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Abstract

The random survival forest (RSF) is a non-parametric alternative to the Cox proportional hazards 

model in modeling time-to-event data. In this article, we developed a modeling framework to 

incorporate multivariate longitudinal data in the model building process to enhance the predictive 

performance of RSF. To extract the essential features of the multivariate longitudinal outcomes, 

two methods were adopted and compared: multivariate functional principal component analysis 

and multivariate fast covariance estimation for sparse functional data. These resulting features, 

which capture the trajectories of the multiple longitudinal outcomes, are then included as time-

independent predictors in the subsequent RSF model. This non-parametric modeling framework, 

denoted as functional survival forests, is better at capturing the various trends in both the 

longitudinal outcomes and the survival model which may be difficult to model using only 

parametric approaches. These advantages are demonstrated through simulations and applications 

to the Alzheimer’s Disease Neuroimaging Initiative.
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1 Introduction

Alzheimer’s disease (AD) is a progressive, neurodegenerative disease leading to the 

inhibition of memory and other mental functions.1,2 At present, no cure exists for AD, 

however, medications and other treatments may temporarily improve the symptoms when 

administered early in the disease process.1 Mild cognitive impairment (MCI) is often 

regarded as a risk state of AD with 32% of patients diagnosed with MCI progressing to 

Alzheimer’s dementia within five years.3,4 As such, it is of interest to build prognostic 

models that are robust in predicting conversion of MCI to AD prior to complete disease 

onset, as this would allow physicians to adopt earlier intervention strategies. In this study, 

we examine the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, which is a 

longitudinal study effort to collect clinical, imaging, genetic, and other biomarker data to 

track the progression of AD patients.

Modeling of AD progression based on accumulated longitudinal information leads to 

notable improvement in predicting survival risk as shown in multiple studies. For example, 

the joint modeling (JM) framework for longitudinal and survival data was used to show that 

the Alzheimer’s Disease Assessment Scale-Cognitive 13 (ADAS-Cog13) subtest is an 

important indicator of conversion from MCI to AD in the context of dynamic prediction.5 

Using dynamic prediction allows for model assessment at different points in time as new 

longitudinal measurements become available. It demonstrates the advantage of including the 

most current information in making more accurate disease prognosis.6 A JM approach can 

also be used when considering multiple longitudinal outcomes, however, this may be 

computationally challenging as the number of longitudinal outcomes increases.7 Li and Luo8 

proposed a two-staged model named MFPCCox which achieves better predictive 

performance compared to JM and has significantly faster computational times. In the first 

step, they considered the multivariate longitudinal outcomes as functional data and applied 

multivariate functional principal component analysis (MFPCA).9 The principal component 

scores extracted by MFPCA act as orthogonal features of the longitudinal outcomes, which 

addresses autocorrelation within a longitudinal outcome as well as potential correlation 

between multiple longitudinal outcomes. In the subsequent step, the principal component 

scores were included as time-independent covariates with other baseline measurements in a 

Cox proportional hazards model.

However, the MFPCCox framework could be improved in several aspects. To deal with 

sparse functional data, Li et al.10 proposed a multivariate fast covariance estimation 

(mFACEs) method which also extracts features from multiple longitudinal outcomes. They 

suggested that when the data are not sufficiently dense, MFPCA may not fully capture the 

cross-correlation between outcomes. This is because MFPCA estimates the cross-correlation 

between outcomes from the scores of univariate FPCA which are shrunk toward zero as the 
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data become sparse. In addition, the Cox proportional hazards model may not be appropriate 

when the assumption of proportional hazards is not met. In contrast, fully non-parametric 

survival models are not restricted by this assumption and may be more robust to model 

misspecification. Many non-parametric machine learning algorithms, including random 

forests, have been extended to the survival setting.11,12 The random survival forest (RSF) 

implemented by Ishwaran et al.12 is an ensemble method for survival analysis that is 

constructed by averaging over the predicted hazards of many decision trees. They 

demonstrated that survival ensembles remain stable in the high-dimensional setting and have 

consistent prediction error even in the presence of additional noise covariates. In 

comparison, the prediction error of the Cox model grew progressively higher as additional 

noise covariates increased the dimensionality. RSF was also shown to be more robust in 

detecting unspecified interactions13 and patterns of non-linearity in the covariates.14 

Although random forests have been well studied in cross-sectional data, less work has been 

done in incorporating longitudinal data into the random forest model. Some recent 

approaches include a semi-parametric mixed-effects model where the non-parametric part is 

modeled using random forests.15 To the best of our knowledge, no prior research has 

considered multiple longitudinal outcomes in random forests for survival analysis.

