
Constructing Connectome Atlas by Graph Laplacian Learning

Minjeong Kim1, Chenggang Yan2, Defu Yang2,5, Peipeng Liang3, Daniel I. Kaufer4, Guorong 
Wu5

1Department of Computer Science, University of North Carolina at Greensboro, Greensboro, NC 
27402, USA

2Intelligent Information Processing Laboratory and School of Automation, Hangzhou Dianzi 
University, Hangzhou, Zhejiang 310018, China

3Department of Psychology, Capital Normal University, Beijing 100073, China

4Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, 
USA

5Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, 
USA

Abstract

The recent development of neuroimaging technology and network theory allows us to visualize 

and characterize the whole-brain functional connectivity in vivo. The importance of conventional 

structural image atlas widely used in population-based neuroimaging studies has been well 

verified. Similarly, a “common” brain connectivity map (also called connectome atlas) across 

individuals can open a new pathway to interpreting disorder-related brain cognition and behaviors. 

However, the main obstacle of applying the classic image atlas construction approaches to the 

connectome data is that a regular data structure (such as a grid) in such methods breaks down the 

intrinsic geometry of the network connectivity derived from the irregular data domain (in the 

setting of a graph). To tackle this hurdle, we first embed the brain network into a set of graph 

signals in the Euclidean space via the diffusion mapping technique. Furthermore, we cast the 

problem of connectome atlas construction into a novel learning-based graph inference model. It 

can be constructed by iterating the following processes: (1) align all individual brain networks to a 

common space spanned by the graph spectrum bases of the latent common network, and (2) learn 

graph Laplacian of the common network that is in consensus with all aligned brain networks. We 

have evaluated our novel method for connectome atlas construction in comparison with non-

learning-based counterparts. Based on experiments using network connectivity data from 
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populations with neurodegenerative and neuropediatric disorders, our approach has demonstrated 

statistically meaningful improvement over existing methods.
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1 Introduction

The human brain is known to contain more than 100 trillion connections over 100 billion 

neurons [1, 2], making it one of the greatest mysteries in science and the biggest challenges 

in medicine. Due to this complexity, the underlying causes of many neurological and 

psychiatric disorders, such as Alzheimer’s disease, Parkinson’s disease, autism, epilepsy, 

schizophrenia, and depression, are mostly unknown. Recent advances in neuroimaging 

technology now allow us to visualize a large-scale in vivo map of structural and functional 

connections in the whole brain at the individual level. The ensemble of macroscopic brain 

connections can then be described as a complex network - the connectome [3–6].

In the last two decades, many atlas construction algorithms have been proposed for various 

neuroimaging studies using structural images (e.g., MRI) [7–11]. In general, the 

construction process of structural atlases consists of two key steps [11]: (1) register all 

individual images into a common space using deformable image registration (warping) 

methods [12–16]; and (2) average intensity values across the warped images at each voxel to 

produce the atlas representing the common anatomical structures for the entire population 

[9, 17]. The structural image atlas plays a critical role in neuroimaging studies since it 

provides a common reference space to compare and discover the alteration caused by 

neurological disorders in the brain [7, 11, 18, 19]. In the same regard, the connectome atlas, 

a population-wide average of functional brain networks, is of high necessity to reveal and 

characterize the network differences across clinical cohorts yet has not been explored.

Compared to the structural atlas construction, there exist several different technical 

challenges of building connectome atlases as follows. First, the data structure of brain 
networks is irregular. A graph can be a solution since it has been considered as a powerful 

tool to represent both structured and unstructured data. As a regular data example, a typical 

image plane (shown as a lattice in Fig. 1(a)) can be easily represented with the graph 

structure, where each node corresponds to a pixel, and each pixel value is related to the 

values of its four adjacent spatial neighbors. Note that the spatial neighborhood pattern is 

regular in the lattice while keeping the same weights for all edges. On the contrary, 

mounting evidence shows that the human brain network (Fig. 1(b)) holds an irregular “small 

world” topology [3]. In particular, it is characterized by dense local clustering of connections 

between neighboring nodes yet a short path length between any (distant) pair of nodes due to 

the existence of relatively few long-range links [20]. Such irregularity of connection makes 

network analysis much more complicated than the fixed neighborhood pattern in a 3D 

regular grid. Second, a graph algebra to fuse the connectome information across brain 
networks has not been generalized yet. The structural atlas is essentially the voxel-wise 
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average across the aligned individual images defined in the Euclidean space. However, such 

arithmetic operation is not appropriate to average the connectivity strength at each link since 

simple link-wise averaging does not fully reflect the geometry of the entire network. For 

example, let us assume that there are two networks (Networks #1 and #2 in Fig. 1(c)) 

obtained from a network population. If we look at them in Euclidean space (the square area 

inside dashed blue line in Fig. 1(c)), it is difficult to ensure the existence of a connection 

between nodes A and B in the network population. It is caused by the link-wise arithmetic 

average typically used in Euclidean space since there should be votes both for the absence 

(Network #1) and presence (Network #2) of connectivity between the two nodes. In contrast, 

the global network geometry (i.e., Diffusion space) indicates that nodes A and B are strongly 

connected even for Network # 1 via several pathways along which form a set of short and 

high probability jumps (red arrows in Fig. 1(c)) on the graph. In this regard, it is more 

reasonable to represent such population-wise connectivity in the connectome atlas to the 

extent of global network geometry.

1.1 Related Works

Currently, most of the work on brain connectome atlas focuses on the construction of nodes 

in the brain network [21–23], instead of discovering the most representative node-to-node 

connectivities in the population. For example, a connectivity-based parcellation framework 

is proposed to better characterize functional connectivity by using fine-grained network 

nodes, thus resulting in a node-wise connectome atlas consisting of 210 cortical and 36 

subcortical regions [21], Wig et al. [23] applied snowball sampling on the resting-state 

functional connectivity data to identify the centers of cortical areas, the subdivision of 

subcortical nuclei, and the cerebellum in a population. However, region-to-region brain 

connectivity in the population remains unexplored.

Among very few connectome atlas works that address the embedding of the most 

representative characteristics of brain connectivities in the population, the most popular 

approach is to average the individual connectivity values at each link separately by treating 

the brain network as a data matrix [24]. Albeit simple, such averaging-based solution might 

break down the network topology since the brain network is a structured data representation 

with complicated data geometry. It is worth noting that the similarity network fusion 

technique was used in [25] to propagate the connectivity information by random walk 

method from one subject to another until all networks become similar [26], Thus, the 

connectome atlas is the average over the diffused matrices, instead of the original network 

matrices. However, matrix diffusion suffers from the issue of network degeneration where 

each node has an equal probability of connecting with all other nodes after applying the 

excessive amount of matrix diffusions.

