses
centrally, often demonstrating a scotoma to this target OU. Obvious systemic symptoms
were observed in four patients (P1, P2, P3, P5) during the follow-up as described below.

P1 was 7 years old when he first presented complaining of decreased visual acuity and
nyctalopia. He was diagnosed possibly having choroideremia or X-linked retinitis
pigmentosa, but no causative variants were identified in CHM, RPGR or RP2. At 11 years
old, he was diagnosed with short stature (131cm). Hormonal testing revealed a deficiency of
growth hormone (GH), insulin like growth factor 1 (IGF1) and testosterone; parathyroid
hormone (PTH) was high and thyroid stimulating hormone (TSH) was normal. The
radiological bone age was also delayed, and MRI of the brain showed small pituitary gland.
In addition, he was observed to have long eyelashes, eyebrows and sparse hair. During the 5-
year follow-up, the visual acuity decreased from 20/200 (OD) and 20/100 (OS) to 20/2000
(OD) and 20/630 (OS).

Patient P2 presented at 24 years old with complaint of blurred vison and night blindness
since childhood. The fundus showed extensive chorioretinopathy and the diagnosis of
choroideremia was made. However, panel capture sequencing and MLPA did not find a
disease-causing variant in CHM. He developed a tremor of the hands and head at 26 years
old. Further investigation revealed he had delayed secondary sexual development with
testosterone deficiency at 20 years old and testosterone replacement therapy was initiated.
MRI of the brain indicated atrophy of the cerebellar hemispheres. During the 4-year follow-
up, the visual acuity 20/200 (OU) was stable.

Patient P3 was referred at age 25 with a diagnosis of retinitis pigmentosa and reported vision
loss and night blindness for more than 10 years. Her past medical history included primary
amenorrhea. Hormonal testing revealed luteinizing hormone (LH), follicle-stimulating
hormone (FSH), estradiol (E2) and prolactin (PRL) were significantly lower than normal.
Ultrasound of the abdomen indicated hypoplasia of uterus. During the 3-year follow-up,
there was no significant change in vision (20/500, OU).
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P4 reported a three-year history of nyctalopia and decreased visual acuity and with a rapid
loss of visual acuity over the previous 3 months. At presentation, his visual acuity was
20/200 (OD) and 20/250 (OS). After PNPLA6 compound heterozygous variants were
confirmed, hormonal testing was obtained and showed testosterone was 1.68ng/ml, slightly
lower than normal (1.75-7.81ng/ml), while other hormones were normal.

P5 presented at the age of 4 with a history of nyctalopia. Full field ERGs revealed a rod-cone
dystrophy and a diagnosis of early onset severe retinal dystrophy (EOSRD) was made. At
age 12, she was diagnosed with short stature (below the 5t percentile) and at age 14 with
hypogonadotrophic hypogonadism and started at on estrogen replacement therapy. As of age
25 she had not manifested any neurological symptoms. Genetic testing revealed compound
heterozygous variants in PNPLAG.

3.2. Genetic findings

We performed WES and obtained high quality data (mean coverage: 120x) for exonic
regions. After filtering and prioritization, WES data revealed that biallelic pathogenic
variants in PNPLAG6 were identified in all five patients (annotation according to GenBank:
NM_001166111). There was one insertion, one nonsense, three splicing and four missense
variants found in five patients. Compound heterozygous ¢.3134C>T (p.Ser1045L eu) and
€.3846+1G>A, ¢.3547C>T (p.Argl183Trp) and ¢.1841+3A>G, ¢.3436G>A (p.Alall46Thr)
and ¢.2212-10A>G, ¢.3436G>A (p.Alal146Thr) and ¢.2266C>T (p.GIn756%),
€.1238_1239insC (p.Leud14Serfs*28) and ¢.3130A>G (p.Thr1044Ala) were identified in
P1, P2, P3, P4 and P5, respectively. Sanger sequencing was performed to validate the
variants and confirm the co-segregation of variants with disease phenotype in the pedigrees
(Figure 1A). Three variants (c.3134C>T, p.Ser1045Leu; ¢.3547C>T, p.Arg1183Trp;
€.1238_1239insC, p.Leud14Serfs*28) were reported previously(Synofzik et al., 2014; Stone
etal., 2017; Kmoch et al., 2015), and six variants (c.2266C>T, p.GIn708*; ¢.3436G>A,
p.Alal146Thr; ¢.3130A>G, p.Thr1044Ala; c.1841+3A>G; ¢.3846+1G>A and ¢.2212—
10A>G) were novel. All of the missense variants are well conserved across different species
(Figure 1B). To further confirm that the identified PNPLAG splicing variants were bona fide
splicing-disrupting, RT-PCR and Sanger sequencing were performed. For the splicing
variant ¢.3846+1G>A, a 117bp deletion of PNPLA6 MRNA (r.3731_3847del) was noted
(Figure 4A). For the splicing variant ¢.1841+3A>G, a 185bp insertion of PNPLA6 MRNA
(r.1841 1842ins1841+1 1841+185) was detected (Figure 4B). The mRNA of P3 was
unavailable. SpliceSiteFinder-like, MaxEntScan, Human Splicing Finder all predicted the
splicing variant ¢.2212-10A>G would influence splice. The results of genetic analysis were
summarized in Table 2.