In this article, we developed a functional survival forests framework to incorporate multiple 

longitudinal outcomes by first extracting features of the longitudinal outcomes using 

functional principal component analysis methods. The features will be included as covariates 

in the proceeding survival model. Both mFACEs and RSF are investigated as alternatives to 

each of the steps of the two-stage model used in MFPCCox. We demonstrate that this 

framework performs better than parametric models in capturing the various trends in both 

the longitudinal outcomes and the survival model. A major aim of this study is to use 

functional survival forests to refine the predictive modeling of AD progression by making 

use of the longitudinal information available from the ADNI dataset.

This article is organized as follows. In Section 2, we describe the MFPCA and mFACEs 

methods for feature extraction from multiple longitudinal markers. Then, we compare the 

RSF and Cox models. We also establish the details of the dynamic prediction setting for the 

simulation and real data analysis sections. In Section 3, we conduct a simulation study to 

assess the performance of the RSF and Cox models in conjunction with the MFPCA and 

mFACEs methods for incorporating multiple longitudinal outcomes. In Section 4, we apply 

the proposed functional survival forest to the ADNI dataset. In Section 5, we discuss the 

results and make some concluding remarks.

2 Methods

Consider a study setting where I patients are enrolled. Each ith (i = 1, …, I) patient is 

followed from the start of the study for Ji visits until their observed event time 

Ti* = min Ti, Ci , where Ti is the true event time, and Ci is the censoring time independent 

from Ti and the patients’ covariates. The event indicator, δi = I(Ti ≤ Ci), denotes whether or 

not the observed time was censored. Baseline (time-independent) covariates were collected 

from each patient at the study onset. Denote this set of P covariates by the matrix ZI×P. In 

addition, at each follow-up visit, Q longitudinal measures were also collected from each 
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patient. Let Yiq(tij) refer to the observed values for the qth measure for subject i at visit 

number j.

2.1 Longitudinal data analysis

2.1.1 Multivariate functional principal component analysis—First, we briefly 

describe the formulation of the univariate and multivariate FPCA methods.9,16 Consider a 

single longitudinal outcome q with trajectory Xiq(t). Denote its unknown smoothed mean 

function as μq(t) and autocorrelation between time points t and t′ as the covariance function 

Σq(t, t′) = cov{Xiq(t), Xiq(t′)}. The covariance function can be rewritten using spectral 

decomposition as Σq t, t′ = ∑m = 1
∞ λqmϕqm(t)ϕqm t′ , where {λqm} is the set of non-

increasing eigenvalues and {ϕqm(t)} are the corresponding eigenfunctions. The Karhunen–

Loeve theorem gives the following expansion of Xiq(t)

Xiq(t) = μq(t) + ∑
m = 1

∞
ξiqmϕqm(t) (1)

where ξiqm is the set of uncorrelated functional principal component scores with mean zero 

and variance λqm. Furthermore, the longitudinal trajectory (1) can be sufficiently 

approximated using the first Mq eigenfunctions, Xiq(t) ≈ μq(t) + ∑m = 1
Mq ξiqmϕqm(t). The value 

of Mq can be selected based on a predetermined percentage of variance explained (PVE).16 

In practice, we do not observe Xiq(t) but instead observe Yiq(tij) = Xiq(tij) + ϵiq(tij) at each 

jth visit, where ϵiq(tij) is noise assumed to be normally distributed. Therefore, the univariate 

FPCA is conducted using the Principal Analysis by Conditional Estimation (PACE) 

algorithm.16 The PACE algorithm is able to estimate the mean function μq(t), error variance 

σq, covariance function Σq t, t′ , eigenvalues λqm, and eigenfunctions ϕqm(t). Using these 

estimated values, we can calculate the estimated FPC scores of a given subject by

ξ iqm = λqm ϕiqm
TΣYiq

−1 Y iq − μq (2)

where Y iq = Y iq tij j = 1, …, Ji, μiq = μiq tij j = 1, …, Ji, ϕiqm = ϕiqm tij j = 1, …, Ji, and 

ΣYiq is a Ji × Ji matrix with the (j,j′) entry defined as ΣYiq jj′ = Σq tij, tij′ + σq
2δjj′, δjj′ = 1

for j = j′ and 0 otherwise.