1.2 Our Contributions

To address the above challenges, we propose a first-time learning-based graph inference 

framework to unravel the connectome atlas in the population. To do so, we first introduce 

diffusion distance to measure the network connectivity, a time-dependent connectivity 

measurement, reflecting both local and global network geometry at different scales. Next, 

we employ a diffusion mapping technique [27] to embed the brain network into the 
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Euclidean space, wherein each node of the network is represented as a vector in the 

Euclidean space, and the Euclidean distance between two vectors corresponds to the 

diffusion distance between two nodes they represent. After that, we propose a learning-based 

approach to discover the shared network that is prevalent in the population. Specifically, we 

regard the diffusion map vectors of each brain network as the graph signals [28] that reside 

on the latent common network. Thus, the graph-based inference is optimized to learn a 

graph shift operator such that the topology of the common network has the largest consensus 

with all aligned graph signals. Since the diffusion distance can integrate local connectivity to 

the global geometry of the whole network, our learning-based framework offers a novel 

solution for constructing multi-scale connectome atlas that can “think globally, fit locally” 

[28, 29],

We evaluate the accuracy and robustness of our learning-based connectome atlas 

construction method on both functional and structural network data in terms of various 

group comparisons including Autism Spectrum Disorders (ASD), Fronto-Temporal 

Dementia (FTD), and Alzheimer’s Disease (AD). Compared to the non-learning based 

counterparts (i.e., a network averaging method [24] and network diffusion method [25]), our 

method shows more reasonable atlas construction results.

2. Backgrounds

2.1 Definition of Graph and Graph Laplacian

Suppose each brain network consists of N nodes V ={vi|i = 1,…, N}. Affinity matrix W 
=[wij]i,j=1,…,N is often used to encode brain network in the form of a matrix, where each 

element wij measures the strength of connectivity between nodes vi and vj. In the structural 

network, wij is related to the number of fibers traveling between two regions [4], On the 

other hand, in the functional network, wij measures the synchronization of functional 

activities in terms of statistical correlation between BOLD (blood oxygen level dependent) 

signals [30, 31]. For convenience, it is reasonable to assume that each adjacent matrix is 

symmetric (i.e., wij = wji), non-negative ( wij ≥ 0), and no self-connection (wij =0). To that 

end, each brain network can be represented by a graph structure G = (V , W ) The 

corresponding Laplacian matrix L is also a N × N matrix, i.e., L = D – W where D is the 

degree matrix that contains the degrees of the vertices along the diagonal with the ith 

diagonal element equals Σj = 1
N wij.

Since the graph Laplacian L is symmetric, it has a complete set of orthonormal eigenvectors, 

where we use X = χc c = 1
N  denote the left eigenvector matrix of the Laplacian matrix L Each 

χc is a column vector corresponding the cth eigenvalue of L. Each χc is associated to the 

eigenvalue ωc satisfying Lχc = ωcχc. Since we consider connected graphs here, we assume 

the eigenvalues of graph Laplacian matrix L are ordered as 0 = ω1 < ω2 ≤ ω3 …≤ ωN. We 

denote the entire graph spectrum by Ω(L) = {ω1, ω2,…ωN}.
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2.2 A Graph Fourier Transform and Notion of Frequency

For any signal f ∈ ℝN, the classic Fourier transform f ξ = ∫ℝ f t e−2πiξt dt is the expansion 

of a function f in terms of complex exponentials, which are the eigenfunctions of the one-

dimensional Laplacian operator −Δ(e−2πiξt)=(2πξ)2e2πiξt. In analogy, the graph Fourier 

transform f  of signal f on the vertices of G can be defined as the expansion of f in terms of 

the eigenvectors of the graph Laplacian L [28]: f ωc = Σi = 1
N f i χc∗ i , where χc∗ is the 

column vector in the right eigenvector matrix of L. The inverse graph Fourier graph 

transform is given by f i = Σc = 1
N f ωc χc i .

The eigenvalues {(2πξ)2} in the classic Fourier signal analysis carries a specific meaning of 

frequency. Specifically, the complex exponential eigenfunction associated with smaller ξ 
exhibits slower oscillating patterns, while higher ξ is often associated with complex 

exponential eigenfunction with much more rapid oscillations. In the setting of a graph, each 

element in χ1 (associated with ω1 = 0) is constant and equals to 1
N  at each graph vertex. As 

pointed in [28], the eigenvector χc with smaller eigenvalue ωc (lower graph frequency) 

varies slowly across graph in term of that χc(i) and χc(j) are more likely having similar 

values if vertices Vi and Vj are connected in the graph. On the other hand, the eigenvectors 

associated with larger eigenvalues (higher graph frequency) oscillated more rapidly and 

more likely to have distinct values on the vertices connected in the graph even with high 

connectivity degree.

2.3 Diffusion Distance and Diffusion Mapping

Diffusion distance.—Here, we go one step further to normalize each row of adjacency 

matrix by P = D−1W, resulting in a Markov matrix P. Each element pij of P can be 

interpreted as transition probability of a single step taken from node i to j in the network. 

Since P is a symmetric matrix, it has a complete set of orthonormal eigenvectors and 

associated eigenvalues by P = ΦΛΦT, where Φ = [φc]c=1,…,N is the eigenvector matrix that 

contains eigenvectors as columns, and Λ = diag(λ1, λ2,… λN) is the diagonal eigenvalue 

matrix with λ1≥λ2≥⋯≥ λN. It is worth noting that each φc represents an oscillation mode of 

network. In general, φc corresponding to the smaller eigenvalues shows more high-frequency 

changes in the network [27]. By taking the power of the Markov matrix, we can increase the 

number of steps taken. For instance, each element pijt  in Pt sums up all paths of length t from 

node i to node j. As we increase the value of t, we can characterize the connectivity of the 

brain network in the local to the global manner, as shown in the top row of Fig. 2(c).

Given the Markov matrix P, the diffusion distance dt between two nodes is a time-dependent 

metric that measures the connectivity strength at the specific scale t [27]:

dt vi, vj = Σc = 1
N pict − pcjt 2 . (1)

Unlike Euclidean distance, the diffusion distance becomes short if there are many high 

probabilistic paths of length t between nodes vi and vj. As illustrated in Fig. 2(a), the 

Euclidean distance between points Q1 and Q2 is roughly the same as the distance between 
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Q1 and Q3. However, as the diffusion process runs forward, the diffusion distance between 

Q1 and Q3 is much longer since the pathway between Q1 and Q3 has to go through the 

bottleneck between two clusters (Fig. 2(b)). Since the diffusion distance encodes the 

topology of the whole network, it is more robust to noise and spurious connections than the 

classic Euclidean distance.

