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SUMMARY

To identify the molecular mechanisms and novel therapeutic targets of late-onset Alzheimer’s 

Disease (LOAD), we performed an integrative network analysis of multi-Omic profiling of four 

cortical areas across 364 donors with varying cognitive and neuropathological phenotypes. Our 

analyses revealed thousands of molecular changes and uncovered neuronal gene subnetworks as 

the most dysregulated in LOAD. ATP6V1A was identified as a key regulator of a top-ranked 

neuronal subnetwork and its role in disease-related processes was evaluated through CRISPR-

based manipulation in human induced pluripotent stem cell derived-neurons and RNAi-based 

knockdown in Drosophila models. Neuronal impairment and neurodegeneration caused by 

ATP6V1A deficit were improved by a repositioned compound NCH-51. This study provides not 

only a global landscape but also detailed signaling circuits of complex molecular interactions in 

key brain regions affected by LOAD and the resulting network models will serve as a blueprint for 

developing next-generation therapeutics against LOAD.

eTOC
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Employing an integrative network biology approach, Wang et al. identify critical gene 

subnetworks associated with late-onset Alzheimer’s disease (LOAD) and predict ATP6V1A as a 

key regulator of a neuron-specific subnetwork most affected by LOAD. ATP6V1A deficit causes 

neuronal impairment and neurodegeneration, which are normalized by a predicted compound 

NCH-51.

Graphical Abstract
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Alzheimer’s disease; omics; network analysis; neuronal dysregulation; ATP6V1A; human induced 
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INTRODUCTION

Sporadic Late-Onset Alzheimer’s Disease (LOAD), the most prevalent form of dementia 

among people over age 65, is a progressive and irreversible brain disorder. Over 5.5 million 

in the US are affected by LOAD, which is currently the sixth leading cause of death in the 

US and costs more than $200 billion annually (Association, 2018). There is an urgent need 

to develop effective methods to prevent, treat, or delay the onset or progression of LOAD. 

Conventional genome-wide association studies (GWAS) have revealed ~30 loci associated 

with LOAD (Jansen et al., 2019; Kunkle et al., 2019; Lambert et al., 2013; Marioni et al., 

2018), with ~40% of the total phenotypic variance explained by these common variants 
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(Ridge et al., 2013). Yet the genuine causal variants responsible for the functional effect on 

the disease are still uncharacterized. Translating these genetic associations into biologically 

mechanisms of disease pathogenesis and therapeutic interventions remains a huge challenge.

We previously pioneered a systems biology approach to integrate genotyping and microarray 

transcriptomic data from over 500 brains of LOAD and control subjects from the Harvard 

Brain Tissue Resource Center (HBTRC) (Zhang et al., 2013a), where we analyzed 

transcriptomic networks in 3 brain regions including the dorsolateral prefrontal cortex 

(DLPFC), the visual cortex (VC), and the cerebellum (CB), and highlighted an immune-

microglia network module and its network key driver TYROBP for relevance to LOAD 

pathology. Similar systems approaches have recently been performed on a number of large-

scale Omics studies of LOAD (Allen et al., 2016; De Jager et al., 2018; Johnson et al., 2020; 

Mostafavi et al., 2018; Ping et al., 2018), illuminating new biological pathways and targets. 

While those existing studies nominated various dysfunctional subnetworks and genes in 

association to LOAD, little progress has been achieved in therapeutics targeting those 

dysfunctional components.

In this study, we describe a new multi-omics dataset generated from multiple brain regions 

in a large collection of LOAD brains. Application of a network analysis-based discovery 

platform on this dataset identified multiple neuron-specific gene subnetworks most 

dysregulated in LOAD in addition to a number of other pathways such as immune response 

previously implicated in LOAD. ATP6V1A, a top driver of the neuronal subnetworks, was 

validated in vitro and in vivo. More importantly, a compound targeting ATP6V1A and its 

regulated subnetwork was predicted and then experimentally validated to improve neuronal 

and neurodegenerative phenotypes induced by ATP6V1A deficit.

RESULTS

A transformative network modeling platform for mechanism discovery, target identification 
and therapeutics development for AD

We recently generated matched whole-genome sequencing (WGS) and RNA sequencing 

(RNA-seq) data from a cohort of 364 brains spanning the full spectrum of LOAD-related 

cognitive and neuropathological disease severities represented in the Mount Sinai Brain 

Bank (MSBB) (Table S1) (Haroutunian et al., 2009; Wang et al., 2018; Wang et al., 2016). 

Specifically, RNA-seq was performed in 4 brain regions: Brodmann area 10 frontal pole 

(BM10-FP), Brodmann area 22 superior temporal gyrus (BM22-STG), Brodmann area 36 

parahippocampal gyrus (BM36-PHG), and Brodmann area 44 inferior frontal gyrus (BM44-

IFG) (Fig. 1). To integrate omics and disease trait data, we employed a transformative 

network modeling platform (Fig. 1) that includes signature calling, co-expression network 

(Zhang and Horvath, 2005), causal network (Schadt et al., 2005a; Zhu et al., 2007a), drug 

repositioning (Zhou et al., 2018a), and in vitro and in vivo functional validations. A unique 

feature of our platform is using gene regulatory networks as a target-rich environment for 

integrating multiple levels of data to identify key pathways and driver genes, whose 

perturbation responses can recapitulate predicted network structures through systems like 

human induced pluripotent stem cell (hiPSC)-derived neurons and fly models of Aβ toxicity 

(Fig. 1).
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BM36-PHG shows the most expression change in LOAD

After data preprocessing (Fig. S1), differentially expressed genes (DEGs) were called with 

respect to 4 LOAD related semi-quantitative traits (Table S2& Fig. S2A). BM36-PHG had 

the largest number of DEGs, followed by BM22-STG, BM10-FP, and BM44-IFG (Fig. 

S2B), consistent with our previous pan-cortical transcriptomic analysis of LOAD brains 

(independent of the dataset described herein) in which BM36-PHG was the most impacted 

region transcriptionally (Wang et al., 2016). As expected, neuronal system, transmission 

across chemical synapses, and neuroactive ligand receptor interaction, were enriched for 

down-regulated genes (Fig. S3 and Table S3). Our DEG signatures were preserved (adjusted 

Fisher’s exact test (FET) P-value up to 1.0E-100) in 10 publicly available AD transcriptomic 

studies (see Star Methods & Fig. S4). Moreover, our down-regulated genes were primarily 

preserved in down-regulated genes in astrocytes, neurons, oligodendrocytes, and 

oligodendrocyte progenitor cells from a recent single-nucleus RNA-seq (snRNA-seq) of 

LOAD brains (Mathys et al., 2019) (Fig. S5). Meanwhile, our up-regulated genes were 

primarily preserved in up-regulated genes in astrocytes and oligodendrocytes (adjusted FET 

P-value up to 6.5E-45).

Networks of LOAD brains highlight multiple neuronal modules

To elucidate the interactions among genome-wide gene expression traits of LOAD, we 

constructed gene coexpression networks to identify gene modules using the multiscale 

embedded gene coexpression network analysis (MEGENA) (Song and Zhang, 2015) (Fig. 

2A & Tables S4–5). Distinct from our previous transcriptomic analysis of the DLPFC in the 

HBTRC cohort which prioritized an immune-microglial module (Zhang et al., 2013a), 

current study highlights the significance of multiple neuronal modules (Fig. 2B & Table S6). 

9 of the top 25 modules were enriched for neuron cell markers, negatively correlated with 

disease traits, and enriched for DEGs down-regulated in LOAD, including M62, M65, M6, 

M236, M64, M252, M385, M87, and M243 (Fig. 2C). M64 was overrepresented with 

inhibitory neuron-enriched genes, while 6 others (M6, M87, M65, M236, M62, and M252) 

were overrepresented with excitatory neuron-enriched genes (Lake et al., 2016) (Table S7). 

Topological structures of 4 of the top-ranked neuronal modules (i.e., M6, M62, M64, and 

M65) are shown in Fig. 2D. All 4 modules were enriched in synaptic signaling to different 

degrees, but M6 and M64 were also enriched in regulation of long-term synaptic 

potentiation, synaptic vesicle trafficking, and localization (Fig. 2E and S6).

We validated the biological coherence of our network modules in previous transcriptomic 

network studies of LOAD. As shown in Table S6, more than 46.2% of the modules were 

strongly preserved (preservation statistics > 10) in the ROSMAP data (Mostafavi et al., 

2018). Specifically, the top 25 modules showed strong preservation except M74, which was 

moderately preserved. Meanwhile, in the ROSMAP data (Mostafavi et al., 2018), there were 

4 neuronal modules, m16, m21, m22, and m23, in which all, but m16, were associated with 

cognitive decline or amyloid-β burden (P < 0.05). m21 and m23 significantly overlapped all 

the current 9 top-ranked neuronal modules, while m16 and m22 were enriched in 3 and 7 of 

the current top-ranked neuronal modules, respectively (Fold enrichment (FE) = 1.4 ~ 14.1, 

false discovery rate (FDR) up to 2.2E-39) (Table S8).
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Bayesian network analysis predicts novel key drivers of top-ranked neuronal modules

To determine potential network regulators (called key drivers herein) in the top-ranked 

modules, we constructed Bayesian probabilistic causal networks (BNs) (Fig. 3A) using 

structural priors from expression quantitative traits (eQTLs) and transcription factor-target 

relationships (Table S9–13 & Fig. S7–12). Fig. S10–11 show a fine mapping of AD GWAS 

causal genes by integrating eQTLs and GWAS statistics that led to marginally significant 

gene prioritization at two GWAS loci. We examined whether our BNs could predict publicly 

available gene perturbation signatures of the inferred key drivers. As illustrated in Fig. 3B, 

50~60% of the key driver perturbation signatures were enriched (i.e. significantly predicted) 

in the network neighborhoods of the corresponding key drivers. In contrast, the proportion of 

enriched perturbation signatures decreased to 20~30% in the network neighborhood of non-

driver genes, suggesting the predictive power of the gene regulatory networks.

Next, we projected each of the 9 top-ranked neuronal modules (Fig. 2B) onto the BM36-

PHG BN and identified 48 key drivers (42 unique genes) (Table S14), including 10 that were 

root nodes (without parental nodes) (Table S15). Key drivers ATP6V1A in M64 and 

GABRB2 in M62 remained as root nodes in a union BN that combined directed edges from 

4 region-wide BNs (Fig. 3C & Fig. S13). Only one prioritized key driver, ATP6V1A, was 

consistently down-regulated across brain regions and disease stages in LOAD. This gene 

encodes a component (V1 subunit A) of vacuolar- or vesicular-type ATPase (v-ATPase), a 

multi-subunit enzyme that mediates lysosomal acidification (Chung et al., 2019; Zoncu et 

al., 2011) and energizes synaptic membranes in neurons (Abbas et al., 2020; Forgac, 2007). 

ATP6V1A was significantly down-regulated in the BM36-PHG (−1.43 fold, P-value = 

1.5E-6) and BM22-STG (−1.25 fold, P-value = 2.1E-3) regions of persons with dementia 

(clinical dementia rating CDR ≥ 1), and marginally down-regulated in the BM10-FP region 

of persons with MCI and frank dementia (CDR = 0.5) (−1.11 fold, P-value < 0.098) (Fig. 3D 

and Fig. S14). In addition, ATP6V1A expression was negatively correlated with clinical and 

pathological traits in BM22-STG and BM36-PHG (Spearman correlation coefficients 

between −0.21 and −0.44, P values between 5.9E-11 and 3.3E-4), suggesting a consistent 

down-regulation of ATP6V1A at both early and late stages of the disease. We validated the 

reduced expression of ATP6V1A in LOAD brains (Fig. 3E–G; 42% decrease at mRNA level 

and 35% decrease at the protein level, P < 1.0E-4). Down-regulation of ATP6V1A was also 

previously identified in cortical neurons of the superior frontal gyrus (Satoh et al., 2014) and 

the hippocampus CA1 area (Blalock et al., 2004) of LOAD brains. In addition, it was down-

regulated in the excitatory (0.8 fold, adjusted P-value 2.6E-117) and inhibitory (0.83 fold, 

adjusted P-value 6.7E-22) neurons in brains with early-pathology of LOAD compared to no-

pathology brains in the ROSMAP cohort (Mathys et al., 2019). To validate the functional 

role of ATP6V1A in LOAD, we performed gene perturbation experiments in in vitro 
(neurons) and in vivo (transgenic flies) models.

Functional validation confirms decreased neuronal activity in ATP6V1A-deficient NGN2-
neurons

As ATP6V1A was down-regulated in the LOAD brains and enriched for neuronal expression 

(Fig. S15), we developed a model of hiPSC-derived NGN2-neurons (iNs) with reduced 

expression of ATP6V1A. To repress endogenous ATP6V1A, we utilized CRISPR inhibition 
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(CRISPRi) (Ho et al., 2017), in which dCas9 (dead Cas9) is fused to the Krüppel associated 

box (KRAB) transcriptional repressor (Gilbert et al., 2014). We designed 6 gRNAs to target 

the promoter region for knockdown (KD) of the gene ATP6V1A (Fig. 4A), and identified 2 

gRNAs (ATP6V1A-i1 and i2) that efficiently repressed ATP6V1A in neural progenitor cells 

(NPCs) from 2 donors stably expressing dCas9-KRAB (Fig. S16A–C). In post-mitotic day 21 

(D21) NGN2-induced excitatory neurons well-characterized by electrophysiological 

properties and neuronal morphology (Fig. S16D) (Ho et al., 2016a), the ATP6V1A RNA 

(60~70% repression, P < 0.001, Fig. 4B) and protein levels (80~90% repression, P < 0.001, 

Fig. 4C–D) were significantly reduced.

Since the v-ATPase activity facilitates transporters to load the vesicles with 

neurotransmitters (Abbas et al., 2020; Forgac, 2007), we determined whether ATP6V1A KD 

influenced spontaneous neuronal electric activity. Isogenic pairs of control and ATP6V1A 
CRISPRi iNs (co-cultured with human fetal astrocytes to enhance neuronal maturation) were 

evaluated across a panel of assays. We applied an Axion multi-electrode array (MEA) to 

assess the impact of ATP6V1A repression on population-wide neuronal activity, including 

frequency and coordination of network firing. Significantly reduced neuronal activity was 

observed following perturbations with either gRNA (average 4.3-fold down in D21 iNs, P < 

0.01; Fig. 4E–F). We further measured the amplitude of voltage-gated potassium (IK) and 

sodium current (INa) using whole-cell patch-clamp recordings (Fig. 4G–I). ATP6V1A KD 

neurons exhibited significantly smaller INa current density (P = 0.015), but no significant 

change in IK current (Fig. 4G–I). Consistent with a decrease of INa, RNA-seq of D21 iNs 

(detailed below) revealed significantly reduced mRNA expression of different voltage-gated 

sodium channel subunits, such as SCN3A, SCN2A, and SCN4B (Fig. S17). Lastly, we 

observed a decrease in the number of full action potentials and an increase in immature 

spikes (e.g., spikelets) in the ATP6V1A CRISPRi group (Fig. 4J).