3.3. Genotype—phenotype analysis

In total, 70 affected subjects (65 reported in the literature and 5 in this study) from 49
pedigrees harboring biallelic pathogenic PNPLAG variants were ascertained from previous
literature and this study. Among 49 families, 34 (34/49, 69.4%) had chorioretinal dystrophy
and 15 (15/49, 30.6%) had no reported ocular phenotype. The genotype/phenotype
correlation of these PNPLAG cases are summarized in Table 3. A total 98 alleles and 71
different variants are also analyzed. The variants are diverse and widely distributed in the
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gene. Only 2 variants, ¢.3084_3085insGCCA and p.Gly1129Arg are considered as frequent
variants, accounting for 9.18% (9/98) and 5.10% (5/98), respectively. The novel variant
p.Alal146Thr identified in this study, accounts for 20% (2/10) in this study, and was the
most frequent allele.

Among 71 variants, there are 53 missense variants (53/71, 74.65%), which is the most
common variant type, followed by splicing variants (6/71, 8.45%), small insertion and indel
variants (6/71, 8.45%), nonsense variants (4/71, 5.63%), and gross insertion and deletion
variants (2/71, 2.82%). We classified splicing, nonsense, small and gross insertion and
deletion variants as severe allele and missense variant as mild allele. Based on this, we
categorized the patients into two groups: those with one or two severe alleles and those with
only mild alleles. We found that patients with chorioretinal dystrophy carried more severe
deleterious variants (22/34, 64.7%) than patients without chorioretinal dystrophy (5/15,
33.3%), A<0.05 by Chi-square test. Only one patient carrying two severe deleterious alleles
presented with spastic paraplegia.

Among 53 missense variants, 32 (32/53, 60.4%) of them are located in patatin-like
phospholipase (Pat) domain (amino acid interval, 964-1269) and 6 (6/53, 11.3%) in cyclic
nucleotide monophosphate (cNMP) binding domain (amino acid interval, 195-316/512—
622/635-743). Among 18 severe variants, 3 (3/18, 16.7%) are located in Pat domain and 8
(8/18, 44.4%) in cNMP binding domain. More subjects with chorioretinal dystrophy (9/34,
26.5%) harbor biallelic variants in both domains (one variant in Pat domain and the other
one in cNMP binding domain) than that of subjects without chorioretinal dystrophy (0/15,
0%), but the result was not statistically significant (£=0.071 by Chi-square test). We also
discovered that patients with chorioretinal dystrophy carried significantly more variants
(32/34, 94.12%) in Pat domains (=1 variant in Pat domain) than those without retinal
phenotypes (8/15, 53.3%) (P<0.01 by Chi-square test). Another interesting finding is that 3
splicing variants were identified in our 4 Chinese patients, but only 4 splicing alleles were
found previously in 44 families.

4. Discussion

PNPLAG belongs to a family of nine patatin-like phospholipase domain-containing proteins.
It is mainly expressed in the brain and involved with neural development. Deficits are
associated with neurodegeneration. It is also expressed in several non-neuronal tissues such
as testes and kidney (Sogorb et al., 2016; Winrow et al., 2003; Hufnagel et al., 2015).
PNPLAG is expressed in the retina, crystal lens, pituitary, cerebellum and ventricular zones
of the brain (Hufnagel et a/., 2015). Knockdown of prpla6 expression resulted in
developmental abnormalities and motor neuron defects in zebrafish (Hufnagel et a/., 2015;
Song et al., 2013). Swiss cheese protein (the orthologue of vertebrate PNPLAG) was
essential for membrane lipid homeostasis and cell survival in both neurons and glia of the
adult Drosophila brain. It was proposed that NTE might play an analogous role in
vertebrates(Muhlig-Versen et al., 2005). Furthermore, it was found that PNPLA6 was
expressed in horizontal, amacrine and photoreceptors cells, which was crucial for
photoreceptor maintenance in adult Drosophila. PNPLAG is localized mostly in the plasma
membrane of the inner segments of mouse photoreceptors, suggesting its role in the
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formation of distinct plasma membrane domains in the photoreceptors or maintenance of
photoreceptor integrity(Kmoch et al., 2015).