Diffusion mapping.—Given G, the diffusion map Ψ t = ψct c = 1
N  is formed by a set of 

orthogonal column vectors, where each ψct = λc
tφc is a time-dependent basis and ψct c = 1

N

form the spectrum bases of the underlying network. Hereafter, we term ψct as diffusion 

coordinate at scale t. Meanwhile, each row vector in ψt can be regarded as the diffusion 

embedding vector of the corresponding network node where each element is the projection 

coefficient of each spectrum basis. Thus, the diffusion distance dt(vi, vj) in Eq. (1) can be 

approximated by the ℓ2-norm distance in the Euclidean space as:

dt vi, vj = Σc = 1
N ψct i − ψct j 2 . (2)

Note that nodes that are strongly connected in the network should have similar diffusion 

embedding vectors. Thus, the diffusion map Ψt:G ℝN × N allows us to embed the network 

data G to the Euclidian space. In the bottom row in Fig. 2(c), we display the reconstructed 

networks using the approximated diffusion distance at scales t = 0, t = 1, t = 2, and t = 12. 

Compared to the corresponding power of Markov matrix in the top row, diffusion mapping 

offers an efficient way to characterize network connectivity with the algebraic operation 

defined in Euclidian space.

2.4 Smooth Graph Signals

Graph signal processing [28] is an emerging research area for analyzing the structured data, 

where the signal values are defined on the vertex of a weighted graph. Taking the brain 

network as an example, we assume to have a mean cortical thickness for each node in the 

network. It is common to arrange the centralized cortical thickness degrees into a data array 

by following the order of brain parcellation, as shown in Fig. 3(a), where red and green 

denote for positive (higher than the mean) and negative (lower than the mean) values 

respectively. Note that the data array alone is unable to characterize the relationship of 

cortical thickness between two regions. In the setting of a graph, however, it is natural to 

regard the set of whole-brain cortical thickness as a graph signal since the interplay of 

cortical thickness between two brain regions can be interpreted in the context of the 

associated network connectivity.

Without a doubt, we can map the same data array to multiple graphs and potentially lead to 

different graph signals like the examples of two graph signals shown in Fig. 3(b)–(c). 

Although these two graph signals are both valid, the graph signal shown in Fig. 3(b) makes 

more sense since the signal is smooth in terms that two connected nodes have similar scalar 

values along with the connection defined by the underlying network. Given the network 

G = V , W , the smoothness of graph signal f can be measured in terms of a quadratic form 

of the graph Laplacian:

Kim et al. Page 6

Neuroinformatics. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fTLf = 1
2 Σi, j = 1

N wij f i − f j 2, (3)

where f(i) and f(j) are the signal values associated to node vi and vj, respectively. The 

intuition behind Eq. (2) is that the graph signal f is considered to be smooth if the strongly 

connected nodes (with a large connectivity strength) generally have similar values. The 

smaller the quadric term in Eq. (3), the smoother the graph signal f on the network G. As we 

will explain in the next section, we lavage this smooth graph model to find the latent 

common network from a set of individual brain networks.

2.5 Topological Distance Between Brain Networks

Since brain network is usually encoded in an adjacency matrix, many existing brain network 

distances are defined based on matrix norm that uses the sum of element-wise difference. 

For example, the L∞ distance between two network χ1 and χ2 is defined as 

D∞ χ1, χ2 = max∀i, j di, j
1 − di, j

2 , where di, j
1  and di, j

2  measure the correlation distance dij = 1 – 

ρij where ρij is the correlation between two regions. Such distance measurements have 

limited capability to quantify the topological differences such as connected components and 

modules in brain networks [32], Gromov-Hausdorff (GH) distance is proposed in [33, 34] to 

measure the topological difference two brain networks. Specifically, the shape of network is 

first defined using the graph filtration technique that iteratively build a nested subgraphs of 

the original network. As shown in the box of Fig. 4, we start the distance threshold ε from 

the smallest correlation distance and gradually increase ε until ε reaches the largest value of 

correlation distance. We connect two nodes xi and xj if their distance is less than current ε 
(i.e., dij < ε). If two nodes are already connected directly or indirectly via other intermediate 

nodes by smaller ε, we do not connect them. For example, we do not connect x2 and x5 in 

Fig. 4 at ε = 0.32 since we are already connected through other nodes at ε = 0.3. As ε 
increases, we can obtain a sequence of nested graphs which is called graph fdtration in 

algebraic topology [35]. After that, we construct a single linkage matrix S where each 

element quantifies the single linkage distance between nodes xi and xj in the network. Note, 

the single linkage distance sij is the minimum ε that makes nodes xi and xj are connected on 

the dengrogram (shown in the bottom of Fig. 4). For example, the single linkage distance 

between x1 and x6 in Fig. 4 is 0.3, although there is a direct link between x1 and x6 (the 

distance is 0.4 on the edge). GH distance between two networks X1 and X2 is then defined 

through the corresponding single linkage matrix L1 and L2 as 

DGH x1, x2 = max∀i, j li, j
1 − li, j

2 . It has been demonstrated in [33] that GH distance, 

characterizing the network topology, has superior performance over other graph theory 

based network similarity measures.

3. Methods

Suppose we have a set of brain networks from M individual subjects. Each brain network 

Gm = V , W m  (m = 1,…, M). The connectome atlas G = V , W  represents the center of all 

individual brain networks in the population, where the population-wise whole-brain 

connectivity is encoded in the corresponding adjacency matrix W . In the following, we 
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present a novel learning-based approach to find the common network G by learning its graph 

Laplacian.

3.1 Overcome Irregular Data Geometry: from Network to Graph Signals

First, we address the challenge of irregular data structure by embedding each individual 

brain network Gm into its own native diffusion space. Specifically, we obtain a set of 

diffusion mappings {Ψt,m} by applying eigen decomposition on the adjacency matrix Wm 

and constructing the diffusion mapping Ψ t, m = ψct, m
c = 1
N  at each scale t. As shown in Fig. 

2I, a larger scale t renders more global connectivity characteristics in the entire network. In 

order to maintain the details of connectivity profiles in the common network, we propose to 

learn the common network G at a relatively local scale (i.e., t = 1) based on the set of 

diffusion coordinates Ψ t = 1, m m = 1, ..., M . After that, it is straightforward to construct a 

multi-scale connectome atlas based on the learned adjacency matrix W . For simplicity, we 

omit the superscript t to the variables related to scale t in the following text. Note, there are 

alternative approaches that can be used here to transform a graph (network) into a collection 

of signals such as multi-dimensional scaling [36] used in [37]. The reason we use the 

diffusion mapping technique here is mainly because the diffusion distance is a function of 

scale t, which allows exploring the multi-scale connectome atlas in a local to global manner.

Fig. 5(a)–(c) demonstrate the procedure for embedding each network data to graph signals. 