To explore the effect of ATP6V1A on synaptic components, iNs were immunostained 

against the presynaptic SYN1 and the postsynaptic HOMER1 and analyzed by confocal 

imaging (Fig. 4K). A significant reduction in SYN1+ puncta number following ATP6V1A 
CRISPRi was observed (1.1-fold down, P < 0.001; Fig. 4K–L), whereas CRISPRi had 

limited effect on HOMER1 (Fig. 4L). Western blot showed similar results. A 25–45% 

reduction of SYN1 (P < 0.05) was observed, while HOMER1 was expressed at comparable 

levels regardless of CRISPRi (Fig. 4M–N). In ATP6V1A-deficient iNs, only presynaptic 

components (SYN1, vGLUT1) were significantly decreased in RNA (~20% down, P < 0.05 

and ~38% down, P < 0.01, respectively Fig. S17A). Postsynaptic components (HOMER1 

and PSD95) showed no significant change, but vGLUT1 protein levels decreased by ~22% 

(P < 0.05, Fig. S18A–C).

AD neuronal pathology is associated with extracellular β-amyloid (Aβ) aggregates (Murphy 

and LeVine, 2010). Aβ administration (24 hours, 5 μM) significantly decreased spontaneous 

neuronal activity (P < 0.05, Fig. 4O–P), with a slight but insignificant decrease in ATP6V1A 
expression (14.4% down in WT neurons and 35.5% down in ATP6V1A CRISPRi neurons 

respectively, Fig. S19A–C). Moreover, ATP6V1A repression in combination with Aβ42 

exposure further impaired neuronal activity (p < 0.05, Fig. 4O–P and Fig. S19B–C).
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Neuronal knockdown of Vha68–1, a fly ortholog of ATP6V1A, worsens behavioral deficits 
and neurodegeneration in Aβ42 flies

We also examined the effects of knocking down fly ortholog of ATP6V1A on neuronal 

integrity in Drosophila. According to the DRSC Integrative Ortholog Prediction Tool, 

Drosophila Vacuolar H+ ATPase 68kD subunit 1 (Vha68–1, CG12403) and Vha68–2 
(CG3762) are the best orthologs of human ATP6V1A protein. Using GAL4-UAS system, 

several shRNAi constructs targeting different regions of Vha68–1 or Vha68–2 were 

expressed in neurons by the pan-neuronal elav-GAL4 driver. Since both Vha68–1 and 

Vha68–2 are essential genes and their strong KD caused lethality, we selected an RNAi line 

that modestly reduced Vha68–1 levels (Fig. S20A). The forced climbing assay, a 

quantitative way to assess neuronal dysfunction (Iijima et al., 2004), revealed that neuronal 

KD of Vha68–1 by itself caused a modest decline in climbing ability in aged flies (Fig. 

S20B).

A transgenic Drosophila expressing human Aβ42 showed age-dependent locomotor deficits 

and neurodegeneration in the brain (Iijima et al., 2004). Interestingly, mRNA expression 

levels of both Vha68–1 and Vha68–2 were significantly reduced in Aβ42 flies (Fig. 4Q), 

suggesting that their reduction may play a role in Aβ42-mediated toxicity. We found 

locomotor deficits to be significantly exacerbated by neuronal KD of Vha68–1 (Fig. 4R). To 

minimize potential off-target effects, the experiment was repeated with shRNA targeting a 

different region of Vha68–1 and similar results were obtained (Fig. S20C–E). As further 

validation, we utilized a mutant allele of Vha68–1 (Vha68–11) with a loss-of-function 

single-nucleotide mutation (Q519L) caused by mutagenesis (Zhao et al., 2018). Locomotor 

deficits were significantly worsened in Aβ42 flies with a heterozygous mutation of Vha68–
11, while a heterozygous Vha68–11 by itself did not cause climbing defects (Fig. S21A–B).

In Drosophila, brain vacuolation is a morphological hallmark of neurodegeneration that can 

be quantitatively assessed. Neuronal expression of Aβ42 causes an age-dependent 

appearance of vacuoles in the fly brains (Iijima et al., 2004). RNAi-mediated KD of Vha68–
1 significantly worsened this neurodegeneration (Fig. 4S). Neurodegeneration was slightly 

worsened in the flies with heterozygous Vha68–11, with no statistically significant 

difference (Fig. S21C).

To assess whether altered neuronal activity underlies toxic interactions between Vha68–1 
deficiency and Aβ42 in flies, we examined mRNA levels of 16 genes related to synaptic 

biology, focusing on GABAergic/glutamatergic systems and ion channels (Fig. 4T). 

Compared to control flies, mRNA levels of 9 genes were significantly reduced by neuronal 

KD of Vha68–1, while 8 genes were significantly reduced by Aβ42 (Fig. 4T). 6 genes 

(SLC1A2/Eaat1, SLC17A6–8/vGlut, ATP1A1–3/ATPα, GLRA2/CG12344, GABBR2/
GABA-B-R2, and GABBR2/GABA-B-R3) were commonly reduced in both conditions (Fig. 

4T). By contrast, neuronal KD of Vha68–1 in Aβ42 flies dramatically reduced mRNA levels 

of 14 out of 16 genes compared to control flies (Fig. 4T). Key driver genes, including 

GABRA1/Grd in M62, SCN2A/para in M65, and GABBR2/GABA-B-R2,3 in M6 (Fig. 2D) 

were downregulated in these fly brains, suggesting functional links between these networks 

and ATP6V1A/Vha68–1 in M64 module.
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In summary, these results suggest that ATP6V1A/Vha68–1 deficiency and Aβ42 

synergistically downregulate key regulator genes of neuronal activity and exaggerate Aβ42-

induced toxicities in flies.

ATP6V1A KD signatures are enriched in ATP6V1A regulated networks in human LOAD 
brains

To characterize the molecular changes and validate the sub-network regulated by ATP6V1A, 

we performed RNA-seq on 4 groups of iNs (designated WT-V and WT-Aβ for vehicle-

treated and Aβ-treated ATP6V1A wild-type (WT) neurons, respectively, and KD-V and KD-

Aβ for vehicle-treated and Aβ-treated ATP6V1A KD neurons, respectively). No gene shows 

significant changes between Aβ-treated and vehicle-treated cells in either ATP6V1A KD or 

WT genotype. In contrast, there were 3 DEGs from KD-V vs. WT-V, 55 DEGs from KD-Aβ 
vs. WT-Aβ, and 326 DEGs from KD-Aβ vs. WT-V ( (Table S16 and Fig. S22). By 

employing the Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005), we found 

V-ATPase transport and phagosome maturation/acidification down-regulated in KD-V vs. 

WT-V (Fig. 5A and Table S17). Consistent with the functional assay above, KD-V vs. WT-V 

led to down-regulation of multiple synapse biology pathways, with greater down-regulation 

after the exposure to Aβ treatment in KD-Aβ vs. WT-Aβ.

As a combination of ATP6V1A KD and Aβ treatment led to an increase in molecular 

changes than individual factor perturbation, we explored potential synergistic effects 

between the two factors (Schrode et al., 2019a). The hierarchical clustering of the log FCs of 

all genes for each contrast showed differences between the predicted and observed 

cumulative effects (Fig. S23). There was a strong enrichment of disorder and cellular stress 

gene sets after individual KD or Aβ treatment, while the KD showed further associations 

with cell death and negative correlation with neuronal function signatures. The latter was 

markedly amplified in the combinatorial modulation (Fig. 5B). We grouped genes into 

synergism categories based on differential expression between the additive model and the 

combinatorial modulation. Most genes were altered as predicted, but with 6% (1152 genes) 

more downregulated and 9% (1773 genes) more upregulated than expected (Fig. 5C). Genes 

more upregulated than expected from an additive model were significantly enriched for cell 

death and cellular stress gene sets (Fig. 5C).

The genes in response to ATP6V1A KD and Aβ perturbation were significantly enriched in 

the LOAD signatures identified from the current study as well as 10 published datasets (Fig. 

5A and Table S18). By GSEA, we noted that the top-ranked neuronal modules (M64, which 

contains ATP6V1A, M62, M65, M6, M236, M252, M385, M87, and M243) were down-

regulated in KD-Aβ cells compared to WT-V cells (Table S19). Meanwhile, several immune 

response modules (M14, M153, M366, and M428) were up-regulated in KD-Aβ cells 

compared to WT-V cells. As summarized in Table S20 and exemplified in Fig. 5D, the genes 

surrounding ATP6V1A on the BM36-PHG BN were enriched for down-regulation signals of 

ATP6V1A KD, with the most significant enrichment from KD-Aβ vs. WT-V (FDR = 

4.1E-6). In summary, the ATP6V1A deficit signature in iNs mirrors the prediction in the 

human LOAD gene networks.
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A novel drug NCH-51 improves ATP6V1A level and neuronal activity

We further explored potential drugs that can rescue the in vitro and in vivo phenotypes 

arising from ATP6V1A deficits. With our drug repositioning tool, Ensemble of Multiple 

Drug Repositioning Approaches (EMUDRA) (Zhou et al., 2018b), we matched the disease 

signature from the BM36-PHG region and the signatures of 3,629 drugs tested in the NPCs 

in the Library of Integrated Network-based Cellular Signatures (LINCS) project (Keenan et 

al., 2018) (Fig. 6A). Candidate drugs were further prioritized by their potential to increase 

the mRNA expression of ATP6V1A in the NPCs. Interestingly, the top prioritized drugs 

contain several histone deacetylase (HDAC) inhibitors such as SAHA, NCH-51, and 

MS-275 (Table S21).

To verify the prediction, we measured the transcriptional and translational levels of 

ATP6V1A in D21 iNs treated with the 3 HDAC inhibitors at a series of concentrations 

between 1 and 30 μM. Only NCH-51 effectively increased ATP6V1A levels (Fig. 6B–D), 

whereas SAHA and MS-275 were ineffective (Fig. S24A–F), suggesting that the HDAC 

inhibitory activity of NCH-51 is not required for modulating ATP6V1A. A time-course 

experiment indicated that 24-hour treatment sufficiently resulted in the production of 

ATP6V1A mRNA; 3 μM NCH-51 was adequate to increase the protein yield significantly 

(Fig. 6D).

NCH-51 (3 μM, 24-hr) dramatically elevated the mRNA levels of ATP6V1A (P < 0.05), 

presynaptic SYN1 (P < 0.001), and SCL17A7 (P < 0.001), particularly in ATP6V1A KD iNs 

(Fig. 6E). The protein levels of ATP6V1A (P < 0.05), SYN1 (P < 0.01), and VGLUT (P < 

0.05) were similarly increased by NCH-51 (Fig. 6F–G). NCH-51 had no effect on 

postsynaptic PSD95, while the HOMER1 level increased in either ATP6V1A KD iNs or the 

isogenic controls following NCH-51 treatment (Fig. S24G–I). The MEA assay indicated that 

NCH-51 was a potent activator of neuronal activity (Fig. 6H–J), partially restoring neuronal 

activity in ATP6V1A KD iNs (Fig. 6J).

Feeding NCH-51 induces expression of a fly ortholog of ATP6V1A and suppresses 
neurodegeneration in Aβ42 flies

NCH-51 feeding significantly increased the mRNA levels of Vha68–2 (Fig. 6K), but not 

Vha68–1 (Fig. S25A), in Aβ42 fly brains in a dose-dependent manner. Since Vha68–2 was 

more dramatically decreased compared to Vha68–1 in Aβ42 fly brains (Fig. 4Q), NCH-51 

treatment might counteract pathological reductions in Vha68–2 levels. In support, NCH-51 

feeding did not increase mRNA levels of either Vha68–1 or Vha68–2 in control flies (Fig. 

S25B).

Aβ42 flies were treated with 0, 10, or 50 μM of NCH-51 during aging to examine the effects 

of NCH-51 treatment on neurodegeneration. Compared to control (0 μM), 50 μM treatment 

of NCH-51 significantly suppressed cell loss (Fig. 6L) and neuropil degeneration (Fig. 6M). 

NCH-51 did not affect Aβ42 levels in fly brains (Fig. S25C), suggesting that observed 

effects were not due to reduced Aβ42 levels. NCH-51 also increased the mRNA levels of 9 

out of 16 key regulator genes of neuronal activity, including 4 key driver genes GABRA1/

Grd in M62, SCN2A/para in M65, and GABBR2/GABA-B-R2,3 in M6 (Fig. 2D) in Aβ42 
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fly brains (Fig. 6N), suggesting that NCH-51 confers neuroprotective effects by correcting 

neuronal activity.

DISCUSSION

Our integrative network analysis-based target nomination method complements the 

conventional linkage and linkage disequilibrium-based gene mapping methods in identifying 

the most relevant genes for functional studies. We highlighted multiple neuronal modules of 

particular relevance to LOAD pathology, and predicted key regulators of these modules 

using BNs; one top driver, ATP6V1A, was tested experimentally for disease relevance. 

ATP6V1A is known for its role in the acidification of intracellular compartments such as the 

lysosome; morpholino-knockdown of ATP6V1A impaired acid secretion in zebrafish (Horng 

et al., 2007), while siRNA-mediated knockdown induced autophagy activity in U87-MG 

cells (Kim et al., 2017), and KD of ATP6V1A in HeLa cells prevented drug-induced 

lysosomal acidification and autophagy activation (Chung et al., 2019). Under our 

experimental conditions, ATP6V1A CRISPRi in iNs did not significantly alter lysosomal pH 

according to cell acidic organelles labeling by LysoTracker Red DND-99 (data not shown). 

Instead, ATP6V1A CRISPRi down-regulated neuronal activity-associated functional 

pathways, particularly in the presence of Aβ42 peptides. Similar results were obtained in 

Aβ42 flies: mRNA levels of fly orthologs of ATP6V1A, Vha68–1/Vha68–2, were reduced 

and neuronal KD of Vha68–1 exacerbated age-dependent behavioral deficits and 

neurodegeneration accompanied by downregulation of synaptic genes, suggesting 

evolutionarily conserved roles of ATP6V1A in maintaining neuronal activity and synaptic 

integrity. Although de novo heterozygous mutations (p.Asp349Asn and p.Asp100Tyr) in 

ATP6V1A in rat hippocampal neurons revealed contradictory effects on lysosomal 

acidification, both mutations lead to abnormalities in neurite outgrowth, branching, and 

synaptic connectivity (Fassio et al., 2018). The possible synaptic role of ATP6V1A in LOAD 

brains requires further investigation.

hiPSC-based models recapitulate disease-relevant features, gene expression signatures, and 

identify deregulated genes with potential clinical implications (Hoffmann et al., 2018). 

Induced neurons also possess age-related signatures that share similarities with the 

transcriptomic aging signatures detected in postmortem human brain samples (Mertens et 

al., 2018). Likewise, here we show that the ATP6V1A KD signatures in iNs were highly 

enriched for the LOAD DEGs and the sub-network surrounding ATP6V1A, indicating that 

the hiPSC system is a promising avenue to model devastating diseases such as LOAD when 

living tissues are not available.