However, in the multivariate case, there exists non-negligible correlation that arises among 

longitudinal outcomes. Therefore, the set of scores derived for each longitudinal outcome (2) 

may be inter-correlated. MFPCA extends the univariate FPCA methodology in a second step 

by modeling the correlations between FPC scores for each of the Q longitudinal outcomes. 

Denote the total number of univariate FPC scores as M+ = ∑q = 1
Q Mq. Let Θ be the I × M+ 

matrix where each row is a subject-specific vector concatenating the univariate FPC scores 

for each outcome. Performing eigenanalysis on the matrix HM+ × M+ = (n − 1)−1ΘTΘ gives 

the resulting orthonormal eigenvectors ck k = 1, …, M+ and respective eigenvalues 
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vk k = 1, …, M+. The estimated multivariate eigenfunctions is given by 

ψqk(t) = ∑m = 1
Mq ck m

(q)ϕqm(t). Then, the estimated MFPC scores for the ith subject can be 

calculated using the univariate FPC scores and the qth block of ck denoted ck
(q) by the 

following

ρik = ∑
q = 1

Q
∑

m = 1

Mq
ck m

(q)ξ iqm (3)

Lastly, the qth longitudinal outcome, Xiq(t), can be sufficiently approximated by

Xiq(t) ≈ μq(t) + ∑
k = 1

D
ρikψqk(t) (4)

where D < M+ is selected based on PVE or other information criteria.

2.1.2 mFACEs for sparse functional data—Next, we introduce the mFACEs method 

to generate scores from the multiple longitudinal outcomes.10 The main idea of mFACEs is 

to estimate the covariance functions Cqq′ (s, t) = cov{Xiq(s), Xiq′(t)} by using bivariate 

penalized splines. Note that Cqq′ simultaneously accounts for both autocorrelation within an 

outcome as well as cross-correlation between outcomes. This contrasts with the two-step 

MFPCA approach in Section 2.1.1 which accounts for the autocorrelation of each individual 

longitudinal outcome in the first step and the correlation between univariate FPC scores in 

the second step. When functional data are sparse, the univariate FPC scores are shrunk 

toward zero.10 Therefore, MFPCA may not sufficiently capture the cross-correlation 

between outcomes. In comparison, mFACEs estimates the covariance within and between 

outcomes in the same step, leading to better covariance estimates in the presence of sparse 

functional data.

To estimate Cqq′, first define the residuals as rij
(q) = Y q tij − μq tij . Let the auxiliary variables 

be defined as Cij1j2
qq′ = rij1

(q)rij2
q′ . In practice, the mean functions, μq(t), are not known and are 

estimated using P-splines with the penalties selected using leave-one-out cross-validation.17 

Thus, with the estimated mean μq(t), we have r ij
(q) = Y q tij − μq tij  and Cij1j2

qq′ = r ij1
(q)r ij2

q′ . The 

auxiliary variables are noisy but unbiased estimates of the covariance functions whenever q 

≠ q′ and j1 ≠ j2, that is, E Cij1j2
qq′ = Cqq′ tij1

q , tij2
q′ + σq21 q = q′, j1 = j2 . Next, the noisy auxiliary 

variables are smoothed using bivariate P-splines18 to get estimates of the covariance 

functions. Lastly, all the estimates of the individual covariance functions are pooled together 

and eigendecomposition is applied to obtain a properly defined (positive semi-definite) 

covariance operator.

The bivariate P-splines model Cqq′(s, t) uses tensor-product splines defined as
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Gqq′(s, t) = ∑
1 ≤ γ1, γ2 ≤ c

θγ1, γ2
qq′ Bγ1(s)Bγ2(t)

where Θqq′ = θγ1, γ2
qq′

1 ≤ γ1, γ2 ≤ c is the coefficient matrix and B is the collection of B-spline 

basis functions. Denote c as the number of knots plus order of the B-splines.