For each individual network Gm, its diffusion coordinates Ψm = ψcm c = 1, ..., N consist of N 

column eigenvectors, where each element in ψcm is associated with the corresponding node in 

the network. Instead of considering each ψcm as a column vector of diffusion coordinate, we 

further regard each ψcm as the graph signal residing on the latent common network G (shown 

in Fig. 5(c)), where the element-to-element relationship in each ψcm is interpreted in the 

context of G (shown in Fig. 5(d)). In addition, the graph signal ψcm, which is structured data 

representation, allows us to quantify the representativeness of common network G by 

inspecting the consistency between the diffusion coordinates {Ψm} that derive from 

individual networks and the common network G that supports these diffusion coordinates.

3.2 Learn Graph Laplacian of Common Network: from Graph Signals Back to Network

Since the graph signals ψcm  are defined in Euclidean space, the naïve approach to construct 

a common network consists of two steps: (1) calculate the mean graph signal yc at each 

oscillation mode by arithmetic averaging, i.e., yc = 1
M Σm = 1

M ψcm, and (2) reconstruct the 

adjacency matrix W  where each element wij = 1/ Σc = 1
N yc i − yc j 2 (the inverse of 

diffusion distance in Eq. (2)) for i ≠ j. wii = 0 since we do not allow for self-connection.

However, such averaging-based approach has two limitations. (1) Since the graph signals 

associated with cth largest eigenvalue might be associated with different eigenvalues across 

M individual networks, direct averaging over ψcm m = 1, ..., M  in each oscillation mode 

might introduce the spurious connectivity information that is not related to the connectome 
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atlas. In analogy to the scenario that one cubic box undergoes various rotations and 

translations in the 3D Cartesian coordinates (the purple boxes in Fig. 5(b)), the success to 

unravel the accurate atlas shape (i.e., cubic box) is dispensable to the removal of the external 

variations (i.e., translations and rotations) which is not related to the intrinsic nature of the 

underlying shape. To that end, it is of necessity to align each graph signal ψcm in the common 

space, such that the graph signals at the same oscillation mode are associated with the same 

eigenvalue. (2) Simply averaging individual diffusion maps ignores the interplay between 

data and the latent common network. As shown in Fig. 3, a data array consisting of 

unordered scalar values can potentially reside on different graphs and then lead to entirely 

different graph signals. In this regard, the common network G should be consistent to all 

graph signals at all network frequencies. To tackle this issue, we propose a learning-based 

approach to learn the Laplacian matrix of common network G from a set of graph signals 

ψcm c = 1, ..., N, m = 1, ..., M  which mainly consists of two alternative steps (shown in Fig. 

5(c)–(e)).

Step 1: Modulate the frequency of graph signals to the common graph 
spectrum space.—We use L denote the Laplacian matrix of latent common network G. 

X = χc c = 1
N  is the left eigenvector matrix of the Laplacian matrix L, where χc is the column 

vector corresponding the cth eigenvalue ωc of L Note, we calculate the diffusion mapping by 

applying eigen decomposition to the adjacency matrix, where larger eigenvalues reflect the 

low-frequency network oscillation. Here, we apply eigen decomposition to the Laplacian 

matrix. Hence, χc with smaller eigenvalue ωc characterizes the low-frequency network 

oscillation.

Recall that each graph signal ψcm is associated with the oscillation mode. In each cth mode, 

ψcm and ψcm′(m ≠ m′) may not have the same eigenvalue (frequency) to each other. Therefore, 

we first need to align each graph signals ψcm at the cth oscillation mode by modulating the 

frequency to the corresponding eigen basis χc of latent common network G by 

ψλc ωc
m (n) = Nψcm(n)χc(n) (see Figure 10 in [28]). Suppose the graph signal ψcm is 

associated with eigenvalue λc
m, the above modulation operator represents a translation in the 

graph Fourier domain, i.e., ψλc ωc
m = ψc

m λc − ωc  (see Section 2.2 for the graph Fourier 

transform). Thus, all modulated graph signals ψλc ωc
m  are aligned to the same oscillation 

mode where the common network holds at cth mode, as shown in Fig. 5(e).

Step 2: Learn Laplacian matrix of common network.—First, we seek for the 

representative graph signal yc, which is close to all aligned graph signals 

{ψλc ωc
m m = 1, …, M} at the corresponding cth oscillation mode. Second, we assign the 

relevance weight πcm to each modulated graph signal ψλc ωc
m  where the classic nonlocal 

constraint is used to penalize the outlier ψλc ωc
m  exponentially. Third, we examine the 

consensus between the common network geometry and the current representative graph 

signal yc. For this, we minimize the value of graph smoothness in the sense that the ith and 
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jth elements in yc should have similar values, if nodes vi and vj are strongly connected in the 

common network G. The graph smoothness under the condition of G can be measured in 

terms of a quadratic form of the graph Laplacian ycTLyc (Eq. 3). Third, we apply the 

Frobenius norm L F
2  and the trace norm constraint (i.e., tr(L) = s) to the matrix for avoiding 

trivial solutions. Note, s > 0 is a scaling factor, and we set s to the number of nodes in the 

network, i.e., s = N. By combining these terms, the overall energy function for learning the 

Laplacian matrix of common network G is:

min yc , πcm , L Σc = 1
N Σm = 1

M πcm yc − ψλc ωc
m

2
2 + ρπcmlogπcm

+ α Σc = 1
N ycTLyc + β L F

2 , s . t . tr L = s,
(4)

where α, β and ρ are three scalars controlling the strength of the constraints on graph 

smoothness, the shape of Laplacian matrix L, and the influence of non-local constraint.

3.3 Optimization

Although the energy function in Eq. 4 is non-convex, we opt to optimize the representative 

graph signals {yc}, weights πcm and the common graph Laplacian L in an alternative manner.

Optimization of representative graph signal.—By discarding unrelated terms w.r.t. 

yc in Eq. (4), the optimization of each yc is a classic Tikhonov regularization problem:

minyc Σc = 1
N Σm = 1

M πcm yc − ψλc ωc
m

2
2 + α Σc = 1

N ycTLyc . (5)

We have the closed form solution for yc:

yc = αL + IN × N
−1 Σm = 1

M πcmψλc ωc
m . (6)

The intuition behind Eq. (6) can be interpreted as filtering the weighted average of 

individual modulated graph signals μc = Σm = 1
M πcmψλc ωc

m  via the latent graph spectrum 

encoded in L. In graph signal processing [38], filtering a graph signal μc by a filter h is 

defined as the operation:

yc = ℎ L μc = Σk = 1
N χkℎ ωk χk

Tμc = Σk = 1
N χkℎ ωk μc, (7)

where μc = χk
Tμc is the graph Fourier representation of μc with respect to common network 

oscillation mode ωk . ℎ L =
ℎ ω1 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ ℎ ωN

 is a set of low-pass filters, where the 

spectrum of each filter is characterized by ℎ ωk = 1
1 + αωk

. In this regard, our learning-based 

method offers a new window to adaptively smooth the non-local mean of graph signal via 

the learned smoothing kernel h which is defined in the graph spectrum domain. Since χk 
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with smaller ωk reflects the low-frequency network change, h(L) highlights the contributions 

of major low-frequency components in the population and attenuates those of high-

frequency components, which usually minor patterns of individual network.