To date, therapeutics that are promising in mouse models of AD have failed to benefit 

human patients (Egan et al., 2018; Honig et al., 2018), urging development of novel 

therapeutic targets and new model systems. Computational drug repositioning (Pushpakom 

et al., 2019; Zhou et al., 2018a) provides a rapid and cost-effective route for translating 

transcriptional network findings into promising therapeutics. FK506, a drug known to induce 

autophagy by binding to ATP6V1A (Kim et al., 2017), was ineffective in recovering the 

ATP6V1A expression at either mRNA or protein level in our ATP6V1A KD iNs (data not 

shown). This contrasts to the current predicted novel drug candidate NCH-51, which 
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activates ATP6V1A at both transcriptional and translational levels. We demonstrated that 

NCH-51 improved AD-related phenotypes, increasing neuronal activity in iNs and 

suppressing neurodegeneration in Aβ42 flies by recovering the expression of key regulators 

of neuronal activity. However, the molecular mechanisms by which NCH-51 acts remains 

unresolved. In the future, we will test NCH-51 on ATP6V1A-engineered mice and other 

mammalian models of AD.

Although the present study focused on the role of ATP6V1A on neuronal activity and Aβ42-

mediated toxicity, tau pathology is closely associated with cognitive deficits and 

neurodegeneration in AD. Ectopic expression of human tau in fly eyes caused age-dependent 

and progressive neurodegeneration in the laminae, which contains photoreceptor axons 

(Ando et al., 2016). RNAi-mediated KD of Vha68–1 or Vha68–2 significantly exacerbated 

this axon degeneration (Fig. S26A–B) without altering the accumulation or phosphorylation 

levels of tau (Fig. S26C), suggesting that ATP6V1A may have broad neuroprotective effects 

and potential therapeutic targets for other neurodegenerative diseases involving tau.

A limitation with the current bulk transcriptomic data is that the expression changes may be 

confounded by cell-type composition difference. Consistent with existing knowledge, we 

confirm through deconvolution analysis that LOAD brains showed progressive neuronal cell 

loss as the severity advanced, accompanied by the gradual increase of glial cells (Fig. S27). 

With the current single-cell technology, we can study diseased tissues at the single-cell level 

(Deczkowska et al., 2018). Compared to a recent snRNA-seq analysis of LOAD (Mathys et 

al., 2019), we found significant preservations of our gene signatures (Fig. S4), suggesting 

that cell-type proportion change may have a limited impact on the gene signatures identified 

here. Nonetheless, we anticipate future cell-type-specific network models to offer an in-

depth understanding of the cellular complexity and etiology underlying the devastating 

disease.

In summary, we employed a transformative platform to systematically identify molecular 

signatures, multiscale gene networks, and key regulators of LOAD in 4 brain regions. We 

uncovered a number of relatively independent neuronal enriched gene subnetworks that were 

highly dysregulated in LOAD. We validated one predicted top key driver of the dysregulated 

neuronal system, ATP6V1A, in silico, in vitro, and in vivo, and demonstrated NCH-51, a 

compound that can increase the expression level of ATP6V1A, to be a promising therapeutic 

candidate for treating LOAD.

STAR ★ Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Bin Zhang (bin.zhang@mssm.edu).

Materials Availability—Stable human iPSC-derived neuronal progenitor cells (hiPSC-

NPCs) expressing dCas9−KRAB utilized in this study can be requested through Dr. Kristen 

Brennand (kristen.brennand@mssm.edu) upon Material Transfer Agreement.
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Drosophila lines developed in this study and the related reagents can be requested through 

Koichi M. Iijima (iijimakm@ncgg.go.jp) or Michiko Sekiya (mmsk@ncgg.go.jp).

Data and Code Availability—The human postmortem sequencing data are available via 

the AD Knowledge Portal (https://adknowledgeportal.synapse.org). The AD Knowledge 

Portal is a platform for accessing data, analyses, and tools generated by the Accelerating 

Medicines Partnership (AMP-AD) Target Discovery Program and other National Institute on 

Aging (NIA)-supported programs to enable open-science practices and accelerate 

translational learning. The data, analyses and tools are shared early in the research cycle 

without a publication embargo on secondary use. Data is available for general research use 

according to the following requirements for data access and data attribution (https://

adknowledgeportal.synapse.org/DataAccess/Instructions).

For access to content described in this manuscript see: https://doi.org/10.7303/syn23519511

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Postmortem Brain Tissue Samples—The MSBB-AD cohort included 364 

human brains accessed from the Mount Sinai/JJ Peters VA Medical Center Brain Bank 

(MSBB) (Haroutunian et al., 2009; Wang et al., 2018; Wang et al., 2016). The postmortem 

interval (PMI) is ranged from 75 to 1800 minutes (min), with a mean of 436.5 min, a median 

of 312 min, and a standard deviation of 323 min. Each donor and corresponding brain 

sample was assessed for multiple cognitive, medical, and neurological features, including 

mean plaque density, Braak staging for neurofibrillary tangles (NFT)(Braak et al., 2006; 

Braak and Braak, 1991), clinical dementia rating (CDR) (Morris, 1993), and neuropathology 

scale as determined by the Consortium to Establish a Registry for Alzheimer’s Disease 

(CERAD) protocol (Mirra et al., 1991). Mean plaque density was calculated as the average 

of neuritic plaque density measures in five regions, including middle frontal gyrus, orbital 

frontal cortex, superior temporal gyrus, inferior parietal lobule and occipital cortex. Because 

many of the donors were nursing home residents and some experienced dementia that was 

more severe than that captured by the 0–3 scale of CDR, we used the validated version of the 

“extended” CDR which adds “profound” (CDR = 4) and “terminal” (CDR = 5) to the 

original 5 point scale (Dooneief et al., 1996; Heyman et al., 1987). These four cognitive/

neuropathological traits were scored as semi-quantitative features ranging from normal to 

severe disease stages, reflecting the continuum and divergence of pathologic and clinical 

diagnoses of AD beyond a simple case-control classification. Donor brains with no 

discernable neuropathology (by CERAD assessment) or only neuropathologic feature 

characteristic of LOAD were selected from over 2,000 brains in the MSBB. Please refer to 

Table S1 for a summary of the subject demographic information. Since we focus on the 

common mechanisms between male and female, sex has been adjusted in the present RNA-

seq data preprocessing (detailed below). We plan to assess the gender difference in AD at the 

molecular level in future studies.

Human Induced Pluripotent Stem Cell Lines—iPSC-derived NPCs (2607–1-4, 553-

S1–1; both male) were generated by Dr. Kristen Brennand Lab at the Icahn School of 

Medicine at Mount Sinai. iPSCs (NSB553, NSB2607) were originally from the National 
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Institute of Mental Health (NIMH) childhood-onset schizophrenia (COS) cohort. Human 

Astrocytes (Cat #1800) were purchased from ScienCell Research Laboratories, Inc. All 

hiPSC research was conducted under the oversight of the Institutional Review Board (IRB) 

and Embryonic Stem Cell Research Overview (ESCRO) committees at the Icahn School of 

Medicine at Mount Sinai (ISSMS). Informed consent was obtained from all skin cell donors 

as part of a study directed by Judith Rapoport MD at the National Institute of Mental Health 

(NIMH).

Drosophila Models—Flies were maintained in standard cornmeal media at 25 °C. 

Transgenic fly lines carrying UAS-Aβ42 and UAS-Tau were previously described (Iijima et 

al., 2004; Sekiya et al., 2017). The elav-GAL4 (#458), GMR-GAL4 (#1104), UAS-mcherry 
RNAi (#35785), UAS-Vha68–1 RNAi (#50726 and #42888), Vha68–11 (#82466), and UAS-
Vha68–2 RNAi (#34582) were obtained from the Bloomington Drosophila Stock Center. 

UAS-Vha68–1 RNAi (#46397) and UAS-Vha68–2 RNAi (#110600) were obtained from the 

Vienna Drosophila Resource Center. The UAS-Luciferase RNAi Transgenic flies were 

generated by PhiC31 integrase-mediated transgenesis systems (Best Gene Inc.). Genotypes 

and ages of all flies used in this study are provided in figure legends. Experiments were 

performed using age-matched male flies and genetic background of the flies was controlled. 

For example, for RNAi experiments, we crossed virgin females from elav-GAL4; UAS-

Aβ42 (double transgenic flies expressing Aβ42 pan-neuronally) and males from UAS-

Vha68–1 RNAi lines (experimental group) or a UAS-mcherry RNAi line with the same 

genetic background as the RNAi lines (control group). The resultant offspring from each 

cross has the same hybrid genetic background and these flies were used for the experiments.

METHOD DETAILS

The MSBB-AD cohort data quality control and preprocessing—As described 

previously (Wang et al., 2018), we generated whole genome sequencing (WGS) as well as 

RNA-sequencing (RNA-seq) data in four brain regions from majority of the cases, including 

Brodmann area 10 (frontal pole, BM10-FP), Brodmann area 22 (superior temporal gyrus, 

BM22-STG), Brodmann area 36 (parahippocampal gyrus, BM36-PHG) and Brodmann area 

44 (inferior frontal gyrus, BM44-IFG). Through an iterative QC and adjustment procedure 

which examined the genetic similarity between every pair of molecular profiles across 

different data types and multiple brain regions, we identified mislabeled or duplicated 

molecular profiles(Wang et al., 2018). In this paper, we excluded all mislabeled samples for 

downstream analyses. For RNA-seq, we further removed RNA-seq libraries with RNA 

integrity number (RIN) less than 4 or rRNA rate larger than 5%, and then selected one with 

the best sequencing coverage for the duplicated sequencing libraries (see Table S1 for 

demographics of the final set of RNA-seq samples). In the QCed dataset, the RIN is ranged 

from 4 to 10, with a mean of 6.8, a median of 6.6, and a standard deviation of 1.5. To avoid 

any artificial regional difference, the data from all four brain regions were merged and 

processed together. Genes with at least 1 count per million (CPM) reads in at least 10% of 

the libraries were considered expressed and hence retained for further analysis; others were 

removed. After filtering, 23,201 genes were retained. The gene read counts data were 

normalized using the trimmed mean of M-values normalization (TMM)(Robinson et al., 

2010) method in the R/Bioconductor edgeR package to adjust for sequencing library size 
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differences. It is critical to identify and correct for confounding factors in the RNA-seq data. 

For this purpose, we used R/Bioconductor variancePartition(Hoffman and Schadt, 2016) 

package to evaluate the impact of multiple sources of biological and technical variation in 

gene expression experiments, including sex, race, age, RIN, postmortem interval (PMI), 

sequencing batch, rate of exonic reads, and rate of rRNA reads, together with the four 

cognitive/neuropathological features described in the main text. Fig. S1 illustrates the 

principal component analysis and variance partition analysis of the RNA-seq data. We found 

sequencing batch, exonic rate and brain donor contributed to the most variance. The 

contributions from the cognitive/neuropathological variables were similar and ranked in the 

middle among all the variables. While rRNA rate generally did not explain a large 

proportion of variation, it contributed more overall variance than did sex and race. 

Therefore, in addition to the usual confounding factors that are commonly corrected in 

postmortem brain gene expression data, including batch, sex, race, age, RIN, and PMI, we 

included exonic rate and rRNA rate as covariates. As there were more than 30 batches, the 

batch was firstly regressed out with a random effect model using variancePartition(Hoffman 

and Schadt, 2016), and the other covariates were corrected by linear regression in R.

Differential expression analysis—For each neuropathological/cognitive trait in each 

brain region, we grouped the samples into multiple disease severity stages and compared the 

gene expression between every two groups using limma’s moderated t-test analysis(Law et 

al., 2014). Specifically, for CDR, samples were classified into cognitive normal 

(nondemented) (CDR = 0), mild cognitive impairment (MCI) (CDR = 0.5), and demented 

(CDR ≥ 1). For Braak score, samples were classified into normal (NL) when Braak score ≤ 

2, and AD when Braak score > 2. For plaque mean density (PlaqueMean), samples were 

classified into 4 categories, namely normal (PlaqueMean = 0), mild (0 < PlaqueMean ≤ 6), 

medium (6 < PlaqueMean ≤ 12), and severe (PlaqueMean > 12) groups. With CERAD score, 

two types of samples classification schemes were used. First, samples were classified into 

normal (NL) (CERAD = 1), definite AD (CERAD = 2), probable AD (CERAD = 3) and 

possible AD (CERAD = 4). Second, samples were classified into two groups, normal (NL) 

when CERAD = 1 and AD when CERAD > 1. To adjust for multiple tests, false discovery 

rate (FDR) was estimated using the Benjamini-Hochberg (BH) method(Benjamini and 

Hochberg, 1995). Genes showing at least 1.2-fold change (FC) and FDR adjusted P values 

less than 0.05 were considered significant. The gene showing the largest fold increase in all 

comparisons is LTF (lactotransferrin) (3.8-fold, adjusted P value 3.9E-5) as identified in 

BM36-PHG with respect to the PlaqueMean trait. Lactotransferrin is a major component of 

mammals’ innate immune system, protecting from direct antimicrobial activities to anti-

inflammatory and anticancer activities(Legrand et al., 2008). NEUROD6 (neuronal 

differentiation factor 6) showed the largest fold decrease across all contrasts (0.34-fold, 

adjusted P value = 6.3E-9). NEUROD6 encodes a transcription activator that may be 

involved in neuronal development and differentiation. Down-regulation of NEUROD6 in 

LOAD has been consistently observed in several previous studies(Fowler et al., 2015; Satoh 

et al., 2014).

To systematically validate the present DEG signatures of LOAD related traits, we assembled 

public ALOD signatures from 10 studies, including Zhang et al 2013 (Zhang et al., 2013a), 
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Webster et al 2009 (Webster et al., 2009), Satoh et al 2014 (Satoh et al., 2014), Miller et al 

2013 (Miller et al., 2013), Avramopoulos et al 2011 (Avramopoulos et al., 2011), Liang et al 

2008 (Liang et al., 2008), Colangelo et al 2002 (Colangelo et al., 2002), Blalock et al 2004 

(Blalock et al., 2004), Mostafavi et al 2018 (Mostafavi et al., 2018), and Allen et al 2018 

(Allen et al., 2018). Then we evaluated the overlap between the present DEGs and these 

previously published LOAD signatures using the Fisher’s exact test (FET). We observed a 

highly significant overlap (adjusted P value up to 1.0E-100) for almost every differential 

contrast in public LOAD signatures as illustrated in Fig. S3. We note that when up- and 

down-regulated DEGs were separated, we observed significant enrichments in consistent 

directions with respect to expression changes in this analysis. The relatively mild enrichment 

for the signatures in BM10-FP and BM44-IFG was due to the small number of genes 

identified in the two regions. To further investigate if the present expression signatures from 

bulk tissue RNA-seq tend to reflect cell-type changes, we collected a set of cell type-specific 

DEGs identified from a recent single-nuclei RNA-seq (snRNA-seq) analysis of LOAD 

postmortem brains(Mathys et al., 2019). Here, we used cell type-specific DEGs computed 

from the cell-level model. Fig. S4 shows the FET of the enrichment between our bulk-tissue 

DEGs and the cell type-specific DEGs detected in Ex (excitatory neurons), In (inhibitory 

neurons), Oli (oligodendrocytes), Opc (oligodendrocyte progenitor cells), Ast (astrocytes), 

or Mic (microglia) in brains with LOAD pathology. We observed a strong preservation of 

both up- and down-regulated genes in a cell type-specific manner. These results demonstrate 

a robust set of LOAD related gene signatures across all brain regions profiled.