The estimate Θ which minimizes the penalized least squares is used to estimate the 

coefficient matrix of the cross-covariance function, Θqq′, and the auto-covariance function, 

Θqq. The penalized least squares for Θqq′ is given by

∑
i = 1

n
∑

j1 = 1

miq
∑

j2 = 1

miq′
Gqq′ tij1

(q), tij2
q′ − Cij1j2

qq′ 2
+ λqq′1 DΘqq′ 2 + λqq′2 DΘqq′

T 2

Here, λqq′1 and λqq′2 are non-negative smoothing parameters. An algorithm for the 

automatic selection of these smoothing parameters is described.10 The column and row 

penalties, ∥DΘqq′∥2 and DΘqq′
T 2

, respectively, penalize the second order partial derivatives 

of Gqq′(s, t) along the s and t directions, with the two smoothing parameters controlling the 

different levels of smoothness in these directions.

The penalized least squares for the auto-covariance function Θqq is defined similarly by the 

following. Note that the penalty terms are the same when Θqq is symmetric so only one 

smoothing parameter is required

∑
i = 1

n
∑

j1 = 1

miq
∑

j2 = 1

miq
Gqq tij1

(q), tij2
(q) + σq21 j1 = j2 − Cij1j2

(qq) 2
+ λq DΘqq 2

Proposition 1 in Li et al.10 shows that obtaining the estimate Θqq′ is sufficient for deriving 

the principal component scores for the ith subject. Similar to MFPCA, the first D ≥ 1 scores, 

ρik, where k = 1, …, D can be selected as an approximation, using PVE as a cutoff criterion.

We denote the principal component scores vector for both MFPCA and mFACEs as 

ρi = ρi1, …, ρiD .

2.2 Survival data analysis

In the second step, several survival models were built using the scores derived from the 

longitudinal data. The estimated scores, ρi, are included into the models as time-independent 

covariates. We focused on the Cox model and the RSF12 to estimate the risk of disease 

progression. In the Cox model, the hazard function for the ith subject is defined as

ℎi(t) = ℎ0(t)exp ZiTγ + ρi
Tβ
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where Zi are the baseline/time-independent covariates with corresponding regression 

coefficients γp×1, and ρi are the scores derived from longitudinal outcomes with 

corresponding regression coefficients βD×1. While the Cox model is flexible due to its 

baseline hazard function which can take any form, it must satisfy the proportional hazards 

assumption.

In comparison, the RSF is a non-parametric survival model constructed by aggregating an 

ensemble of survival trees. To define the hazard function for the RSF, we first outline its 

construction. To begin, B bootstrap samples are drawn with replacement from the original 

data. Each bootstrap sample is drawn to the same size as the original data and on average 

excludes 37% of the data. The excluded data are called “out-of-bag” (OOB) data and may be 

set aside for testing purposes later. For each of the B samples, a survival tree is grown. At 

each node, a fixed number of candidate variables are randomly selected from the union of 

the time-independent covariates, Z, and the scores of the longitudinal outcomes, ρ. The node 

is split using the variable and split value that maximizes the survival difference between 

daughter nodes. Thus, as the tree is grown, dissimilar cases are pushed apart. Survival 

difference can be quantified in several ways. Here, we split nodes based on the log-rank test 

statistic.19,20 Another option is to use the standardized log-rank score statistic proposed by 

Hothorn and Lausen.21 The tree is grown by repeating this step until the condition that each 

terminal node should have at least d0 > 0 unique deaths is satisfied. These procedures result 

in a tree with terminal nodes populated by subjects who have relatively homogeneous 

survival outcomes. The cumulative hazard function (CHF) for the kth terminal node of a 

single survival tree is given by the Nelson–Aalen estimator and every member of the 

terminal node shares the same hazard. The CHF is Hk(t) = ∑tjk ≤ t
djk
Rjk

, where djk is the 

number of events at time tjk and Rjk is the number of individuals at risk at time tjk. The 

ensemble CHF for the ith subject can be found by dropping the subject through all B trees 

and averaging the hazard obtained from each tree. Denote the ensemble CHF as He(t|xi) and 

the CHF from the bth bootstrap tree as Hb(t|xi). Then, the ensemble CHF is given by

He t ∣ xi = 1
B ∑

b = 1

B
Hb t ∣ xi (5)

with its corresponding survival function S(t) = e−CHF.

While the RSF algorithm allows for the mapping of covariates to survival time in a non-

linear fashion, this complexity also makes the interpretation of covariates more difficult in 

comparison to the Cox model. To this end, variable importance (VIMP) is a metric that can 

be calculated for forest-like structures to still allow for the identification and ranking of 

variables based on predictive ability. For a particular variable x, the VIMP for RSF is 

calculated by randomly permuting the values of x, breaking up its relationship with the 

survival outcome. Each subject is subsequently dropped down the trees where they are OOB. 