Optimization of weighting vector.—Given yc, we can optimize the weighting vector 

πc = πcm m = 1
M  for each oscillation mode by

πcm = e−
yc − ψc

m 2

ρ

Σm = 1
M e−

yc − ψc
m 2

ρ

(8)

Graph Laplacian learning.—By fixing {yc} and πcm , we can optimize L by minimizing

arg minL Σc = 1
N ycTLyc + γ L F

2 , s . t . tr L = s, (9)

where r = α/β. Since all elements in the adjacency matrix are non-negative, it is relatively 

easier to find the valid W , instead of L. In [39], it has been proven that the minimization of 

L F
2  equals to minimizing W 1 F

2 + W 1 2
2 where 1 is the all-ones vector. Thus, we energy 

function of optimizing W  becomes:

arg minW
1
2 tr W Z + γ W F

2 + γ W 2
2, s . t . W 1, 1 = s, ∀ij, wij ≥ 0 (10)

where Z = zij i, j = 1
N  is a NN matrix with each element zij = ‖yi – yj‖2. ‖W‖1,1 is the 

elementwise L1-norm of W , i.e., W 1, 1 = Σi, j wij. Note, for γ = 0 we have a very sparse 

solution that only assigns weight s to the connection corresponding to the smallest pairwise 

distance in Z and zeros everywhere else. On the other hand, we intend to penalize large 

degrees in the node degree vector W 1 as setting γ to big values, and in the limit γ →∞, we 

obtain a dense adjacency matrix W  with a constant degree.

We use primal-dual techniques [40] that scale to solve W  in Eq. 10. In order to make the 

optimization easier, we use the vector forms θ = vec W  and η = vec(Z) to represent matrix 

W  and Z. Following the principle in [40], we convert Eq. 10 into the following general 

objective function as:

arg minθℎ1 θ + ℎ2 Kθ + ℎ3 θ , (11)

where h1 and h2 are the functions that we can efficiently compute proximal operators, and h3 

is differentiable with a gradient that has Lipschitz constant ζ ∈ (0, ∞). K is a linear operator 

that satisfies W 1 = Kθ (recall θ is the vectorized form of W ). As shown in Eq. 12, we first 

group the non-negative constraint and the first term in Eq. 10 into h1(θ). Note, {·} is the 

indicator function that becomes zero when the condition in the brackets is satisfied and 

infinite otherwise. Second, we incorporate the constraint of W 1, 1 = s in Eq. 10 into h2 by 
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letting K = 21T so that the dual variable is ϑ = Kθ = W 1, 1. Lastly, we group the second 

( W F
2 ) and the third term ( W 1 2

2) in Eq. 10 into f since they are dilferentiable.

ℎ1 θ = I θ > 0 + 2θTη
ℎ2 ϑ = I ϑ = s

ℎ3 θ = γ 2 θ 2 + Kθ 2 , witℎ ζ = 2γ N + 1
(12)

Using these functions, we provide the solution for θ by primal-dual algorithm [40] in the 

Appendix.

Summary of connectome atlas construction by graph Laplacian learning.—
The input of our learning-based connectome atlas construction method is M individual brain 

networks {Gm} with corresponding adjacency matrices {Wm}. The output is the common 

network G encoded in adjacency matrix W  which describes the most representative network 

structure in the population. The learning procedure is summarized below:

Input: M adjacency matrices {Wm|m=1,…,M}, three parameters α, β. and ρ in graph 

learning, and a pre-defined total iteration number Δ.

0. Set δ = 1;

1. For each Wm, calculate the diffusion coordinates Ψm in the local scale t = 1;

2. Initialize our graph Laplacian learning algorithm with the arithmetic mean 

network W = Σm = 1
M W m;

3. Given W , calculate the spectrum basis function of common network X by 

applying singular value decomposition (SVD) on the Laplacian matrix L;

4. Modulate each native diffusion coordinates Ψm into the graph signal Ψm in the 

common space;

5. Update the weighting vector πc for each oscillation mode by Eq. 8;

6. Update each representative graph signal yc by Eq. 6;

7. Update the adjacency matrix W  of the common network by solving θ the 

objective function in Eq. 12 (solution in the Appendix);

8. δ = δ + 1 if δ < Δ, go to step 3; otherwise, stop.

Output: The common network W  at a local scale. It is straight forward to construct multi-

scale connectome atlas by increasing the scale using the diffusion mapping technique 

(detailed in Section 2.3).
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4 Experiments

Description of dataset.

There are four datasets used in the following experiments in total. (1) ASD dataset. We use 

the resting-state fMRI (rs-fMRI) data of 45 ASD patients and 47 healthy controls (HC) from 

the NYU Langone Medical Center of Autism Brain Imaging Data Exchange (ABIDE) 

database (http://preprocessed-connectomes-proiect.org/abide/). (2) FTD dataset. We 

processed the rs-fMRI data of 90 FTD subjects and 101 age-matched HC subjects from the 

recent NIFD database, which is managed by the frontotemporal lobar degeneration 

neuroimaging initiative (https://cind.ucsf.edu/research/grants/frontotemporal-lobar-

degeneration-neuroimaging-initiative-0). Furthermore, there are three major clinic subtypes 

in the FTD cohort: behavioral variant of FTD (BV), semantic variant of FTD (SV), and 

progressive nonfluent aphasia (PNFA). For the above functional neuroimaging data, we 

follow the partitions of AAF template [41] and construct the function network for each 

subject with 90 nodes 1. The region-to-region connection is measured by Pearson’s 

correlation coefficient between the mean time courses. (3) ADNI dataset. In total, 51 

subjects (31 HC and 20 AD) are selected from the ADNI database (http://adni.loniusc.edu/). 