To understand what biological processes are represented in the DEGs, we tested these 

signatures for enrichment of gene ontology (GO) and canonical functional pathway gene 

sets from the Molecular Signatures Database (MSigDB) gene annotation database 

v6.1(Liberzon et al., 2011; Subramanian et al., 2005). For convenience, the MSigDB gene 

set collections have been assembled into an R package called “msigdb” which is publicly 

available from https://github.com/mw201608/msigdb. We overlapped the DEGs with the 

MSigDB gene sets and computed the fold enrichment (FE) and P value significance using 

the algorithms described in the next section “Overlap and functional enrichment analysis”. 

The top enriched terms are summarized in Fig. S5, and the full list of significant 

enrichments is provided in Table S3.

Overlap and functional enrichment analysis—Functional enrichment analysis (or 

overlap test) P value was calculated using the hypergeometric test (equivalent to the Fisher’s 

exact test, FET) assuming the sets of genes, such as DEGs, were identically independently 

sampled from all the genome-wide genes detected by RNA-seq except otherwise specifically 

stated. Fold enrichment (FE) was calculated as the ratio between observed overlap size and 

expected overlap size. To control for multiple testing, we employed the Benjamini-Hochberg 

(BH) approach(Benjamini and Hochberg, 1995) to constrain the FDR. For GO and pathway 

enrichment analysis, we utilized the functional gene set collections from the Molecular 

Signatures Database (MSigDB) v6.1 (Liberzon et al., 2011; Subramanian et al., 2005).

For brain cell type marker gene enrichment analysis, we focused on the 5 major brain cell 

types, i.e. neurons, microglia, astrocytes, oligodendrocytes and endothelial, and for each 
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type used the top 500 ranked consensus cell type-specific genes derived from a meta-

analysis of 5 cell type-specific or single cell RNA-seq datasets (McKenzie et al., 2018).

Cell-type deconvolution analysis—We performed cell-type deconvolution analysis to 

estimate the major brain cell-type proportions using a Digital Sorting Algorithm (DSA) 

(Zhong et al., 2013). From the normalized gene expression matrix and cell-type marker 

genes, DSA estimates the cell type frequencies by solving a restricted linear model. Here we 

focused on 5 major brain cell types (i.e., neurons, astrocytes, oligodendrocytes, microglia, 

and endothelial), and for each type, we used 5 markers which were top ranked for cell type 

specificity according to our recent brain cell type specific transcriptomic analysis (McKenzie 

et al., 2018). As illustrated in Fig. S27, the diseased brains showed progressive neuronal loss 

as the severity advanced, which was accompanied by the increase of glia cells. The neuronal 

cell frequencies were negatively correlated with disease traits in all brain regions. For 

example, the Spearman correlation between neuronal frequencies and CDR ranged from 

−0.18 to −0.41 (P value = 3.1E-3 ~ 2.6E-10). The proportion of microglia cells was not 

estimable, likely due to the low sensitivity in estimating cells with low abundance.

MEGENA gene coexpression network analysis—For MEGENA(Song and Zhang, 

2015), Pearson correlation coefficients (PCCs) were computed for all gene pairs in every 

brain region. Significant PCCs at a permutation-based FDR cutoff of 0.05 were ranked and 

iteratively tested for planarity to grow a Planar Filtered Network (PFN) by using the PMFG 

algorithm. Multiscale Clustering Analysis (MCA) was conducted with the resulting PFN to 

identify coexpression modules at different network scale topology. We identified 475, 527, 

441 and 423 coherent gene expression modules in BM10-FP, BM22-STG, BM36-PHG and 

BM44-IFG, respectively (Table S4). To annotate the potential biological functions associated 

with the modules, we performed MSigDB gene set enrichment analysis using FET as 

described above. Most of these modules (53.9% to 67.3%) were enriched for MSigDB GO/

pathway gene sets (adjusted P value < 0.05) (Table S5), indicating that MEGENA is capable 

of capturing data-drive biologically meaningful, context-dependent co-regulation signals 

beyond what is represented in canonical pathways from ontology databases. For simplicity, 

modules were annotated by the top enriched functional category. It is noted that MEGENA 

modules are formed in a hierarchy with parent-child relationships which can be illustrated 

by a sunburst style plot.

To prioritize the gene modules with respect to their association to LOAD pathology, we 

applied an ensemble ranking metric(Wang et al., 2016) across multiple feature types (Fig. 

2B–C), including 1) correlations between module eigengenes (i.e. the first principal 

component of module gene expression profile) and cognitive/pathological traits associated 

with LOAD, and 2) enrichment for the DEG signatures identified above. A more complete 

description of the information used to rank the modules is included in Table S6. The ranking 

of the top 25 MEGENA modules are illustrated in Fig. 2B, with all of the top modules 

coming from the BM36-PHG region.

We annotated the potential cell type specificity of the modules by evaluating enrichment of 

brain cell type-specific marker as described above, with the enrichment statistics 

summarized in Table S6. We found many top-ranked modules were enriched for neuronal or 
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microglia-specific cell types (Fig. 2B–C) based on enrichment analysis of cell type-specific 

markers of five major brain cell types, including neurons, microglia, endothelial, astrocytes 

and oligodendrocytes (McKenzie et al., 2018). To test whether the top-ranked neuronal 

system modules reflected distinct neuronal subtypes, we utilized a large-scale single-nucleus 

RNA-seq data of inhibitory and excitatory neurons isolated from six different regions of the 

human cerebral cortex(Lake et al., 2016). We downloaded the preprocessed gene expression 

data (transcripts per million, TPM) from this published study and further selected genes with 

at least 1 TPM in at least 10% of the cells in one subtype. Then we computed genes which 

showed differential expression between cell types using limma’s moderated t-test analysis 

(Law et al., 2014). Source of brain region origination of the cells was incorporated as a 

covariate. While the original study identified up to 16 different sub-types of neurons, we 

focused on the genes differentiate between the two major neuron cell types (i.e. inhibitory 

and excitatory). We called genes inhibitory neuron-enriched if they presented at least 4-fold 

higher expression in inhibitory neuron cells than in excitatory neuron cells with FDR < 0.05, 

and excitatory neuron-enriched if they presented at least 4-fold higher expression in 

excitatory neuron cells than in inhibitory neuron cells with FDR < 0.05. As a result, we 

identified 1008 excitatory neuron-enriched genes and 413 inhibitory neuron-enriched genes. 

Lastly, we overlapped the cell type-enriched genes with the top-ranked neuronal modules 

and found that module M64 was overrepresented with inhibitory neuron-enriched genes 

while M6, M87, M65, M236, M62, and M252 were overrepresented with excitatory neuron-

enriched genes (Table S7).

Interestingly, a number of LOAD GWAS risk genes were present in our top-ranked modules, 

including MEF2C (M62), CELF1, MADD, PLD3, PTK2B, and ZCWPW1 (M6), and APP 
and SORL1 (M64), CLU and CR1 (M17), and APOE, CASS4, CD33, HLA-DRB1/HLA-
DRB5, INPP5D, MS4A4A/MS4A6A and TREM2 (M153 and M14). The mechanism 

underlying the clustering of GWAS risk genes in the top modules is unknown. One possible 

reason is that they express in common cell types.

Network connectivity preservation analysis—We investigated the preservation of 

global MEGENA co-expression network between our MSBB RNA-seq data and the 

ROSMAP RNA-seq data (Mostafavi et al., 2018), using the network-based statistics 

calculated by the modulePreservation function from WGCNA (Langfelder et al., 2011). 

Since modulePreservation does not allow a single gene to be present in multiple modules as 

in MEGENA, we considered each gene-module combination as a unique gene and renamed 

the genes, then created a new expression matrix accordingly. We reported module 

preservation with the main network-based statistics Zsummary.pres and followed the 

original software guideline to denote a module as strongly preserved (Zsummary.pres > 10), 

weakly to moderately preserved (2 < Zsummary.pres < 10), or not preserved 

(Zsummary.pres < 2).

Discovery of region-wide expression quantitative trait loci (eQTLs)—Given the 

well-established relationships between gene expression and interactions with genetic and 

environment factors, we mapped expression quantitative trait loci (eQTLs) by integrating the 

RNA-seq and WGS-based Single-nucleotide polymorphism (SNP) genotype data. SNPs 
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significantly associated with gene expression traits were identified using the MatrixEQTL 

package (Shabalin, 2012). Significant SNPs (eSNPs) were classified into cis- and trans-

acting elements according to whether they are located within 1-MB from the gene or not. At 

a conservative Bonferroni corrected P value threshold of 0.05 (equivalent to a nominal P 

value cutoff of 3.0E-10), 1214, 922, 762, and 1054 genes were identified to be regulated by 

at least one proximal SNP within 1 million base (Mb) from the gene, termed cis-eSNP, in 

BM10-FP, BM22-STG, BM36-PHG, and BM44-IFG, respectively (Table S9). For 

simplicity, we refer to genes with significant eSNPs as eGenes and a significant association 

between a SNP and a gene as an eSNP-eGene pair. By such a definition, 126,799, 101,705, 

92,336, and 112,139 cis-eSNP-eGene pairs were identified in BM10-FP, BM22-STG, 

BM36-PHG and BM44-IFG, respectively. It is noted that there are redundant eSNPs for the 

same eGene due to linkage disequilibrium (LD) of the SNPs. Fig. S7 shows the overlap of 

these cis-eSNP-eGene pairs among the four brain regions. 66.1% to 90.7% of the cis-eSNP-

eGene pairs identified in one brain region were also detected in at least one other brain 

region. In addition, 71,298 cis-eSNP-eGene pairs from 548 unique genes were shared by all 

4 brain regions.

We detected 20,657, 14,011, 14,766, and 17,125 trans-eSNP-eGene pairs from BM10-FP, 

BM22-STG, BM36-PHG and BM44-IFG, respectively. For each brain region, 28.5 to 70.1% 

of the trans-eSNP-eGene pairs identified were also detected in at least one other brain region 

(Fig. S7). We grouped Bonferroni corrected significant SNPs within a 5-Mb interval into a 

single peak because of insufficient resolution to break LD over such narrow 

windows(Morley et al., 2004; Yang et al., 2014). Each peak was represented by the most 

significant eSNP in the window, referred to as the lead eSNP, for a given trans-eGene. We 

identified 2,411, 1,965, 1,392 and 2,460 trans-eQTL peaks from BM10-FP, BM22-STG, 

BM36-PHG and BM44-IFG, respectively. Early eQTL studies noted the existence of master 

trans-genetic regulators, which we refer to as eQTL hotspots (Schadt et al., 2003), that 

regulate many genes throughout the human genome. We defined trans-eQTL hotpots as 

those peaks associated with 10 or more trans-eGenes. At this definition, we identified 24, 12, 

2 and 27 trans-eQTL hotpots from BM10-FP, BM22-STG, BM36-PHG and BM44-IFG, 

respectively (Fig. S8 and Table S10), with nine trans-eQTL hotspots shared between 2 or 3 

brain regions (Fig. S9). Each of these hotspots were associated with 10 to 36 trans-eQTL 

genes. The hotspot associated with the greatest number of trans-eQTL genes (36 genes) was 

located at a region near 84.4-Mb on chromosome 17 (lead eSNP rs10264300) in BM44-IFG. 

SNP rs10264300 is 181 kilobases upstream of AC003984.1 (a long intergenic noncoding 

RNA, lincRNA) and 82.5 kilobases downstream of AC093716.1 (a pseudogene gene). About 

half (16) of the gene targets of this hotspot encode enzyme binding proteins (6.4-FE, 

adjusted FET =7.1E-5) (Table S11). Interestingly, synaptic pathway genes were enriched for 

the targets of a hotpot near lead SNP rs34072069 on chromosome 10 in BM10-FP (17.1-FE, 

adjusted FET P=4.9E-6). SNP rs34072069 is 44.5 kilo-bases (KB) upstream of RNU6–535P 

(a small nuclear RNA gene) and 1.9 KB downstream of RP11–385N23.1 (an antisense 

gene).

We evaluated whether any modules were enriched for our cis-eGenes. Twelve MEGENA 

modules were significantly enriched for cis-eQTL genes (Table S12), among which four 

were associated with GTPase mediated signal transduction (one from each brain region 
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(>17.9-FE, adjusted FET P < 3.5E-11) and three were associated with transferase activity 

(one from each of 3 brain regions except BM44-IFG; > 10.9-FE, adjusted FET P < 2.3E-4). 

We noted that the genes in the GTPase mediated signal transduction modules were 

concentrated in chromosome region 17q21, while the transferase activity modules in 

chromosome region 8p23, suggesting the genetic regulation of these modules by common 

eQTLs shared by multiple brain regions.

We attempted to replicate eQTLs in an independent LOAD postmortem brain RNA-seq 

dataset generated from the ROSMAP cohort(Mostafavi et al., 2018), which is, to our 

knowledge, the largest sampled RNA-seq based eQTL analysis of LOAD in a single brain 

region (494 individuals). Cis-eQTLs were identified for 3,388 genes from the ROSMAP 

cohort as published by Ng et al (Ng et al., 2017). However, since no trans-eQTLs were 

reported for the ROSMAP cohort(Ng et al., 2017), we focused on the replication of cis-

eQTLs in this paper, and particularly the cis-eSNP-eGene pairs that were available in both 

datasets. To avoid including dependent signals induced by LD among adjacent SNPs, only 

the associations comprising the top SNP for each eGene were included in the replication rate 

calculations. To circumvent the statistical power difference caused by different sample sizes 

(494 individuals in ROSMAP and 215~261 individuals across the present four brain 

regions), we first followed Ng et al (Ng et al., 2017) to assess the replication rate of LOAD 

brain cis-eSNP-eGene discovered in the ROSMAP cohort in our data set using the π1 

statistic(Storey and Tibshirani, 2003), which estimated the proportion of reported ROSMAP 

cis-eSNP-eGene pairs that are also significant in the current data set based on their P-value 

distribution. π1 values of the ROSMAP cis-eSNP-eGene pairs were 0.698, 0.674, 0.637, and 

0.670 in the present brain regions BM10-FP, BM22-STG, BM36-PHG, and BM44-IFG, 

respectively. These values were significantly larger than their empirical null mean of 

0.025~0.038 from 10,000 random samples of P values of associations that did not overlap 

with the eQTLs (one-tailed P value < 0.0001). Analogously, we applied the same π1 statistic 

to estimate the replication rate of the present region-wide eQTLs in the ROSMAP data but 

were unsuccessful because the P value distributions of the MSBB cis-eSNP-eGene pairs 

were truncated (maximum P value = 0.92) with majority of the values approaching 0 (93% 

to 96% were less than 0.05) in the ROSMAP data. In fact, 81.6%, 84.3%, 89.0% and 82.5% 

of the cis-eSNP-eGene pairs identified in BM10-FP, BM22-STG, BM36-PHG, and BM44-

IFG, respectively, were also called genome-wide significant in the ROSMAP data, indicating 

most of the present cis-eQTLs were replicated, while the rest 11~18% are likely novel cis-

eQTLs or false positives. Nonetheless, these results indicate marked common genetic 

regulation occurring across different brain regions.