The CHF from each tree is calculated from the procedure detailed above. Thus, if a variable 

contributes significantly to the model, this would be reflected in a difference in the CHF as 

its values would be shuffled. The VIMP for variable x is defined as the difference between 

the prediction error (estimated by the concordance index or c-index) of the original 
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ensemble and the prediction error of the ensemble that permutes the values of x. One should 

be cautious not to interpret VIMP as the effect of x on the prediction error when it is 

shuffled, but as the change in prediction error of a new subject if x were to be made 

uninformative.

2.3 Dynamic predictions

Prognosis is usually given in terms of the probability that an event will occur in a given 

prediction window. We evaluate the performance of the survival models using dynamic 

prediction which allows for updating the prognosis as new longitudinal measurements are 

made available. First, the dataset was split into training and testing sets. The full longitudinal 

trajectories and baseline values of subjects in the training set were used to build the model. 

Model performance was assessed using the testing set at landmark times of clinical interest. 

For each subject, still event-free at landmark time t, define ρi
(t) as the scores of their 

longitudinal outcomes calculated based on their observations up to time t using the 

functional principal component transformations determined from the training set. The scores 

ρi
(t) and their baseline measurements were passed to the fitted survival model to determine 

subject’s risk. Let t′ = t + Δt be a future prediction time of interest and recall that S(t) = e
−CHF. To calculate the predicted risk of an event occurring within the window (t, t′], we 

determine the conditional probability of being event-free at time t′ given that the subject was 

event-free at time t, denoted by πi t′ ∣ t = p Ti* ≥ t′ ∣ Ti* ≥ t, Zi, ρi
(t) =

Si t′
Si(t)

.

Model performance is evaluated in terms of both discrimination and calibration. 

Discrimination refers to how well the model identifies the subjects who experienced the 

event versus the subjects who did not experience the event. This was measured using the 

time-dependent area under the curve (AUC).22,23 Although the concordance index (c-index) 

is another popular discrimination measure for survival data, the time-dependent AUC has 

been shown to be a more proper scoring metric for t-year predicted risks.24 The c-index does 

not give a value for a specific time horizon of prediction and is therefore unable to determine 

if a model performs better at a certain time horizon versus another. Calibration refers to the 

agreement between the predicted risks and true risks. Both discrimination and calibration are 

measured by the dynamic expected Brier score (BS).22 To adjust for right censoring, the 

Kaplan–Meier method was used as the inverse probability of censoring weights estimator. 

Better predictive performance is indicated by a higher AUC and lower BS. AUC and BS are 

calculated for different combinations of t and Δt.

These methods are implemented in R. Example code is provided in the supplementary 

material to facilitate easy implementation.

3 Simulation study

The performance of the proposed methods was evaluated using simulated data emulating the 

ADNI dataset analyzed in Section 4. In this section, we assess the predictive performance of 

functional survival forests by comparing MFPCA versus mFACEs to handle the longitudinal 

outcomes and RSF versus Cox to model the survival outcome.
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We simulated 100 datasets each with a sample size of I = 300 subjects. Each subject had Q = 

3 longitudinal covariates with a maximum of Ji = 21 visits from times [0, 10] with a time 

interval of 0.5. The longitudinal measurements, denoted Yiq(tij), were simulated from the 

following longitudinal submodels

Yiq tij = Xiq tij + ϵiq tij ,  where Xiq tij = β0q + β1qxiq + βtqtij + biq  and  j = 1…J

We set β0q = [1.5, 2, 0.5], β1q = [2, −1, 1], and βtq = [1.5, −1, 0.6]. The scalar covariate was 

generated from xiq~N(3, 1). The subject-specific random effects biq were generated from the 

multivariate normal distribution, MVN(0, Σ), where

Σ =

σ1
2 η12σ1σ2 η13σ1σ3

σ2
2 η23σ2σ3

σ3
2

We set [σ1, σ2, σ3] = [1, 1.5, 2] and [η12, η13, η23] = [−0.2, 0.1, −0.3]. Lastly, ϵiq(tij) was 

generated from N(0, 1).