For each scan, we parcellate the cortical surface into 148 regions [42] using FreeSurfer on 

T1-weighted MRI scans. Then we apply the probabilistic fiber tractography on DWI 

(difiusion weighted imaging) and T1-weighted image using FSF software library to obtain a 

148×148 connectivity matrices of the structural networks, where each element reflects the 

number of fibers traveling between two brain regions. (4) HCP dataset. Resting stage fMRI 

data from 90 healthy young adults from Human Connectome Project (HCP) are used in the 

replicability test in Section 4.2. MRI scanning was done using a customized 3T Siemens 

Connectome Skyra with a standard 32-channel Siemens receive head coil and a body 

transmission coil. Resting state fMRI data were collected using a gradient-echo echo-

planner imaging (EPI) with 2.0mm isotropic resolution (FOV=208×180mm, 

matrix=104×90, 72 slices, TR=720ms, TE=33.1ms, FA=52°, multi-band factor=8, 1200 

frames, ~15min/run). Runs with left-right and right-left phase encoding were done to correct 

for EPI distortions. Here, we consider the left-right and right-left runs as test/retest data. For 

each fMRI data, we first partition whole brain into 268 regions using the spatially aligned T1 

image. Then, the function connectivity network is constructed based on the mean BOLD 

signals of each parcellated region. The demographic data of these three datasets is 

summarized in Table 1.

Experiment setup.

As shown in Eq. 4, α, β, and ρ are three critical parameters required in the optimization. 

Due to the lack of ground truth, we determine the optimal set of parameters based on the 

simulated network data in Section 4.1. Then, we evaluate the replicability of connectome 

atlas on the ASD dataset in Section 4.2. The quality of connectome atlas is inspected 

visually and quantitatively in Section 4.3 for ASD, FTD, and AD population separately. 

1It is worth noting that the parcellation of the AAL template is defined based on anatomical structure. Although there are still quite a 
few fMRI studies using the AAL template, the interest is shifting towards using functional atlases which follow the insight of brain 
functions. However, we demonstrate the common functional brain networks using both structural and functional parcellations in order 
to show the proposed computational method can work with different atlases.
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Finally, we demonstrate the augmented statistical power of network analyses using our 

learning-based connectome atlas construction method. For comparison, the counterpart 

methods include (1) matrix averaging on original networks (called “matrix averaging”), and 

(2) graph-based averaging with matrix diffusion [25] (called “graph diffusion”). Note that 

none of the counterpart methods is learning-based.

4.1 Validation on Simulated Network Data

In this experiment, we first generate a set of networks from a predefine node distribution 

where the node locations and affiliations (clusters membership) are fixed. However, we 

randomly mislabel the node affiliations in each network instance. Since the mislabeling 

process is performed in a random manner, the average of these individual networks should 

respect the original node distribution, which becomes the criterion of measuring the 

accuracy of connectome atlas construction methods. As shown in Fig. 6, a set of simulated 

networks were generated from the predefined node distribution (Fig. 6(a)), with three 

separable clusters (displayed in red, blue, and purple). At each iteration, we selectively swap 

several data points (randomly, near the cluster boundaries) to another cluster. For the data 

points with correct cluster labels, we construct the connection based on the distance between 

two points. However, we specifically leave some points not sampled, resulting in the isolated 

nodes in the network. For the data points with the incorrect cluster labels, we only allow 

very few connections to the points with the same label. We show three typical simulated 

networks in Fig. 6(b).

We simulate networks with different proportions of node swapping percentage, each with 50 

simulations. Given the swapping percentages, we apply our learning-based connectome atlas 

construction method to the simulated networks with different sets of parameters. 

Specifically, we apply a grid search strategy for α, β, and ρ separately, where the search 

range is set to [0.005,2.0] for each parameter, and the search step is set to 0.005. For each 

setting, we apply the classic k-mean clustering method to determine three clusters based on 

the common network. The criterion of parameter selection is the dice ratio between the 

ground truth and the clustering result based on common network W . In this way, we fix 

using α = 0.5, β = 1.0, and ρ = 0.5 in the following experiments.

Furthermore, we apply matrix averaging (no parameter needed) and graph diffusion (using 

the recommended parameters in [25]) methods on the same simulated network with respect 

to different swap percentages. We show the dice ratio between the ground truth (Fig. 6(a)) 

and the clustering result based on the common networks in Table 2. Since the clustering 

result closely depends on the node-to-node connectivity encoded in the common network, it 

is reasonable to consider that our graph learning-based connectome atlas construction 

method achieves higher accuracy than the counterpart non-leaming-based methods.

4.2 Evaluation of Functional Connectome Atlas

4.2.1 Evaluate the Replicability of Functional Connectome Atlas—In this 

experiment, we use the ASD dataset to evaluate the replicability of connectome atlas. For 

each connectome atlas construction method, we apply the following resample procedure to 

generate simulated test/retest cases for 1,000 times: (1) randomly sample 70 brain networks 
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from the entire 92 networks; (2) continue to randomly sample ten brain networks from the 

remaining networks; (3) randomly divide the ten networks into two equal groups (each have 

five brain networks), (4) assemble the test and re-test dataset by combining the networks 

selected in step (1) and step (3), respectively; and (5) run the underlying atlas construction 

method on two datasets independently. Since two paired cohorts only have 6.7% differences 

in terms of subjects, we can evaluate the replicability of the connectome atlas method by 

examining whether the resulting connectome atlases show significant difference via paired 

two-sample t-test at each link (p < 0.01). Fig. 7 visualizes the connectivities that present a 

statistically significant difference between two largely overlapped datasets by three different 

connectome atlas construction methods, where the thickness and color of an edge indicate 

the magnitude of difference after paired t-test. To display the locations of connectivities 

showing the statistical difference in the whole brain, we map the indices (yellow dots) of 

connectives showing significant difference under the resampling test. Since our learning-

based method leverages global information such as network geometry (encoded in the 

Laplacian matrix L) during atlas construction, our method shows better replicability than the 

other two methods.

Furthermore, we evaluate the replicability on the test/retest resting-stage fMRI data from 

HCP dataset. Specifically, we first apply matrix average, graph diffusion, and our learning-

based method to 90 left-right runs (considered as testing data) and 90 right-left runs 

(considered as retesting data) separately. Since the left-right and right-left run scans are 

performed to same subject one after another, the two connectome atlases are expected to be 

very similar in test/retest data. Fig. 8 show the connectome atlases of left-right run (top) and 

right-left run (middle) by matrix average (a), graph diffusion (b), and our method (c), 

respectively. Next, we repeat this test/retest experiment on a subset (randomly pick 60 

subjects each time) for 1,000 times. Then we perform two-sample t-test at each link to 

examine whether the connectivity degree exhibits significant difference between the 

connectome atlases constructed using left-right and right-left fMRI data. The red dots in the 

third row of Fig. 8 indicate the links showing significant difference (p < 0.01) in 1,000 test/

retest experiments. Furthermore, we calculate the ICC (intra-class correlation) coefficient to 

measure the reliability of common connectome atlases, where higher ICC indicates better 

reliability [43], A one-way ANOVA is applied to measure to the measures of the two 

common connectome atlases across resampling tests, to calculate the between-test mean 

square of total connectivities and within-test mean square error of total connectivities. The 

ICC coefficients are 0.53 by matrix average, 0.56 by graph diffusion, and 0.62 by our 

learning-based method.