Integrating eQTL, gene expression traits, and LOAD GWAS loci to identify 
causal LOAD genes—We did not observe significant enrichment for cis-eGenes in the 

LOAD-related DEGs or brain cell type-specific markers in each brain region (with less than 

8% of the cis-eGenes detected as DEGs and less than 6% of the DEGs detected as cis-

eGenes, FET P value > 0.1), suggesting a lack of detectable cis- genetic regulation among 

the genes dysregulated in LOAD brains. However, for the most strongly associated SNPs 

across all cis-eGenes, we observed a significant enrichment (P < 0.05) for LOAD genetic 

association signals based on the SNP-level summary statistics from a recent meta-analysis of 
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AD GWAS(Kunkle et al., 2019), compared to random samples of SNPs of the same size 

(Table S13). In this analysis, we first selected the strongly associated SNPs across all cis-

eGenes and then extracted their SNP-level LOAD GWAS chi-square statistics from the AD 

GWAS study (Kunkle et al., 2019). The mean chi-square statistics among those cis-eSNPs 

was compared to a null distribution which was obtained by randomly sampling the same 

number of SNPs for 10,000 times. Enrichment P value was computed as the proportion of 

randomly sampled SNP sets with mean chi-squared values larger than the observed one.

Moreover, cis-eQTLs overlapped the genome-wide significant LOAD GWAS SNPs at 

GWAS risk loci HLA-DRB1/HLA-DRB5 and ZCWPW1. To aid in the identification of 

candidate causal genes in these GWAS loci, we applied the summary-data-based mendelian 

randomization (SMR) (Zhu et al., 2016b) method to test if the effects of the top GWAS 

SNPs in the HLA-DRB1/HLA-DRB5 and ZCWPW1 loci were mediated by gene expression 

associated with eQTL coincident with the GWAS loci. By integrating eQTLs and GWAS 

signals, we aimed to prioritize the most possible functional relevant genes underlying the 

effects of causal variants on the disease phenotype at two LOAD GWAS risk loci. We 

reformatted the eQTL results and AD GWAS SNP-level summary statistics (Kunkle et al., 

2019) data files in accordance to the manual of the SMR software (Zhu et al., 2016b). Then 

we ran region-wide SMR analysis using the default parameter. For each locus, we used the 

region-wide rather than the experiment-wise significance threshold because we were 

interested in gene discovery for each specific locus in each brain region than the joint 

analysis of all regions as a whole. For the genes with significant association by the SMR 

test, the heterogeneity in dependent instruments (HEIDI) test(Zhu et al., 2016b) was further 

employed to distinguish whether the association was caused by pleiotropy of the same 

causal variant underlies the disease risk, or due to linkage of distinct variant to the one 

causal to the disease.

Fig. S10 shows the GWAS and eQTL P value profiles at the HLA-DRB1/HLA-DRB5 locus 

as well as the SMR test results in four brain regions. In a 2-Mb region centered on HLA-
DRB1, there were 11~12 genes with cis-eQTLs across the four brain regions. For example, 

12 genes were found to have cis-eQTLs in BM10-FP; the SMR test was significant for 

HLA-DRB5 at a Bonferroni corrected P value threshold of 4.5E-3, while the gene HLA-
DRB1 was not significant. To distinguish whether the significant association in the SMR test 

was caused by pleiotropy that gene expression and the trait affected by the same underlying 

causal variant, or due to linkage that the top associated cis-eQTL being in LD with two 

distinct causal variants, one affecting the disease trait and the other affecting the gene 

expression, we further performed the heterogeneity in dependent instruments (HEIDI) test as 

in Zhu et al (Zhu et al., 2016b). HLA-DRB5 showed no significant heterogeneity by the 

HEIDI test (P value > 0.05), supporting the null hypothesis that there is a single causal 

variant affecting both gene expression and disease trait phenotype. In summary, we found 

that HLA-DRB5 passed both SMR and HEIDI tests in all four brain regions, HLA-DQA1 
passed both SMR and HEIDI tests in BM36-PHG and BM22-STG, HLA-DRB1 passed both 

SMR and HEIDI tests in BM36-PHG, and HLA-DQB2 passed both SMR and HEIDI tests in 

BM44-IFG (Fig. S10), suggesting that HLA-DQA1, HLA-DQB2, HLA-DRB1, and 

especially HLA-DRB5 are the most plausible functionally relevant targets underlying the 

GWAS hits at this locus.
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At a 2-Mb region surrounding gene ZCWPW1, there were 3 to 6 genes with cis-eQTLs 

across the different brain regions (Fig. S11). ZCWPW1 did not pass the SMR test, indicating 

that our data do not support that the expression of ZCWPW1 mediates the causal effect on 

the disease phenotype. However, an adjacent gene PVRIG passed the SMR test in BM36-

PHG. PVRIG, also known as CD112R, encodes a protein that recruits tyrosine phosphatases 

for signal transduction and could act as a coinhibitory receptor that suppresses T cell 

receptor (TCR) signaling(Zhu et al., 2016a). We noted that none of the genes passed the 

HEIDI test, rejecting the null hypothesis that there is a single causal variant affecting both 

gene expression and disease trait phenotype.

The present analysis shows that eQTL prioritized genes may not be necessarily the genes 

nearest to the peak SNP as reported in the association studies. Further independent 

replications and experimental validations are required to verify the potential causal 

relationships inferred from the current integrative analysis.

Bayesian probabilistic causal network inference and key driver analysis—To 

construct Bayesian probabilistic causal Network (BN), we made use of genetic perturbations 

in biological systems (e.g. WGS SNP variants) and known transcription factor (TF)-target 

relationships from the ENCODE project as prior for inferring regulatory relationships 

between genes. In the causal network construction, the TFs are allowed to be parent node of 

their target genes; but targets are inhibited to be parent nodes of their TFs. To infer gene 

regulatory relationship from genetic data, we first computed cis- and trans-eQTLs for each 

expression trait using WGS-based SNP variants as described above and then employed a 

causal inference to infer the causal probability between gene pairs associated with the same 

eQTL. Since a gene pair associated with the same eSNP may be causally regulated from one 

to another or independently regulated by a genetic factor in LD with the eSNP, we derived 

genetic priors under two scenarios. In the first scenario, genes with cis-acting eSNP could be 

parent nodes of genes with trans-acting eSNP, but the opposite direction was not permitted 

following previous practices (Zhu et al., 2007b; Zhu et al., 2008). In the second scenario 

where the genes are both cis-regulated or both trans-regulated, either gene can be the parent 

node of the other and hence there are two possible directions. For the latter scenario, we 

applied a formal causality inference test (CIT) (Millstein et al., 2009; Schadt et al., 2005b) to 

distinguish the causal/reactive and independent relationships between the gene expression 

traits by modeling the gene pair and associated eSNP with a “chain” of mathematical 

conditions. For each trio (a gene pair and one eSNP), CIT will compute the probability of 

the causal “chain” in which one gene is mediating the causal impact of the eSNP to the other 

gene when the regulatory direction is allowed (Millstein et al., 2009). In cases that the gene 

pair is associated with multiple common eSNPs, the individual causality test P values of 

each trio were aggregated using Fisher’s method to make a collective call for the gene pair. 

As the conservative Bonferroni corrected P value threshold of 0.05 in the eQTL analysis 

gave a very limited number of gene pairs associated with common SNPs, we relaxed the 

cutoff to a BH FDR adjusted P value threshold of 0.05 to increase the pool of potential 

causal-reactive gene pairs. The causal relationships thus inferred by CIT were combined 

with TF-target relationships, and together they were used as structure priors for building a 

brain region-wide BN from all 23,201 expressed genes through a Monte Carlo Markov 
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Chain (MCMC) simulation based procedure (Zhu et al., 2007a). Following previous 

practices (Zhu et al., 2007b; Zhu et al., 2008), we employed a network averaging strategy in 

which 1,000 networks were generated by this MCMC process starting with different random 

structure, and links that appeared in more than 30% of the networks were used to define a 

final consensus network. If loops were present in the consensus network, the weakly 

supported link involved in a loop was removed to ensure the final network structure was a 

directed acyclic graph.

From the region-wide BNs, we identified network key drivers that are predicted to modulate 

a large number of downstream nodes, and as a result, modulate the state of the network, by 

using the Key Driver Analysis (KDA) (Huan et al., 2013; Zhang et al., 2013a; Zhang and 

Zhu, 2013). Here we loaded all the BN nodes as input in the KDA and hence the resulting 

key drivers were called global network key drivers which were different from the pathway 

(such as the neuronal modules) context dependent key drivers described later. There were 

1,545, 1,418, 1,454, and 1,371 global key drivers in the BNs from BM10-FP, BM22-STG, 

BM36-PHG and BM44-IFG, respectively. Strikingly, the key drivers were significantly 

conserved across the region-wide BNs, with any two BNs sharing a significant number of 

key drivers (7.2 < FE ≤ 8.2, FET P values < 1.0E-320) while 325 key drivers were shared 

across four BNs (929.4-FE, Super Exact Test P value < 1.0E-320) (Fig. S12), demonstrating 

a high-degree of conservation of the regulatory architecture in the brain regions we profiled. 

This is in line with previous study that replication of edge-to-edge is strongly dependent on 

the sample size while highly connected key driver nodes tend to be more stable than network 

edges (Cohain et al., 2017).

To perform a comprehensive validation of the BN topological structures and the global key 

drivers that modulate them, we downloaded a library of 2,460 single gene perturbation 

signatures curated at the Enrichr server (Kuleshov et al., 2016). After filtering for central 

nervous system (CNS) or immune system-related studies and requiring the perturbed genes 

to be present in the current dataset, we obtained 649 signatures from 320 studies for 287 

unique perturbed genes. These gene perturbation signatures were collected from the gene 

expression omnibus (GEO) database, and the original experiments were conducted in a 

diversity of conditions (different cell lines or tissues from different species). 66 of these 

perturbed genes were global key drivers in at least one of our four brain region-wide BNs. 

For each of these perturbed global key drivers, we examined whether the experimental 

perturbation signature was predicted by our networks by examining whether the genes in 

these signatures were enriched for genes in the network neighborhood of the key driver in 

our BNs (examining genes that were within a path length of 6 of the key driver gene). 

Despite the vast heterogeneity of the gene perturbation studies compared to the present 

human postmortem brain tissues used to generate our data for the region-wide BNs, 50 to 

60% of the key driver perturbation signatures were enriched in the network neighborhoods 

of the corresponding key drivers across the four region-wide BNs (Fig. 3B). The significance 

levels of the enrichments are observed to increase as path lengths defining the network 

neighborhoods are increased, given the BNs were sparse, with a limited number of 

neighboring nodes closer to the key driver gene, which serves to reduce the power to make 

such detections, especially in the context of multiple testing. In contrast, the proportion of 
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significantly enriched perturbation signatures decreased to 20~30% in the network 

neighborhood of non-driver genes.

We further performed KDA on the top-ranked MEGENA neuronal modules to identify their 

master regulators. In this analysis, we projected the module genes onto the region-wide BN 

and searched for key driver genes whose network neighborhood were enriched for the 

module genes. Different from the global key drivers described above, here the key drivers 

were context dependent, in this case, related to neuronal system subnetworks. This yielded 

42 unique key driver genes across 9 modules (Table S14) predicted to be the network key 

drivers. 10 key drivers were root nodes in the BM36-PHG BN without parental nodes. To 

further verify the root node status beyond a single region-based network, we sought to 

integrate information from all 4 region-wide BNs to build a union BN that contained a union 

of directed links from all 4 individual BNs by following previous practices (Haure-Mirande 

et al., 2019; Katsyv et al., 2016). Like region-wide BNs, loops in the union BN were broke 

by removing the weakly supported links. Two key drivers, ATP6V1A (module M64), and 

GABRB2, (module M62), remained as root nodes in this union BN.

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the 

mammalian brain and GABA type A (GABA-A) receptors mediate the inhibition 

effect(Sigel and Steinmann, 2012). GABA-A receptors form pentameric complexes by 

combinations of more than 10 subunits and marked functional remodeling GABA-A 

receptors, including change of subunit composition and reduced expression of principal 

subunits, had been observed in LOAD brains(Limon et al., 2012). In this paper, we observed 

a significant down-regulation of the subunits α1–6, β2–3 and γ2–3 in diseased brains 

compared to control (Table S2). It has been reported that GABA-A β2 (GABRB2) subunit, 

paralleled with some other subunits like α1, α2, α5, β3, and γ2, showed altered brain 

region- and cell layer-specific expression (Kwakowsky et al., 2018). Its protein level was 

significantly decreased in the dentate gyrus stratum moleculare, but increased in the stratum 

oriens and stratum radiatum of the hippocampal CA2 region, and stratum radiatum of the 

hippocampal CA3 region (Kwakowsky et al., 2018), indicating a region-dependent up- or 

down- dysregulation of this gene in LOAD.

Drug repositioning of AD signature in neural progenitor cells—To identify 

existing drugs that can restore the molecular expression change in the LOAD brains, we 

performed a drug repositioning analysis using EMUDRA (Zhou et al., 2018a), which 

provides a novel computational algorithm to match disease signatures and drug-induced 

signatures. For this purpose, we downloaded drug-treated gene expression profiles (level 3 

data of quantile-normalized and log2 transformed expression levels from human iPSC-

derived neural progenitor cells (NPCs) from the Library of Integrated Network-Based 

Cellular Signatures (LINCS) program (Keenan et al., 2018; Subramanian et al., 2017). After 

removing probes sets mapping to multiple genes or without known gene annotation, the 

remaining data were adjusted for batch effects using linear regression. Mean expression 

level of multiple probe sets matching to the same gene was used as the expression level of 

that gene. For each drug, the transcriptome-wide expression difference between drug-treated 

and DMSO-treated gene expression profiles was considered the drug signature. We then 

matched each of the drug signatures to the LOAD signature using EMUDRA to find drugs 
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that could reverse the LOAD signature. For LOAD signature, we used the DEGs between 

CERAD definite AD and normal control brains in the BM36-PHG region (3,000 up- and 

2,076 down-regulated genes). In total, 3,629 drug signatures were analyzed and ranked. We 

further prioritized the top-ranked drugs that can increase ATP6V1A mRNA expression in the 

NPCs.