We define the survival submodel by the following hazard function

ℎi(t) = ℎ0(t)exp γZi + ∑
q = 1

3
αqXiq tij (6)

where h0(t) = exp(−7). We set γ = [−4,−2] and generated two time-independent covariates, 

Zi = [zi1, zi2], where z1~Bin(p = 0.5) and z2~N(0, 1). Lastly, the coefficients for the true 

longitudinal trajectories, α, were set as [0.2, −0.2, 0.4]. The survival function is given by 

Si(t) = exp −∫0
tℎi(u)du . Then, the survival times can be generated by passing the standard 

uniform distribution through the inverse probability integral transformation of the survival 

function. Censoring times were simulated independent of survival times from a uniform 

distribution, U(1, 22), resulting in a censoring rate of approximately 30%.

In each simulated dataset, we randomly selected 200 patients for training the model and 

reserved the remaining 100 for testing and evaluating the model performance. The simulated 

longitudinal trajectories, Yiq(tij), were analyzed using both the MFPCA and mFACEs 

methods. Three principal components were chosen to account for 95% of the variation in the 

longitudinal outcomes. The scores obtained from these methods were then used as predictors 

together with other time-independent covariates in the RSF and Cox models. The RSF was 

built using 1000 trees and the following default parameters. At each node, the number of 

predictors considered for the split was set to the square root of the total number of 

predictors. The tree was grown until each terminal node contained at least 15 patients. We 

denote this simulation setting as Scenario 1.

In Scenario 2, we illustrated how the predictive performance may be affected under model 

misspecification. We added the interaction, Zi = [zi1, zi2, zi1 · zi2], as an additional baseline 
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variable in simulating event times and set the coefficients as γ = [−4, −2, 4]. The interaction 

term was omitted when specifying the predictors to be included in the RSF and Cox models. 

Scenario 2 evaluates the models’ capability to capture the interaction effect without it being 

explicitly stated.

After fitting the proposed models on the training set, dynamic prediction was performed 

using the testing set. For each subject in the testing set, the longitudinal data up until the 

landmark time t were used to estimate the FPC scores, which were used in the fitted model 

to predict the subject-specific survival probability πi(t + Δt ∣ t) at some future time point, t + 

Δt. In our analysis, we considered Δt = [1, 2] at time points t = [1, 2, 3, 4]. The predictive 

performance was evaluated at each time point using the time-dependent AUC to assess 

discrimination and the time-dependent BS to assess calibration. For comparison, the true 

AUC was calculated at each t + Δt from the true cumulative hazard values derived by 

integrating6 over time.

In Scenario 1 (Table 1), the AUC from the Cox model closely matches the true AUC, 

suggesting that both MFPCA and mFACEs can successfully extract the predictive features of 

the multivariate longitudinal trajectories. In comparison, the RSF model has AUC that is 

close to the true AUC and BS slightly higher than the BS from the Cox model counterpart. 

This is expected as the true survival submodel in the data simulation process was specified 

using the Cox model. However, in Scenario 2 (Table 2), the AUC of the Cox model drops 

dramatically when the model was purposefully misspecified to not include the interaction 

term. The BS is also higher in comparison to its RSF counterpart. The AUC from RSF 

remains close to the true AUC despite the model misspecification. These results suggest that 

RSF is able to account for interaction effects not explicitly specified in the model. The better 

results of RSF in terms of AUC and BS in Table 2 suggest that RSF is able to account for 

non-linear relationships between covariates, leading to more robust predictive performance 

under model misspecification. Models that used MFPCA to obtain scores also seemed to 

perform slightly better than models that used mFACEs in both scenarios. A graphical 

comparison of the AUC is provided in Figures S1 and S2 of the supplementary material.

4 Application to the ADNI study

The ADNI is a longitudinal study collecting neuroimaging data, biological and genetic 

markers, and clinical assessments to better measure the progression of AD. Currently, ADNI 

is on its third phase, ADNI 3, while previous phases include ADNI 1, Go, and 2. More 

information on the ADNI study can be found at their website (http://adni.loni.ucla.edu). In 

our study, we examine the combined subjects from all the previous phases of ADNI (ADNI 

1, Go, and 2). In addition, we only included subjects without missing baseline measurements 

and had at least two observations for all longitudinal covariates. In total, 511 MCI patients 

met these criteria, of which 153 progressed to AD. Patients were typically reassessed at 

every six-month interval with an average number of visits of 8.11 (SD: 2.99, range: 2–21).