In each test/retest experiment, we select 8 hub nodes from the connectome atlas of left-right 

run and the connectome of right-left run separately and then examine the unanimous of hub 

identification results in test/retest experiment. The frequency of common hub nodes being 

selected in both testing and retesting data is reflected by the node size in the fourth row of 

Fig. 8. Based on the frequency histogram of common hubs (in the bottom of Fig. 8), we can 

calculate the entropy degree, which are 5.25 by matrix average, 5.03 by graph diffusion, and 

4.72 by our learning-based method. Note, smaller entropy value indicates better replicability 
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of hub identification results which are obtained from the more consistent connectome atlases 

in test/retest experiments.

4.2.2 Evaluate the Quality of Functional Connectome Atlas

Visual inspection.: We apply matrix averaging, graph diffusion, and our learning-based 

connectome atlas construction method to overall 92 functional networks from the ABIDE 

database and 191 functional networks from the NIFD database. The connectome atlases by 

matrix averaging, diffusive shrinking graphs, and our learning-based method are shown in 

Fig. 9(a)–(c), respectively. Through visual inspection, the connectome atlases built by our 

learning-based method show a more distinct modular structure than the counterpart methods. 

Based on the age information shown in Table 1, the connectome atlas built upon ABIDE and 

NIFD dataset should reflect the distinct representative connectivity profdes of young and 

aging populations, where the age-related alterations have been reported in many 

neuroimaging studies [44, 45], However, fewer changes between the young brains and aging 

brains have been observed in the connectome atlases constructed by matrix averaging and 

graph diffusion methods.

Quantitative evaluation.: Furthermore, we calculate the network distance between each 

network to the connectome atlas using the Gromov-Hausdorff (GH) distance [46], which 

shows superiority over other network distance metrics. As shown in Fig. 9(d), the overall 

network distance with respect to the connectome atlas by our learning-based method is much 

smaller than the other two counterpart methods, indicating that our connectome atlas is more 

reasonable in terms of the closeness to the population center.

Multi-scale connectome atlas.: The diffusion distance used in our learning-based method 

allows us to characterize the connectome atlas in a multi-scale manner. In Fig. 10, we 

display the multi-scale connectome atlases for 31 behavior variant FTD, 23 semantic variant 

FTD, and 36 progressive nonfluent aphasia subjects, respectively, where the scale t ranges 

from 0.5 to 10. It is evident that high-level information of network organization such as 

modules has been captured at the global scale. Since FTD syndromes comprise a 

heterogeneous group of neurodegeneration conditions, characterized by atrophy in the 

frontal and temporal lobes, different variants of FTD exhibit more and more distinct 

morphological patterns of network organization as the scale t increases.

4.3 Evaluation of Structural Connectome Atlas

4.3.1 Evaluate the Replicability of Structural Connectome Atlas—For each 

subject selected from the ADNI database, we obtain the structural network based on not only 

the baseline DTI scan (shown in Table 1) but also the follow-up DTI (within 6–10 months 

range). Since the time interval between two scans is less than one year, and there is no 

change of diagnostic label, it is reasonable to assume that there should be no statistical 

significance between the structural connectome atlases constructed at baseline and follow-up 

time point. We apply random sampling strategy to withdraw 40 pair of networks from in 

total 51 networks pairs. At each time, we deploy matrix averaging, graph diffusion, and our 

learning-based method to construct the baseline connectome atlas and follow-up connectome 

atlas, separately. After repeating this procedure for the sufficient number of times, we run 
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the significant test on the network difference between baseline and follow-up, at each link, to 

examine whether we can observe statistically significant difference across the random 

sampling tests. In the bottom of Fig. 11, we display the links showing a significant 

difference (less replicable) by matrix averaging (a), graph diSusion (b), and our method (c), 

where the larger thickness of the link indicates the higher variation of connectivity strength 

across the resampling tests. It is observed that the connectome atlas constructed by our 

learning-based method shows better replicability in representing the connectivity profiles for 

the population.

4.3.2 Evaluate the Classification Accuracy using Structural Connectome 
Atlas—The connectome atlases constructed by matrix averaging, graph diSusion and our 

method are shown in the top of Fig. 11. To further demonstrate the application of 

connectome atlas, we first identify a set of hub nodes from the connectome atlas using a 

module-based methods that identify hub nodes based on the a priori definitions of network 

modularity [47, 48], Follow the distribution of connectivity strength as suggested in [48], we 

set the number of hub nodes to eight. The identified hub nodes from three connectome 

atlases by different construction approaches are displayed in Fig. 12 and the anatomical 

information is shown in Table 3.

Although the connectome atlases shown in Fig. 11 are similar, the locations of the identified 

hub nodes vary across atlas construction methods. Since the identified hub nodes from the 

connectome atlas provides a common setting of hubs across individual networks, we extract 

nodal features at the identified hub nodes such as local clustering coefficient [49] for each 

individual network. Then we apply two-sample t-test at each hub nodes and examine the 

statistical network difference between NC and AD cohorts, where the significant differences 

are indicated by ‘*’ in Table 3. The connectome atlas by our method has identified six hub 

nodes showing distinct difference of network profile while the counterpart atlases by matrix 

averaging and graph diffusion method only found four and three hub nodes with significant 

network difference between NC and AD cohorts. Since the hub identification result is highly 

dispensable to the network data, our connectome atlas construction method exhibits 

enhanced statistical power over the other two methods.

5 Discussions and Conclusions

Discussions.

As shown in Fig. 2 and Fig. 10, our connectome atlas construction offers the way to 

construct multi-scale atlas by adjusting the scales in diflusion mappings. It is worth noting 

that our proposed method constructs the connectome atlas at a given scale t separately. 

Although it is always favorable to jointly model the dependency of connectome atlas across 

scales and simultaneously construct the multi-scale connectome atlas, it is computationally 

prohibitive to do so in our current optimization framework as illustrated in Section 3.3. 

However, there might be several possible solutions to explore the new regime of multi-scale 

connectome atlas. (1) Unify multi-scale connectome atlases by fusing the connectivity 

information from local to global manner. First, we generate a set of connectome atlas with 

different setting of scale t. Then, we can apply the matrix fusion method in [50] to combine 
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into single network which includes both local and global connectivity information. (2) Use 

supervised/unsupervised feature selection method to find the multi-scale connectome feature 

representation. Since most of the network-based studies is interested in finding network 

feature representations which can separate two or multiple cohorts, we can extend the 

current approach into the scenario of multi-scale by using feature selection technique such as 

sparse feature selection [51, 52] to determine the best feature representations from multi-

scale connectome atlases.

Conclusions.