Lentivirus generation—Third-generation VSV.G pseudotyped HIV-1 lentiviruses 

(below) were produced by polyethylenimine (PEI, Polysciences #23966– 2)-transfection of 

HEK293T cells and packaged with VSVG-coats using established methods (Tiscornia et al., 

2006). Lentiviral FUW-M2rtTA (Addgene #20342), pLV-TetO-hNGN2-eGFP-neo (TBD), 

lentiGuide-Hygro-mTagBFP2, and 6 lentiGuide vectors with insertion were generated. 

Physical titration of lentivirus was performed by qPCR (qPCR Lentivirus Titration Kit, 

ABM good #LV900). Lentiviruses were then used to transduce cells according to their 

physical titer as described below, calculated through the company’s website (https://

www.abmgood.com/High-Titer-Lentivirus-Calculation.html).

gRNA design and cloning for in vitro functional validation of ATP6V1A deficit 
in NGN2-neurons—gRNA design and cloning were performed as previously described 

(Ho et al, 2017). Specifically, 6 gRNA candidates for ATP6V1A were designed by using 

CRISPR-ERA web tool (crispr-era.stanford.edu): 6 gRNA sequences targeting promoter 

region (between +658 bps and transcription start site) of ATP6V1A. For lentiviral cloning, 

the gRNA sequences were inserted into LentiGuide-Hygro-mTagBFP2 (Addgene #99374). 

Oligonucleotides encoding gRNA sequences were annealed, diluted and then ligated into 

BsmBI-digested LentiGuide vectors as previously described (Ho et al, 2017). Sanger 

sequencing using U6 promoter confirmed all constructions.

Oligo ID Location gRNA (E,S score) gRNA Sequence (5′-3′)

ATP6V1i_#1-1 +260 #1 (20,0) 5′-CACCGGCGGGAACGACCACACTTGG

ATP6V1i_#1-2 5′-AAACCCAAGTGTGGTCGTTCCCGCC

ATP6V1i_#2-1 +101 #2 (20,0) 5′-CACCGGGCGACCGGTAACTGGCGAG

ATP6V1i_#2-2 5′-AAACCTCGCCAGTTACCGGTCGCCC

ATP6V1i_#3-1 +94 #3 (20,0) 5′-CACCGGGTGAGCGGCGACCGGTAAC

ATP6V1i_#3-2 5′-AAACGTTACCGGTCGCCGCTCACCC

ATP6V1i_#4-1 +14 #4 (20,−2) 5′-CACCGGGGGAAGTCCTCAGCTGCAC

ATP6V1i_#4-2 5′-AAACGTGCAGCTGAGGACTTCCCCC

ATP6V1i_#5-1 +266 #5 (20,−2) 5′-CACCGGTGGTCGTTCCCGCTACTT

ATP6V1i_#5-2 5′-AAACAAGTAGCGGGAACGACCACC

ATP6V1i_#6-1 +658 #6 (15,0) 5′-CACCGGATGTTCACGTGCTTCGGAT

ATP6V1i_#6-2 5′-AAACATCCGAAGCACGTGACATCC

hiPSC-NPC culture and NGN2 neuronal differentiation—Two stable hiPSC-derived 

neuronal progenitor cells (hiPSC-NPCs) (553KRAB and 2607KRAB) expressing 

dCas9-KRAB (Addgene 99372) were generated as previously described(Ho et al., 2017) and 
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cultured in hNPC media (DMEM/F12 (Life Technologies #10565), 1x N2 (Life 

Technologies #17502–048), 1x B27-RA (Life Technologies #12587–010), 20 ng/ml FGF2 

(Life Technologies), and 0.3 μg/mL puromycin) on Matrigel (Corning, #354230). NPCs at 

full confluence (1–1.5×107 cells/well of a 6-well plate) were dissociated with Accutase 

(Innovative Cell Technologies) for 5 mins, spun down (5 mins X 1000g), resuspended and 

seeded onto Matrigel-coated plates at 3–5×106 cells/well. Media was replaced every two 

days for four to seven days until next split.

At day −2, NPCs were seeded as 4–6×105 cells/well in a 24-well plate coated with Matrigel 

(coverslips are put in a plate and coated with Matrigel for immunostaining). At day −1, cells 

were transduced with rtTA, pLV-TetO-hNGN2-eGFP-Neo and ATP6V1Ai gRNA or empty 

lentiguide-Hygro-mTagBFP2 (Addgene 99374) lentiviruses via spinfection. Medium was 

switched to non-viral medium 3 hours post-spinfection. At Day 0, 1 μg/ml dox was added to 

induce NGN2-expression. At Day 1, transduced hiPSC-NPCs were treated with 

corresponding antibiotics to the lentiviruses (300 ng/ml puromycin for dCas9-effectors-Puro, 

1 mg/ml G-418 for hNGN2-eGFP-neo and 1 mg/ml HygroB for lentiguide-Hygro-

mTagBFP2) in order to increase the purity of transduced NPCs. At day 3, NPC medium was 

switched to neuronal medium (Brainphys (Stemcell Technologies, #05790), 1x N2 (Life 

Technologies #17502–048), 1x B27-RA (Life Technologies #12587–010), 1 μg/ml Natural 

Mouse Laminin (Life Technologies), 20 ng/ml BDNF (Peprotech #450–02), 20 ng/ml 

GDNF (Peptrotech #450–10), 500 μg/ml Dibutyryl cyclic-AMP (Sigma #D0627), 200 nM 

L-ascorbic acid (Sigma #A0278)) including 1 μg/ml Dox, along with antibiotic withdrawal. 

50% of the medium was replaced with fresh neuronal medium (lacking dox once every 

second day. At day 11, full medium change withdrew residual dox completely. At day 13, 

NGN2-neurons were treated with 200 nM Ara-C to reduce the proliferation of non-neuronal 

cells in the culture, followed by half medium change by day 17. At Day 17, Ara-C was 

completely withdrawn by full medium change, followed by half medium changes until the 

neurons were fixed or harvested around day 21–24.

Primary human astrocyte (pHA) co-culture—Commercially available pHAs 

(Sciencell, #1800; isolated from fetal female brain) were thawed onto a matrigel-coated 100 

mm culture dish with commercial astrocyte medium (Sciencell, #1801). While their 

growing, the astrocytes were fed with fresh astrocyte medium for five days according to the 

company’s manual. Upon their confluence at 90%, astrocytes were detached by TrypLE™ 

(Thermo Fisher Scientific, #12605010), spun down (200g x 5 mins), resuspended with 

freezing medium (astrocyte medium supplemented with 10% DMSO) and banked in liquid 

nitrogen.

At day −2, pHAs were thawed and seeded onto the matrigel-coated 100 mm culture dish and 

cultured for five days. At day 3, cells were detached, spun down and resuspended with 

Brainphys basal medium supplemented with Antibiotic-Antimycotic (Anti/Anti; Thermo 

Fisher Scientific, #15240062) and 2% fetal bovine serum (FBS; Sigma, F4135). Then, cells 

were split as 1×105 cells / well on a matrigel-coated coverslip. At day 5, pHAs were fed by 

full medium change with the Brainphys medium (2% FBS + Anti/Anti). At day 7, neurons 

were split on the pHAs with neuronal medium supplemented with 2% FBS.
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Until day 7, NGN2-neurons, when co-cultured with pHAs, were prepared as described 

above. At day 7, NGN2-neurons were gently detached with Accutase, spun down (1000g × 5 

mins) and resuspended in neuronal medium supplemented with 2% FBS. After counting 

cells with a hemacytometer, NGN2-neurons were seeded on astrocyte culture at different cell 

densities according to assays (4.5–6×105 cells/coverslip for presynaptic ICC and 7.5–10×104 

cells/well for MEA). Since day 9, the culture was fed by half medium change along with 

treatment with 2 μM Ara-C until the day of analysis.

We focused on the phenotypic analyses in 21-day-old NGN2-induced neurons because it is 

the earliest time point that we (Ho et al., 2016b; Schrode et al., 2019b) and others (Frega et 

al., 2017; Nehme et al., 2018; Zhang et al., 2013b) consistently observe spontaneous 

synaptic activity across donors. ATP6V1A is robustly expressed across developmental stage 

in the human brain (Fig. S15A) (Miller et al., 2014). Overexpression of NGN2 induces 

glutamatergic neurons with robust expression of glutamatergic genes and excitatory post-

synaptic currents (EPSCs) by 21 days (Zhang et al., 2013b) across dozen of donors in our 

laboratory (Fig. 4). In hiPSC-derived NGN2-neurons, ATP6V1A expression is elevated 

within 14-days of neuronal induction and remains relatively stable thereafter (21, 28, and 35 

days) tested (Fig. S15B) (Tian et al., 2019).

RNA sequencing data processing of ATP6V1A KD and Aβ-treated neurons—
RNA Sequencing libraries were prepared using the Kapa Total RNA library prep kit. Paired-

end sequencing reads (100bp) were generated on a NovaSeq platform. Raw reads were 

aligned to hg19 using STAR aligner (v2.5.2a) and gene-level expression were quantified by 

featureCounts (v1.6.3) based on Ensembl GRCh37.70 annotation model. Genes with over 1 

count per million (CPM) in at least 1 sample were retained. After filtering, the raw read 

counts were normalized by the voom function in limma and differential expression was 

computed by the moderated t-test implemented in limma.

We examined the GO/pathways impacted by ATP6V1A deficit and/or Aβ treatment by 

employing the Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005), a 

weighted enrichment test using all genes devoid of setting a hard threshold to select 

significant ones since there was a relatively small number of DEGs in KD-V vs WT-V 

passing the stringent multiple-test correction and no individual gene met the threshold for 

statistical significance between the Aβ-treated cells and the vehicle-treated cells. In these 

analyses, the t-test statistics from the differential expression contrast were used to rank genes 

in the GSEA. Permutations (up to 100,000 times) were used to assess the GSEA enrichment 

P value.

ATP6V1A KD and Aβ-treatment synergistic effect analysis from the RNA-seq 
data—The synergistic effect between ATP6V1A KD and Aβ-treatment was performed by 

limma’s linear model analysis with formula: Gene expression ~ Sample treatment. The 

coefficients, standard deviations and correlation matrix were calculated, using contrasts.fit, 
in terms of the comparisons of interest. Empirical Bayes moderation was applied using the 

eBayes function to obtain more precise estimates of gene-wise variability. P-values were 

adjusted for multiple hypotheses testing using false discovery rate (FDR) estimation, and 

differentially expressed genes were determined as those with an estimated FDR ≤ 5%, unless 
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stated otherwise. Details about the synergistic effect analysis method were described in 

(Schrode et al., 2019a).

The expected additive effect was modeled through addition of the individual comparisons: 

(KD-V vs WT-V) + (WT-Aβ vs WT-V). The synergistic effect was modeled by subtraction 

of the additive effect from the combinatorial perturbation comparison: (KD-Aβ vs WT-V) - 

(KD-V vs WT-V) - (WT-Aβ vs WT-V). Fitting of this model for differential expression gives 

genes that show a difference in the differential expression computed for the additive model 

and that computed for the combinatorial perturbation. However, interpretation of the 

resulting DEGs depends on several factors, such as the direction of fold change (FC) in all 

three models. To identify genes of interest, namely those whose magnitude of change is 

larger in the combinatorial perturbation vs. the additive model, we categorized all genes by 

the direction of their change in both models and their log2(FC) in the synergistic model. 

First, log2(FC) standard errors (SE) were calculated for all samples. Genes were then 

grouped into ‘positive synergy’ if their FC was larger than SE and ‘negative synergy’ if 

smaller than -SE. If the corresponding additive model log2(FC) showed the same or no 

direction, the gene was classified as “more” differentially expressed in the combinatorial 

perturbation than predicted. 2925 genes were computed to be in this category (1152 more 

down, 1773 more up).

GSEA was performed on a curated subset of the MAGMA collection using the limma 

package camera function, which tests if genes are ranked highly in comparison to other 

genes in terms of differential expression, while accounting for inter-gene correlation. Due to 

the small sample size in this study and moderate fold changes in Aβ treatment, changes in 

gene expression may be small and distributed across many genes. However, similar to 

previous studies more powerful enrichment analyses in the limma package were used. These 

evaluate enrichment based on genes that are not necessarily genome-wide significant, and 

identify sets of genes for which the distribution of t-statistics differs from expectation. Over-

representation analysis (ORA) was performed when subsets of DEGs were of interest, such 

as the synergistic ‘more up’ and ‘more down’ genes. The genes of interests were ranked by –

log10 (p-value) and enrichment was performed against a background of all expressed genes 

using the WebGestaltR package.

Quantitative reverse transcription PCR (qRT-PCR) of ATP6V1A—Quantitative 

reverse transcription PCR (qRT-PCR) was performed as previously described (Ho et al, 

2017). Specifically, cell cultures were harvested with Trizol and total RNA extraction was 

carried out following the manufacturer’s instructions. Quantitative transcript analysis was 

performed using a QuantStudio 7 Flex Real-Time PCR System with the Power SYBR Green 

RNA-to-Ct Real-Time qPCR Kit (all Thermo Fisher Scientific). Total RNA template (25 ng 

per reaction) was added to the PCR mix, including primers listed below. qPCR conditions 

were as follows; 48°C for 30 min, 95°C for 10 min followed by 40 cycles (95°C for 15 s, 

60°C for 60 s). All qPCR data is collected from at least 3 independent biological replicates 

of one experiment.

Data analyses were performed using GraphPad PRISM 6 software.
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Gene_id Primer_FWD Primer_REV Length

ATP6V1A GAGATCCTGTACTTCGCACTG GGGATGTAGATGCTTTGGGTC 130

β-Actin TGTCCCCCAACTTGAGATGT TGTGCACTTTTATTCAACTGGTC 109

Preparation of cell lysates and western blotting—Cells were rinsed with ice-cold 

phosphate-buffered saline (PBS), pelleted, and lyzed in RIPA Lysis and Extraction Buffer 

(Thermo Fisher Scientific, #89900) containing Halt™ Protease and Phosphatase Inhibitor 

Cocktail (Thermo Fisher Scientific, #78440). Alternatively, MSBB BM36 brain samples 

were homogenized with similar methods. Samples were sonicated for 1 minute then 

centrifuged at 13,000× rpm for 10 min. The supernatant was collected, and total protein 

concentration was determined using Quick Start™ Bradford Protein Assay (Bio-Rad, 

5000201) following the manufacturer’s instructions.

Western blotting was performed as previously described using antibodies listed in the table 

below. Images were captured and quantified using the Odyssey® Imaging Systems (LI-

COR. Inc.).

Item Name Catalog Species WB IF

ATP6V1A ab199326 Rabbit 1:1000 -

Homer 1 160 003 Rabbit 1:1000 1:200-500

PSD-95 clone K28/43 Mouse IgG2 1:500 1:1000

Synapsin 1 106 011 Mouse 1:1000 1:500

Synaptophysin 1 101 002 Rabbit 1:2000 1:500

VGLUT 1 135 303 Rabbit 1:2000 1:1000

SOX1 AF3369 Goat - 1:100

TUJ1 801202 Mouse IgG2a 1:1000 1:1000

Immunofluorescence and microscopy—NGN2-neurons (on coverslips) were washed 

with PBS and fixed with 4% paraformaldehyde (PFA) at pH 7.4 for 10 mins, room 

temperature. Then, fixative solution was replaced with PBS. After 3 times wash, NGN2-

neurons were incubated with blocking solution (0.1% Tween-20, 0.5% bovine serum 

albumin in PBS) for 1 hour, room temperature. The blocking solution was aspirated and 

replaced with the same solution with primary antibodies listed above and incubated 

overnight at 4°C. Neurons were then incubated with secondary antibodies in blocking 

solution, for 1 hour at room temperature, followed by PBS-washing 3 times.