We focused on incorporating the results of longitudinal clinical assessments into our 

analysis. More specifically, we examined five important cognitive and functional 

assessments predictive of AD progression:5 the ADAS-Cog13 items, the Rey Auditory 
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Verbal Learning Tests (immediate and learning scores), the Mini Mental State Examination, 

and the Functional Assessment Questionnaire. In addition, other available demographic 

variables, biomarkers, and imaging data collected at baseline which may be prognostic of 

AD progression were also included. The following demographic variables were included: 

baseline age, gender, years of education (Edu), marriage status (married/not married), race 

(white/other), ethnicity (Hispanic/non-Hispanic), and the presence of at least one 

apolipoprotein E allele (APOE4). In addition, the following baseline biomarker and imaging 

data were included: tau, ptau, and amyloid-beta proteins, total intracranial volume (TCV), 

hippocampal volume, whole brain volume, and glucose metabolism in the brain measured by 

FDG-PET.

Ten-fold cross-validation was applied to the ADNI data, and the risk was predicted for 

subjects in the test set of each fold. The predicted risk for all subjects was pooled together 

before calculating the AUC and BS. MFPCA and mFACEs were used to extract scores from 

the five longitudinal clinical assessments. Five principal components were chosen to account 

for 95% of the total variation present in the longitudinal outcomes. These scores were then 

included as covariates with the other demographic and baseline measurements in both the 

RSF and Cox models. The proportional hazards assumption for the baseline covariates were 

checked using Schoenfeld residuals (Figure S4). The residual plots did not show extreme 

non-linearity and the individual and global tests for non-zero slopes were not significant, 

which suggests that the proportional hazards assumption is reasonably satisfied.

Landmark times were chosen at t = [1, 2, 3] years. Survival predictions were made at Δt = 

[1, 2] years after each landmark time. In Table 3, the results are presented and summarized. 

These results show that RSF with either MFPCA or mFACEs performs better than Cox with 

higher AUC and smaller BS. Specifically, when Δt is fixed to be a smaller prediction interval 

(one year), RSF has comparable or better AUC than Cox at different landmark times. This 

continues to be the case when Δt is increased to two years. Furthermore, as the prediction 

interval is increased, the BS naturally increases as well. However, for all combinations of t 
and Δt’s, the BSs for RSF were lower than the BSs for Cox. These results suggest that the 

functional survival forests framework has better predictive performance in both 

discrimination and calibration when considering prediction windows of different lengths.

An advantage of the functional survival forest is being able to update personalized 

predictions as new longitudinal data become available. We demonstrate how personalized 

dynamic predictions can be made for two individuals in the ADNI study using the MFPCA-

RSF model built using all the data except for these two patients. The first patient is a 70-

year-old male with one copy of the APOE4 gene. The second patient is an 82-year-old 

female with no copies of the APOE4 gene. The dynamic prediction setting and its 

corresponding predicted survival probabilities are displayed graphically in Figure 1. Here, 

each patient is examined in the time window of 0–7 years starting from enrollment. The 

patient survival is updated annually at each landmark time, starting from the first year and 

ending with the fourth. Predicted survival probabilities are made for the remainder of the 

seven years with survival curves plotted from the cubic spline smoothed trajectories. 

Although not investigated in the simulation study, we also provide the 95% confidence 

intervals for the survival probabilities which are calculated from 100 bootstrap samples of 
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the data. As the landmark time increases, more follow-up measurements from the patients 

are included in the model leading to updated survival probabilities and narrower confidence 

intervals. Both patients have risk factors associated with AD. Patient A carries a copy of the 

APOE4 gene while patient B is female and more advanced in age. However, the predicted 

survival from Figure 1 shows that patient A is in relatively stable condition with narrow 

confidence intervals and low risk of disease progression. In comparison, patient B 

experiences a greater drop and higher uncertainty in event-free probability. These results 

suggest that patient B is at a higher risk for progressing to AD should be carefully 

monitored.