The construction of connectome atlas is much more challenging than image atlas, due to the 

irregular graph structure. To address this problem, we proposed a learning-based approach to 

discover the common network in the setting of graphs. Our proposed method offers a new 

window to investigate the population-wise whole-brain connectivity profiles in the human 

brain. Promising results have been obtained in various brain network studies such as ASD, 

FTD, and AD, which indicates the applicability of our proposed learning-based connectome 

atlas construction methods in neuroimaging applications.
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Appendix

To solve Eq. 12, we need to determine the proximity operator for h1 and h2, and the 

derivative of h3 as follows:

proxℎ1 = max 0, θ − η

proxℎ2 = s

∇ℎ3 = γ 4θ + 2KTKθ

Besides, we introduce a step-size variable τ ∈ (0,1 + ζ + ‖K‖2) to control the convergence, 

where K 2 = 2 N N − 1
2 .The primal dual algorithm for Eq. 12 is summarized below:

Input: η, γ, S, θ0, ϑ0, τ, and tolerance ϵ.

0. for i = 1,…, imax do;

1. oi = θi − τ(2γ(2θi + KT Kθi) + 2ϑi)

2. oi = ϑi + τ 2Σkθi k

3. pi = max(0, θi − 2τη)

4. pi = oi − τs

5. qi = pi − τ(2γ(2pi + KTKpi)+ 2pi)

6. qi = pi + τ 2Σkpi k
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7. θi+1 = θi − oi + qi

8. ϑi + 1 = ϑi − oi + qi

9. if ‖θi+1− θi‖/‖θi‖< ϵ and θϑi+1− ϑi‖/‖ϑi‖< ϵ then

10. Break

11. end if

12. end for
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Fig. 1. 
The major challenge for constructing connectome atlas is that brain network (b) has an 

irregular data structure (often encoded in a graph), which is much more complicated than 

regular data representations such as an image lattice (a). To address this challenge, we 

introduce diffusion distance (c) to characterize the network connectivity, which also allows 

us to embed the brain network to the Euclidian space.
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Fig. 2. 
Measuring node-to-node distance using Euclidean distance (a) and diffusion distance (b). (c) 

The power of Markov matrix (top) and the corresponding reconstructed networks (bottom) 

using the diffusion distance via diffusion map technique.
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Fig. 3. 
A data array (a) can potentially reside on different graphs and form different graph signals 

(b)-(c). However, only one leads to the smooth graph signal where the strongly connected 

nodes have similar values. Hence, graph signal in (b) is more reasonable than graph signal in 

(c) after inspecting the values for each pair of connected nodes, where the red and green 

denote for positive and negative degrees.
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Fig. 4. 
The toy example shows the iterative procedure of graph filtration and calculating the single 

linkage matrix based on the dendrogram.
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Fig. 5. 
The overview of our learning-based graph inference model for connectome atlas. In this 

example, we assume each network consists of seven nodes, i.e., N = 7.
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Fig. 6. 
Simulated network data (b), which is generated based on the ground truth data manifold with 

three separable clusters (a).
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Fig. 7. 
The replicability test by matrix averaging (a), graph diffusion (b), and our graph learning-

based method (c). The thickness of each link indicates the magnitude of the difference 

between two paired network data cohorts. The links showing the significant difference after 

resampling test are also indicated in yellow in the matrix.
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Fig. 8. 
The replicability test on HCP dataset by matrix averaging (a), graph diffusion (b), and our 

graph learning-based method (c). The first and second row show the connectome atlas 

constructed using all left-right run and right-left run rs-fMRI data, respectively. The third 

row show the links (red dots) showing significant differences in 1,000 test/retest 

experiments. The last row shows the common hub nodes that are selected in each test/retest 

experiment, where larger node size reflect higher frequency of being both selected.

Kim et al. Page 29

Neuroinformatics. Author manuscript; available in PMC 2022 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
The connectome atlas built on ABIDE and NIFD datasets using matrix averaging (a), graph 

diffusion (b), and our graph learning method (c). The quantitative results of GH distance 

between the connectome atlas and each individual brain network are shown in (d).
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Fig. 10. 
The multi-scale connectome atlas for variants of FTD (top: behavior variant FTD, middle: 

semantic variant FTD, bottom: progressive nonfluent aphasia).
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Fig. 11. 
Top: The structural connectome atlas constructed by matrix averaging (a), graph diffusion 

(b), and our learning-based method (c). Bottom: The replicability results after resampling 

tests where the link designates the statistically significant difference, and the link thickness 

reflects the variation of connectome strength across resampling tests.
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Fig. 12. 
The identified hub nodes based on the structural connectome atlas constructed by matrix 

averaging (a), graph diSusion (b), and our learning-based method (c).
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Table 1.

The demographic information of the neuroimaging data from ABIDE, NIFD, and ADNI databases.

Data Subj. # Gender Age Modality Diagnosis label

ABIDE 92 F:18/M:74 11.0±2.2 rs-fMRI HC(45), ASD(47)

NIFD 191 F:91/M:100 64.1±7.8 rs-fMRI HC(101), BV(31), SV(23),PNFA(36)

ADNI 51 F:20/M:31 73.3±6.8 DWI HC(31), AD(20)

HCP 180 F:46/M:44 31.2±7.8 rs-fMRI Normal
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Table 2.

The overlap ratio between the ground truth and the clustering result based on common network estimated 

using matrix averaging, graph diffusion, and our graph learning approach.

Swap percentage 2.5% 5.0% 7.5% 10.0% 12.5% 15.0%

Matrix averaging 0.91 0.87 0.85 0.81 0.79 0.76

Graph diffusion 0.94 0.92 0.89 0.86 0.84 0.81

Our method 0.95 0.93 0.90 0.89 0.87 0.83
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Table 3.

The anatomical information of identified hub nodes from three connectome atlases. The ‘*’ indicates statistical 

significance between NC and AD cohort at the corresponding hub node.

Node Hubs by matrix averaging Hubs by graph diffusion Hubs by our method

#1 G_and_S_cingul_ant (L) S_pericallosal (L) * G_and_S_transv_frontopol (L)

#2 G_and_S_cingul_mid_ant (L) G_and_S_cingul_mid_post (L) Stemporalinf (L) *

#3 S_pericallosal (L) * G_cingul_post_dorsal (L) * Gtemporalmiddle (L)

#4 G_cingul_post_dorsal (L) * G_cingul_post_dorsal (R) G_cingul_post_ventral (L) *

#5 G_and_S_cingul_mid_ant (R) G_and_S_cingul_mid_ant (R) G_presentral (R) *

#6 S_pericallosal (R) * S_pericallosal (R) * G temporal middle (R) *

#1 G_cingul_post_ventral (R) G_and_S_cingul_mid_post (R) Stemporalsup (R) *

#8 G_cingul_post_ventral (R) * G_cingul_post_ventral (R) * G_pariet_inf_angular (R) *
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