20 μL of AquaPolymount mounting solution (Polysciences Inc., #18606–20) per coverslip 

was placed onto each microscopic slide and the coverslips were gently mounted onto the 

slides with the neuron side facing down. Mounted coverslips were air-dried for two days at 

ambient temperature. For synaptic ICC imaging, images were acquired using a confocal 

microscope (LSM 780, Zeiss) with a 63× objective lens. These puncta analyses were 
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assessed using NIH ImageJ. Total synapsin1 and homer1 puncta number per image were 

divided by that image’s respective MAP2-positive area in order to calculate synapsin1 and 

homer1 puncta counts normalized to MAP2 levels. Data from 3 independent experiments 

were analyzed using GraphPad PRISM 6 software.

β-Amyloid preparation and treatment—Human β-amyloid (1–42) peptide was 

purchased from GenScript (#RP10017, 1 mg; MW: 4514.1). 1 mg of lyophilized Aβ was 

completely dissolved in 221.5 μL of 1,1,1,3,3,3-Hexafluoro-2-propanol 

(Hexafluoroisopropanol, HFIP, Sigma, 52517–10ML). 10 μL of 1 mM Aβ-HFIP (0.045 mg) 

in 0.5 mL EP tube was dried overnight in the hood. Dried Aβ were centrifuged for 1 h at 

1,000 × g, 4°C, and stored at −80°C. Before use, allow Aβ to come to room temperature. 5 

mM Aβ-DMSO stock was prepared using 2 μL fresh dry Dimethyl sulfoxide (DMSO, 

Sigma, D5879) to 0.045 mg Aβ. Aβ-DMSO solution was sonicated for 10 min in a bath 

sonicator. 21-day isogenic pairs of ATP6V1A-manipulated NGN2-neurons were exposed to 

5 μM Aβ for 24 hours and then used in qPCR, MEA assays, and RNA sequencing.

Multi-electrode array (MEA)—In order to evaluate electrical activity of NGN2-neurons 

by MEA, density-matched isogenic NGN2-neuronal populations, co-cultured with pHAs, 

were prepared as described above. Specifically, at day 3, pHAs were split as 17,000 cells/

well in a Matrigel-coated 48W MEA plate (Axion Biosystems, M768-tMEA-48W) and 

maintained as above. At day 7, NGN2-neurons were detached, spun down and seeded on the 

pHA culture. Outer space of each well in the plate was filled up with autoclaved/deionized 

water to minimize the evaporation of marginal wells (“edge effect”) during long-term 

culture. Half volume of neuronal medium (supplemented with 2% FBS) was replaced with 

fresh medium including 200 nM Ara-C from day 9 until the end of MEA recording. 

Electrical activity of neurons was daily-recorded during day 14~24. On the recording day, 

the plate was loaded into the Axion Maestro MEA reader (Axion Biosystems). Recording 

was performed via AxiS 2.4 for 10 mins. Quantitative analysis of the recording was exported 

as a Microsoft excel sheet. Data were analyzed using GraphPad PRISM 6 software.

Electrophysiology—For whole-cell patch-clamp recordings, 1.0–1.5 × 104 human 

astrocytes were first seeded onto Matrigel-coated 12-mm glass coverslips in 24-well plates, 

and then seeded with 1.0 × 105 neurons after ~5 days. Neurons were recorded at 4–5 weeks 

following dox-induction, with media exchange every 3–4 days. Cells were visualized on a 

Nikon inverted microscope equipped with fluorescence and Hoffman optics. Neurons were 

recorded with an Axopatch 200B amplifier (Molecular Devices), digitized using a Digidata 

1320a (Molecular Devices) and filtered between 1–10 kHz, using Clampex 10 software 

(Molecular Devices). Series resistance compensation was applied (70–100%). Patch pipettes 

were pulled from borosilicate glass electrodes (Warner Instruments) to a final tip resistance 

of 3–5M Ω using a vertical gravity puller (Narishige). Neurons were bathed in artificial 

cerebral spinal fluid (ACSF) containing (in mM): NaCl, 119, CaCl22; KCl, 2.5; MgCl2, 1.3; 

d-glucose, 11; NaHCO3, 26.2; NaPO4, 1, at a pH of 7.4. The internal patch solution 

contained (in mM): K-d-gluconate, 140; NaCl, 4; MgCl2, 2; EGTA, 1.1; HEPES, 5; 

Na2ATP, 2; sodium creatine phosphate, 5; Na3GTP, 0.6, at a pH of 7.4. Osmolarity was 

290–295 mOsm. All chemicals were purchased from Sigma-Aldrich Co. (St. Louis, MO). 

Wang et al. Page 30

Neuron. Author manuscript; available in PMC 2022 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Neurons were chosen at random using DIC or with BFP+ expression. Current-clamp 

recordings were used for measuring evoked (current injected to hyperpolarize to approx. −80 

mV) activity. Spikelets were defined as small, outward spikes with a peak amplitude of less 

than 25 mV and occurred at voltages positive to threshold (~ −30 mV). In voltage-clamp 

recordings, voltage steps were applied from −80 mV to +50 mV (10 mV increments) to 

elicit voltage-gated ionic currents All recordings were made at room temperature (~22 C). 

Difference between sodium current densities at 0 mV were tested for statistical significance 

(P < .05) using a student’s t-test between control (n=18) and ATP6V1A KD neurons (n=17), 

pooling over two experimental replicates. Voltages are corrected for a junction potential of ~ 

−15 mV. Values are reported as mean ± SEM.

ATP6V1A orthologs in fly—According to the DIOPT (DRSC Integrative Ortholog 

Prediction Tool), Drosophila Vacuolar H+ ATPase 68kD subunit 1 (Vha68–1, CG12403) and 

Vha68–2 (CG3762) are the best orthologs of human ATP6V1A proteins (DIOPT score 13 

for both genes). Vha68–1 and ATP6V1A exhibit 83% identity and 91% similarity in primary 

amino acid sequence, and have similar size (614 and 617 amino acids, respectively), while 

Vha68–2 and ATP6V1A exhibit 83% identity and 92% similarity in primary amino acid 

sequence with similar size (614 and 617 amino acids, respectively).

RNA extraction and quantitative real time PCR analysis—More than 25 flies for 

each genotype were collected and frozen. Heads were mechanically isolated, and total RNA 

was extracted using TRIzol Reagent (Thermo Fisher Scientific) according to the 

manufacturer’s protocol with an additional centrifugation step (16,000 x g for 10 min) to 

remove cuticle membranes prior to the addition of chloroform. Total RNA was reverse-

transcribed using PrimeScript RT-PCR kit (TaKaRa Bio), and qRT-PCR was performed 

using Thunderbird SYBR qPCR Mix (Toyobo) on a CFX96 real time PCR detection system 

(Bio-Rad Laboratories). The average threshold cycle value was calculated from at least three 

replicates per sample. Expression of genes of interest was standardized relative to GAPDH1. 

Primer sequences used in this study are provided below.

Fly Human Forward primer sequence (5’ to 3’) Reverse primer sequence (5’ to 3’)

Gapdh GAPDH1 GACGAAATCAAGGCTAAGGTCG AATGGGTGTCGCTGAAGAAGTC

Vha68-1* ATP6V1A ACTACGCACCAAGGTCAAGG CTTTGCCACTTCCAGGGTCA

Vha68-1** ATP6V1A ACCTCTTTCCGTGGAACTTGG GCAGTTGTGTTGACACCTTTGG

Vha68-2 ATP6V1A CAAATATGGACGTGTCTTCGC CCGGATCTCCGACAGTTACG

Eaat1 SLC1A2 TGCTCTGTTCATCGCCCAAT CGACGGCTATGATGAGGGAC

VGlut SLC17A6-8 TTCATCGCCTCCAAGTTCCC GCTGGATAGGTAACGCCCTC

Atpα ATP1A1-3 ACATGGTGCCAGCCATTTCA AAGCCGTTCTCAGCCATGAT

Lcch3 GABRB1-3 CCGAGACGTGTTCAACGACA GGCTATGTCCGGTGCCATAA

Grd GABRA1-6 TTTGGCTACACAACGTCGGA GGTCGTGGTGGATCCTTGTT

CG8916 GABRA6 TTGAGTCCAAGAGCGGTGTC CGTTTGGGTGGTTCTCTCCA

Rdl GABRP TGGCTCAATCGCAATGCAAC GACCGTGGCGTATTCCAGTA
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Fly Human Forward primer sequence (5’ to 3’) Reverse primer sequence (5’ to 3’)

CG12344 GLRA2 CGAGAGCTTCTCGTCGAACA GAAGTATACGGTGAGGCGGG

GABA-B-R1 GABBR1 CTCAGGGCGATCGTATTGCT GGTGCGTAGAACATGGGTGA

GABA-B-R2 GABBR2 TGGCGGGTGCATTCGATATT TCTCGTGATGCAAGGGTTCC

GABA-B-R3 GABBR2 AATTCGCACAGCAATCTGCC ACAGCTCAAAGAGTCCGAGC

Sh KCNA1-7,10 TGTCAGGTTCCTCGCATGTC CTGACTGGCGCTTTTGGAAG

Shab KCNB1,2 CGTGCTCGCGTTTAGTGATG TTCTGGTACTCGGCGCATTT

SK KCNN1-3 GGTTATCGAAAACGAACTGAGCA CTTCCAAAGCATGGTAAGCTAC

para KCNB1,2 ACGAGGATGAAGGTCCACAAC ACGACGTATCGGATTGAATGG

Nmdar2 GRIN2A-D GGCATCCCGGTTATCTCGTG AGAACTGGTGCCACTTGTAGC

Climbing assay—Approximately 25 male flies were placed in an empty plastic vial. The 

vial was then gently tapped to knock all of the flies to the bottom. The numbers of flies in 

the top, middle, or bottom thirds of the vial were pictured and scored after 10 seconds. The 

percentages of flies that stayed at the bottom were subjected to statistical analyses.

Histological analysis—Heads of male flies were fixed in 4% paraformaldehyde for 24 h 

at 4 °C and embedded in paraffin. Serial sections (6μm thickness) through the entire heads 

were prepared, stained with hematoxylin and eosin (Sigma-Aldrich), and examined by 

bright-field microscopy. Images of the sections were captured with AxioCam 105 color 

(Carl Zeiss). To score brain vacuolization, we performed microscopy of serial brain sections 

within the central neuropil regions and selected the images with the most severe 

vacuolization from each fly to score area of vacuolization. We selected a section with the 

most severe neurodegeneration in the same brain area from each individual fly and the area 

of vacuoles was measured using Image J (NIH). We repeated the experiments more than two 

times and two to three persons are independently involved in these tasks to avoid any bias.

Drug feeding in flies—Flies were fed with the food containing 10 μM or 50 μM NCH51 

or vehicle (final concentration 0.02% dimethyl sulfoxide) from the day after eclosion. These 

food vials were changed every 3–4 days.

Western blotting analysis of fly models—Western blotting was performed as 

described previously (Ando et al., 2016). To detect human Aβ42, ten fly heads for each 

genotype were homogenized in Tris-Glycine SDS sample buffer, and the same amount of the 

lysate was loaded to 18% Tris-Glycine gels and transferred to nitrocellulose membrane. The 

membranes were boiled in PBS for 3 min, blocked with 5% nonfat dry milk, blotted with the 

anti-Aβ 6E10 antibody (Signet, Covance), incubated with appropriate secondary antibody 

and developed using ECL Western Blotting Detection Reagents (GE Healthcare Life 

Sciences). The membranes were also probed with anti-tubulin (Sigma-Aldrich) as the 

loading control in each experiment. To detect human tau, ten fly heads for each genotype 

were homogenized in Tris-Glycine SDS sample buffer, and the same amount of the lysate 

was loaded to each lane of 10% Tris-Glycine gels and transferred to nitrocellulose 

membrane. The membranes were blocked with 5% nonfat dry milk, blotted with the 
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antibodies described below, incubated with appropriate secondary antibody and developed 

using ECL Prime Western Blotting Detection Reagent (GE Healthcare Life Sciences). The 

membranes were also probed with anti-Nervana and used as the loading control in each 

experiment. Anti-tau (Merck Millipore), antipSer202/pThr205 tau (Thermo Fisher 

Scientific), anti-Nervana (Developmental Studies Hybridoma Bank) antibodies were 

purchased. Imaging was performed with ImageQuant LAS 4000 (GE Healthcare Life 

Sciences), and the signal intensity was quantified using Image J (NIH).

QUANTIFICATION AND STATISTICAL ANALYSIS

The analytical approaches and software used for quantification were specified for each 

assay. All available brain tissues from MSBB were sent for sequencing analysis, without 

randomization process. For sample processing, clustering, differential expression and 

network analyses, all investigators were blinded to outcomes. The statistical test used and 

sample size n are indicated in the figure legends and the corresponding methods section. 

Statistical significance is defined as p < 0.05 (* = p < 0.05; ** = p < 0.01, *** = p < 0.001, 

**** = p < 0.0001).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Development of gene network models of four cortical areas impacted by 

LOAD

• Identification of region-specific molecular changes and gene subnetworks in 

LOAD

• ATP6V1A is a top key regulator of a neuronal subnetwork most disrupted in 

LOAD

• NCH-51 normalizes neuronal impairment & neurodegeneration caused by 

ATP6V1A deficit
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Fig. 1. A transformative network modeling platform for mechanism discovery, target 
identification, and therapeutics development for Alzheimer’s disease.
(A-C) Functional genomic data from disease modified brains and AD-related clinical and 

pathological phenotypes are collected. (D) The input data are integrated to identify disease 

gene signatures and co-expressed gene modules using MEGENA. (E) The top modules are 

projected onto causal networks to identify key driver genes of the disease. (F-H) Candidate 

drugs that can reverse the disease gene signatures and driver genes are predicted by an 

advanced pattern matching algorithm. (I-L) The disease relevance of key drivers (e.g., 

ATP6V1A) is tested in model systems like hiPSC-derived brain cells and Drosophila 
through (i) gene perturbations and (ii) drug rescue experiments.
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Fig. 2. Gene coexpression network analysis prioritizes neuronal modules associated with LOAD.
A, The MEGENA network in BM36-PHG. Node color denotes module membership. Font 

size of gene name is proportional to degree of connectivity. B, The 25 top-ranked modules. 