All of our patients manifested vision loss and night blindness at very young age without any
obvious systemic abnormalities. They were diagnosed with non-syndromic retinal
degeneration (EOSRD, choroideremia or retinitis pigmentosa) until systemic involvement
became apparent or genetic testing was performed. We followed four patients (P1, P2, P3,
P5) for a number of years and found that they had varying degrees of progressive vision loss.
In our series, all patients presented with a distinct chorioretinal atrophy. However, the retinal
appearance of PNPLAG-related disorders can be diverse, with the full spectrum ranging
from a mild retinal pigment epitheliopathy to severe chorioretinal atrophy(Zheng et al,
2018; Salvador et al., 1995; DeNaro et al., 2018; Teive et al., 2018). The degeneration can be
confined to the macula, mid periphery(Tarnutzer et al., 2015), or involve the entire retina and
mimic advanced choroideremia(Yu et al., 2008; Kmoch et al., 2015; O’Neil et al., 2019;
Synofzik et al., 2014; Deik et al., 2014). Since systemic features many not present later in
life, it is important to consider the possibility of PNPLAG-related disorders in patients with
choroideremia-like changes, especially when genetic testing is inconclusive.

For patients found to have PNPLA6-associated syndrome, a full systemic work up is critical.
This should include a referral to an endocrinologist and neurologist. Four patients (P2, P3,
P4, P5) were diagnosed as Boucher—Neuhduser syndrome (BNS) and P1 was diagnosed as
Oliver-McFarlane syndrome (OMS) based on their clinical assessments and genetic data. In
our series, three adult patients (P2 ,P3, P5) exhibited hypogonadotropic hypogonadism.
However, hormone replacement therapy can be effective if hormone abnormalities are
detected in adolescence(Boehm et al., 2015).

The PNPLAG6related disorders are a complex group of diseases including several
syndromes. Possible genotype-phenotype correlation had been proposed in previously, but
not confirmed (Synofzik et al., 2014; Kmoch et al., 2015). Synofzik et al observed that
variants in the N-terminal side of the Pat domain might associate with spasticity (spastic
paraplegia and spastic ataxia), while variants towards the C-terminal end of the Pat domain
might associate with cerebellar ataxia and/or hypogonadism (Boucher-Neuhduser syndrome,
Gordon Holmes syndrome, spastic ataxia) based on 7 families(Synofzik et al., 2014).
Meanwhile, Kmoch et al noticed that biallelic variants in Pat and cNMP binding domains
could cause a more severe impairment of PNPLAG function and lead to photoreceptor death
based on 7 families(Kmoch et al., 2015).

However, the above putative phenotype-genotype correlation was obtained from limited
research cases. After dissecting the genotypes and phenotypes of all PNPLAG patients, we
bring out some perspectives regarding connections between genotype and phenotype. First,
our data suggests that variant position may influence phenotype. Patients with chorioretinal
dystrophy tended to have PNPLAG variants located in both domains (one in Pat domain and
the other one in cNMP binding domain) as Kmoch et al detected(Kmoch et al., 2015).
However, this finding was not statistically significant (£=0.071). Nevertheless, we
demonstrate that Pat domain plays the key role instead of Pat domain plus cNMP binding
domain. One allele or biallelic variants in Pat domain is highly correlated with the
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chorioretinal dystrophy (£<0.01). Second, variant type may also relate to phenotype. More
PNPLAG patients with severe deleterious variants presented with chorioretinal dystrophy
(P<0.05). However, one patient with two severe deleterious variants presented only with
spastic paraplegia without retinopathy (Yoon et a/., 2013), which is contrary to this
conclusion from a dosage standpoint. In addition, we presume that ethnical specific alleles
may exist. The ¢.3084_3085insGCCA (9/87, 10.34%) and p.Gly1129Arg (5/87, 5.75%) are
recurrent alleles in Caucasians. While in Chinese, variant p.Alal146Thr (2/11, 18.18%) is
the most common one and may be a mutational hot spot. Furthermore, it seemed that
splicing variants were much more frequent in Chinese (3/11, 27.27%) than that of
Caucasians (4/87, 4.60%) (/<0.05 by Fisher’s exact test). As the Chinese sample size is very
limited, more data are needed to draw a conclusion. Notwithstanding the genotype-
phenotype correlations, intra-familial phenotypic variation was reported. For example, two
siblings in their 40s, with the same biallelic variants, one had BNS with chorioretinal
dystrophy and the other one didn’t show any evidence of chorioretinal dystrophy(Synofzik et
al., 2014).