The heatmap shows the module ranking (number) and functional annotation (color) in track 

1, the correlations (r) with the traits including bbscore, CDR, CERAD, and PlaqueMean in 

tracks 2–5, and adjusted P values of enrichment for down-(tracks 6–14) and up-regulated 

(tracks 15–24) DEGs. C, Sunburst plots showing the module hierarchy and correlation with 

CDR, enrichment for CDR demented-vs-nondemented DEGs, and enrichment for cell type 
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markers. Numbers 1–13 denote 13 top-ranked modules as listed to the right. ast stands for 

astrocytes, end for endothelial, mic for microglia, neu for neurons and oli for 

oligodendrocytes. D, Networks of the top ranked neuronal modules M62, M65, M6, and 

M64. Node color denotes expression change in demented brains. Node size is proportional 

to node connectivity. E, Top-ranked neuronal modules enriched for GO biological process 

(BP) hierarchy in relation to synaptic function, neuronal development, and transportation. 

Each node denotes a GO/BP term, with a pie-chart displaying the significance of enrichment 

for the 4 neuronal modules in D. See also Fig. S6 & Table S5–7.
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Fig. 3. Bayesian probabilistic causal network (BN) analysis predicts novel key drivers of LOAD.
A, BN in the BM36-PHG. B, Validation of the BN structure. The left panel shows the 

percentage of the global BN key drivers whose network neighborhoods are enriched for the 

perturbation signature. The right panel shows the same analysis for the non-driver nodes. C, 

Projection of the modules M62 and M64 onto the BM36-PHG BN. Node labels are shown 

for the module key drivers. D-G, A novel network key driver ATP6V1A is down-regulated 

in LOAD. D, ATP6V1A expression in the RNA-seq data of the BM36-PHG region as 

stratified by CDR. E-G, Validation of ATP6V1A expression change in MSBB BM36-PHG 
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samples using western blot (WB) (E-F) and qRT-PCR (G) analyses. E, Representative WB 

of ATP6V1A level. (t-test or ANOVA with Dunnett’s test. Error bars represent SE. *p < 

0.05. **p < 0.01. ***p < 0.001. ****p < 0.0001. NS, no significance.). NL, normal control. 

See also Fig. S12–14 & Table S14–15.
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Fig. 4. Repression of ATP6V1A leads to neuronal malfunction in human NGN2-neurons and 
Aβ42 transgenic flies.
A, ATP6V1A gene editing by the CRISPR/dCas9-KRAB system. 6 different gRNAs are 

designed for targeting the ATP6V1A promoter. TSS: transcription start site. ATG translation 

initiation codon is in exon 2. B, qRT-PCR analysis (n = 4) confirms the decreased ATP6V1A 
RNA by gRNA candidates 1 & 2 (i1 and i2) in 2 independent cell lines of iNs (i.e., C1 and 

C2). C-D, Representative WB and quantitative analysis (n = 4) of ATP6V1A protein level in 

iNs. β-Actin is a loading control. E-F, Representative raster plots of spike events over 10 
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min and analysis (n = 6~45 wells) of D21 iNs. G, Current-voltage (I-V) plot for inward 

sodium (INa) and outward potassium (IK) currents. Current density (pA/pF) is shown. 

Holding potential was −80 mV. H, Representative examples of putative inward voltage-gated 

sodium current at 0 mV. I, Bar plot shows mean inward sodium current densities at 0 mV for 

ATP6V1A KD (n=17) and control neurons (n=18), (p = 0.015). J, Box plots show the 

fraction of neurons that displayed a full action potential (AP), spikelets, or no events with a 

current injection step (0.1 nA) positive to the threshold for control and KD neurons. Inset 

shows representative examples of AP & spikelet. K, Representative confocal images of 

synaptic proteins (SYN1, red; HOMER1, green) and pan-neuronal marker MAP2 (blue). 

Bar, 20 μm. L, Analysis of SYN1 and HOMER1-immunoreactive puncta numbers (n = 3). 

M-N, Representative WB and quantitative analysis (n = 4) of SYN1 and HOMER1 levels. 

O-P, Multi-electrode array after exposure to 5 μM Aβ at 24 hours. O, Plate map of total 

spike events; P, Analysis of spike events (n = 12 wells). Q, mRNA levels of Vha68–1 and 

Vha68–2 were decreased in the Aβ42 fly heads (n = 4). R, Vha68–1 KD in neurons 

exacerbated locomotor deficits caused by Aβ42 as revealed by climbing assay. n = 5 except 

for 7-day (n = 2). S, Neuronal KD of Vha68–1 significantly worsened neurodegeneration in 

Aβ42 fly brains. Representative images show the central neuropil of 33-day-old fly brains. 

Scale bars: 50 μm. Percentages of vacuole areas (indicated by arrows) were analyzed. n = 

12–24 hemispheres. T, mRNA levels of genes related to synapse biology were significantly 

reduced in Aβ42-expressing flies with neuronal KD of ATP6V1A/Vha68–1 (n = 4). See also 

Fig. S16–21. (See Fig. 3 for statistical test and P value annotations).
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Fig. 5. RNA-seq analysis of ATP6V1A KD neurons validates ATP6V1A regulated neuronal 
networks in LOAD brains.
A, Top MSigDB gene sets and human AD signatures enriched in the perturbations of iNs. 

Plus (+) and minus (−) symbols denote the sign of the GSEA enrichment score (ES). Brown 

color in the x-axis of the left panel highlights the neuronal related terms. Cyan color in the 

x-axis of the two right panels highlights the down-regulated signatures. B-C, Analysis of 

synergistic effect between ATP6V1A KD and Aβ treatment in iNs. B, Summary of the 

functional categories that are likely to be impacted by the synergistic effect. C, Pie-chart 
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shows percentages of genes that exhibit synergistic difference following combinatorial 

treatment compared to the expected additive model. Bar-chart shows pathways enriched for 

genes with “more up” regulation. D, Genes within a path length of 3 from ATP6V1A on the 

BM36-PHG BN were enriched for down-regulated signals of Aβ-KD vs. V-WT (GSEA 

normalized ES = 2.3, adjusted P-value = 8.3E-6). See also Fig. S22–23 & Table S16–20.
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Fig. 6. A novel compound NCH-51 increases ATP6V1A expression and partially restores 
neuronal function.
A, The procedure for predicting compounds that could increase ATP6V1A expression and 

reverse transcriptomic signature of LOAD. B, Chemical structure of NCH-51. C, Effects of 

NCH-51 at 1, 3, 10, 30 μM on ATP6V1A mRNA level post 24-h exposure. D, Effects of 

NCH-51 at 0.003, 0.03, 0.3, 3 μM on ATP6V1A protein level post 48-h exposure. β-Actin is 

a loading control. A blue dotted line is curve fitted for the set of data points. E, mRNA 

expression of ATP6V1A and the presynaptic SYN1 and SCL17A7 in iNs in the absence and 
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presence of 3 μM NCH-51. n = 3–12. F-G, Representative WB and quantitative analysis (n 

= 3–8) of ATP6V1A, SYN1, and VGLUT1 proteins. TUJ1 is a loading control. H-J, Multi-

electrodes array after exposure to 3 μM NCH-51. H, Representative raster plots of the spike 

events over 10 minutes. I, plate map of total spike events; J, analysis of spike events (n = 24 

wells). K, NCH-51 increased mRNA levels of Vha68–2 in Aβ42 flies. n = 4. L-M, NCH-51 

suppressed neurodegeneration in both the cell body (L) and central neuropil regions (M) in 

21-day-old Aβ42 fly brains. Scale bars: 200 μm. Percentages of vacuole areas (indicated by 

arrows) were analyzed. n = 22–28 hemispheres. N, NCH-51 increased mRNA levels of 

synaptic biology related genes in Aβ42 fly brains in a dose-dependent manner (n = 4). See 

also Fig. S24–26 & Table S21. (See Fig. 3 for statistical test and P value annotations).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Recombinant Anti-ATP6V1A antibody Abcam Cat# ab199326, RRID:AB_2802119

Anti-Homer 1 antibody Synaptic Systems Cat# 160 003, RRID:AB_887730

PSD-95 antibody Millipore Cat# K28/43, RRID:AB_2315221

Anti-Synapsin 1 antibody Synaptic Systems Cat# 106 011C3, RRID:AB_993029

Anti-Synaptophysin 1 Synaptic Systems Cat# 101 002, RRID:AB_887905

VGLUT 1 (vesicular glutamate transporter 1, 
BNPI, SLC17A7) antibody

Synaptic Systems Cat# 135 303, RRID:AB_887875

Goat Anti-Human Sox1 Polyclonal antibody R and D Systems Cat# AF3369, RRID:AB_2239879

Purified anti-Tubulin beta 3 (TUBB3) antibody BioLegend Cat# 801202, RRID:AB_10063408

Anti-β-amyloid, 1-16 antibody, clone 6E10 
(mouse ascites)

Biolegend (Signet, Covance) Cat# SIG-39300-1000; RRID: AB_662809

Mouse monoclonal anti-α-tubulin antibody Sigma-Aldrich Cat# T9026; RRID: AB_477593

Anti-Tau, clone Tau 12 antibody Millipore Cat# MAB2241; RRID: AB_ 1977340

Phospho-Tau (Ser202, Thr205) monoclonal 
antibody (AT8)

Thermo Fisher Scientific Cat# MN1020; RRID: AB_223647

Mouse anti-Drosophila nervana protein 
monoclonal antibody

DSHB Cat# Nrv5F7; RRID: AB_528395

Sheep anti-mouse IgG, whole Ab ECL antibody, 
HRP conjugated

GE Healthcare Cat# NA931; RRID: AB_772210

Biological Samples

Human postmortem brain samples Mount Sinai/JJ Peters VA Medical 
Center Brain Bank (MSBB)

https://icahn.mssm.edu/research/nih-brain-
tissue-repository

Chemicals, Peptides, and Recombinant Proteins

PTACH [NCH51] AdipoGen Life Sciences Cat# AG-CR1-3667; CAS: 848354-66-5

SAHA MilliporeSigma Cat# SML0061; CAS: 149647-78-9

NCH-51 MilliporeSigma Cat# 382185; CAS: 848354-66-5

MS-275 MilliporeSigma Cat# EPS002; CAS: 209783-80-2

β-Amyloid (1-42) peptide, human GenScript Cat# RP10017

Critical Commercial Assays

ECL Prime Western Blotting Detection Reagents GE Healthcare Cat# RPN2236

Hematoxylin Solution, Mayer’s Sigma-Aldrich Cat# MHS16

Eosin Y solution Sigma-Aldrich Cat# HT110132

TRIzol Reagent Thermo Fisher Scientific Cat# 15596018

PrimeScript RT reagent Kit with gDNA Eraser Takara Bio Cat# RR047A

Thunderbird SYBR qPCR Mix Toyobo Cat# QPS-201

Power SYBR® Green RNA-to-CT™ 1-Step Kit Thermo Fisher Scientific Cat# 4389986

Multi-electrode array (MEA) Axion Biosystems Cat# M768-MEA-48W

Deposited Data
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human brain bulk sequencing data Wang et al 2018 The Synapse open source platform 
(syn3159438) https://www.synapse.org/#!
Synapse:syn3159438

ATP6V1A knock-down RNA sequencing data This paper Gene expression omnibus (GEO): GSE128367

Experimental Models: Cell Lines

Two stable human iPSC-derived neuronal 
progenitor cells (hiPSC-NPCs) expressing 
dCas9-KRAB (Addgene 99372)

Brennand Lab at Icahn School of 
Medicine at Mount Sinai

553-S1-1 KRAB and 2607-1-4 KRAB

Human Astrocytes Sciencell Cat# 1800

Experimental Models: Organisms/Strains

D. melanogaster: UAS-Aβ42 Iijima et al 2004 N/A

D. melanogaster: UAS-Tau Sekiya et al 2017 N/A

D. melanogaster: UAS-Luciferase RNAi This paper N/A

D. melanogaster: elav-GAL4 Bloomington Drosophila Stock Center BDSC: 458; FlyBase: FBst0000458

D. melanogaster: GMR-GAL4 Bloomington Drosophila Stock Center BDSC: 1104; FlyBase: FBst0001104

D. melanogaster: UAS-mcherry RNAi Bloomington Drosophila Stock Center BDSC: 35785; FlyBase: FBst0035785

D. melanogaster: UAS-Vha68-1 RNAi Bloomington Drosophila Stock Center BDSC: 50726; FlyBase: FBst0050726

D. melanogaster: UAS-Vha68-1 RNAi Bloomington Drosophila Stock Center BDSC: 42888; FlyBase: FBst0042888

D. melanogaster: Vha68-11 Bloomington Drosophila Stock Center BDSC: 82466; FlyBase: FBst0082466

D. melanogaster: UAS-Vha68-2 RNAi Bloomington Drosophila Stock Center BDSC: 34582; FlyBase: FBst0034582

D. melanogaster: UAS-Vha68-1 RNAi Vienna DrosophilaResource Center VDRC: v46397; FlyBase: FBst0466673

D. melanogaster: UAS-Vha68-2 RNAi Vienna Drosophila Resource Center VDRC: v110600; FlyBase: FBst0482165

Oligonucleotides

qRT-PCR primers for D. melanogaster, see Table 
in STAR Methods

This paper N/A

gRNA sequences to repress ATP6V1A 
expression, see Table in EXPERIMENTAL 
MODEL AND SUBJECT DETAILS

This paper N/A

qRT-PCR primers for ATP6V1A and β-Actin, 
see Table in EXPERIMENTAL MODEL AND 
SUBJECT DETAILS

This paper N/A

Recombinant DNA

lentiGuide-Hygro-mTagBFP2 Ho et al., 2017 Addgene Plasmid #99374

lenti-EF1a-dCas9-KRAB-Puro Ho et al., 2017 Addgene Plasmid #99372

pLV-TetO-hNGN2-eGFP-Neo This paper N/A

Software and Algorithms

R/limma (v3.38.3) Bioconductor https://www.bioconductor.org/packages/release/
bioc/html/limma.html

STAR aligner (v2.5.2a) Dobin et al., 2013 https://github.com/alexdobin/STAR

featureCounts (v1.6.3) Liao et al., 2014 http://subread.sourceforge.net/

MEGENA (v1.3.6) Song and Zhang 2015 https://cran.r-project.org/web/packages/
MEGENA/index.html

SMR (v0.712) Zhu et al., 2016 https://cnsgenomics.com/software/smr/

R/SuperExactTest (v1.0.6), Wang et al., 2015 https://cran.r-project.org/web/packages/
SuperExactTest/index.html
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REAGENT or RESOURCE SOURCE IDENTIFIER

R/NetWeaver (v0.0.5) CRAN https://cran.r-project.org/web/packages/
NetWeaver/index.html

R/msigdb (v0.1.4) github https://github.com/mw201608/msigdb

R/MatrixEQTL (v2.2) Shabalin et al., 2012 https://cran.r-project.org/web/packages/
MatrixEQTL/index.html

Prism7 GraphPad GraphPad.com

RIMBANET https://icahn.mssm.edu/research/genomics/
about/resources

CRISPR-ERA web tool Liu et al, 2015 crispr-era.stanford.edu
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