Most of the identified PNPLAG variants (35/71, 49.3%) were located within the Pat domain,
critical for the esterase activity of NTE. This domain has been shown to de-esterify
phosphatidylcholine, a major component of biological membranes, into its constituent fatty
acids and glycerophosphocholine (Synofzik et al., 2014). Several studies indicated the loss
of NTE enzymatic activity of the Pat domain was closely correlated to the PNPLAG-related
disorders(Synofzik et al., 2014; Hufnagel et al., 2015; Hein et al., 2010a; Hein et al., 2010b).
Structural modeling and analysis revealed that the location of variants in the Pat domain was
associated with NTE activity(Synofzik et al., 2014; Hufnagel et a/., 2015). In addition, it was
suggested that the onset and severity of disease was related to the hydrolase activity of the
Pat domain, contributing to the phenotypic heterogeneity(Hufnagel et a/., 2015). These data
support our finding that chorioretinal dystrophy is highly correlated with the variants in Pat
domain. In addition, Chang et al. revealed that PNPLAG6 exhibited dynamic interactions with
the endoplasmic reticulum and lipid droplets that depended on the interplay of two
functional regions, the amino-terminal region and the carboxyl-terminal catalytic region.
Variants that disrupt this interplay may contribute to PNPLAG-related disorders by affecting
protein positioning(Chang et al., 2019).

In summary, PNPLAG-related disorder is a group of diseases with miscellaneous and
overlapping clinical features. Choroideremia-like retinal changes are the characteristic
ocular phenotype, which can appear as the only finding at an early age. Chorioretinal
dystrophy correlates with variant type and variants in Pat domain. Whole exome sequencing
is a useful tool to elicit the genetic diagnosis. This paper is the most detailed report and
review regarding PNPLAG-related chorioretinal dystrophy so far. Our findings expand the
clinical and genetic spectrum related to the rare inherited diseases.
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The paper described phenotype and genetic defects of 5 PNPLAG related syndromic
retinal dystrophy patients from 5 unrelated families.

Choroideremia-like retinal changes are the characteristic ocular phenotype of PNPLAG-
related syndromic retinal dystrophy.

Genotype-phenotype analysis found chorioretinal dystrophy correlates with variant type
and variants in Pat domain.
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A: Pedigrees and Sanger sequencing chromatograms of PNPLAG-related disorders patients
in this study. A total of five unrelated patients with PNPLAG biallelic variants were
identified. Variant annotations were based on GenBank: NM_001166111. Squares indicate
men; circles indicate women; black indicates patients; red arrows indicate the variants; green
arrows indicate the normal nucleotide. B: Conservative analysis of four amino acids affected
by missense variants. The Thr1044, Ser1045, Alal1146 and Arg1183 are highlighted and
evolutionarily conserved.
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A

Figure 2.
A: Color fundus photographs of five patients. P1, P2, P3 and P5 all presented extensive

chorioretinal dystrophy and visualization of sclera with pigment clumps. P4 presented
chorioretinal dystrophy, scattered pigmentation and fibrosis patches. B: The FAF
photographs of five patients. All displayed generalized remarkably decreased
autofluorescence. C: OCT images of five patients. All revealed disorganization and thinning
of outer retina, loss of external limiting membrane, ellipsoid and interdigitation zone,
thinning of the RPE and choriocapillaris. P1 and P3 had outer retinal hyporeflective cysts
(arrow). P1, P3, and P5 displayed outer retinal tubulations (arrowhead). P1, P3 and P4
indicated hyperreflective retinal fibrosis (star). P1, P2 and P5 showed hyperreflective scleral
signals (diamond).
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P2

P3

PS

Figure 3.
Visual field images of P2, P3 and P5. P2 displayed tunnel vision (OD) and residual 5°central

and upper nasal quadrants (OS). P3 remained about 2°(OD) and 5°(0S) tunnel visual field.
P5 had intact responses to V4e target peripherally but decreased responses to the I114e and
smaller targets centrally (OU).
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Figure 4.
RT-PCR and chromatograms of P1 (A) and P2 (B). A: A 117bp region was deleted in

MRNA compared with normal control. B: A 185bp region was inserted in mRNA compared
with normal control.
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