VIMP was also calculated for the MFPCA-RSF model built using all the ADNI data to 

assess the significance of each variable. Figure 2 displays the relative importance of the 10 

most important variables ranked by VIMP. First, the longitudinal outcomes contribute highly 

to the performance of the model in predicting AD progression with the first principal 

component score (PVE = 0.826) having a large VIMP relative to other covariates. The scores 

of the second principal component (PVE = 0.119) and fifth principal component (PVE = 

0.004) also important, ranking seventh and third, respectively. VIMP also identified several 

other key baseline variables derived from imaging scans and cerebrospinal fluid proteins. Of 

these variables, FDG-PET, which is used to visualize the level of glucose metabolism in the 

brain, was the most informative, as areas with hypometabolism are a strong indicator of 

neurodegeneration and cognitive decline.25 Hippocampal volume was the only volumetric 

scan identified in this list, which agrees with studies showing that hippocampal volume is a 

more informative predictor of AD progression compared to whole brain volume.26 Baseline 

levels of Amyloid-beta, Tau, and pTau proteins are also notable predictors.27 The results 

from Figure 2 suggest that in addition to well documented baseline risk factors, the five 

longitudinal outcomes are strong predictors of AD diagnosis.

5 Discussion

We have developed a functional survival forests framework that is capable of incorporating 

longitudinal information. Multivariate functional principal component methods, MFPCA 

and mFACEs, were used to extract informative features from the trajectories of longitudinal 

outcomes. These methods are able to deal with both temporal correlation within patients’ 

repeated measures and correlation between different longitudinal outcomes. The resulting 

MFPC scores were then included as covariates in the RSF. Because RSF is non-parametric 

and makes no assumptions about the underlying distribution, it is more robust when 

considering scenarios with non-linear effects. Through simulation, RSF was shown to be 

able to handle cases where the model was not fully specified. Being able to identify 

interactions between variables without having to explicitly model them is often 

advantageous as the effects of these interactions are not always apparent. In addition, as the 

number of variables increases, it is not realistic to consider all possible interactions, which 

often leads to interactions being included subjectively or through stepwise selection. This 

flexibility allows RSF to have more robust discrimination and calibration metrics in dynamic 

prediction. Furthermore, both functional principal component methods, MFPCA and 

mFACEs, have performed well in extracting features. While Li et al.10 have suggested that 

mFACEs is better at reconstructing and predicting the longitudinal outcomes when the 
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functional data are sparse, we did not detect a noticeable difference in dynamic prediction 

between mFACEs and MFPCA in the scenarios that we considered.

When applying our method to the ADNI dataset, the results suggested that the functional 

survival forest model is able to better identify patterns in the data, leading to higher 

predictive power for the progression of AD compared to its Cox counterpart. As such, RSF 

may hold an advantage over Cox as the dimensionality of the data increases, partially due to 

the potential for more noisy covariates being included, but also because more complex 

interactions between covariates may occur as well. The longitudinal outcomes play an 

important role in prediction as indicated by the higher rank of principal components in 

VIMP. We note that a limitation of applying VIMP to our method is the inability to assess 

the contribution of each individual longitudinal outcome to the high importance of the 

principal components. Despite this, VIMP still identified several other important baseline 

imaging and biomarker variables: FDG-PET, Hippocampus, ABeta, PTau, and Tau. While 

repeated measures of imaging and CSF markers are more scarce, capturing their longitudinal 

evolution rather than just their baseline values may provide valuable insight to AD 

progression.

Further improvements to the model may be achieved by automated tuning of parameters. 

RSF has a number of important parameters such as the number of predictors considered for 

each split and the number of cases in a terminal node which may vary the results depending 

on the parameter settings. In this article, the forest was built on the recommended default 

settings which are suggested to perform well in general.12 However, Hastie et al.28 also 

suggest that optimal values for these parameters differ depending on the problem and 

parameter tuning may result in better model performance.

Another consideration for RSF is the problem of interval censoring. Especially for 

longitudinal studies, patients often return for follow-up visits in regular intervals. Therefore, 

the true event time is only known to lie within an interval between visits and the exact time 

is obscured. Multiple studies have shown that ignoring interval censoring may lead to biased 

estimates for the survival outcome.29,30 Methodology for modeling interval-censored data 

has been well developed for the Cox model.30 While some ensemble-based methods such as 

the ICcforest31 and transformation forests32 have been adapted to address the issue of 

interval censoring, it is still an area of active research. As a future research direction, we will 

extend functional survival forests to account for interval censoring. Overall, we have 

demonstrated that RSF can be applied to discover more complex interactions and 

relationships between variables without further subjective input. When multivariate 

longitudinal outcomes are available, we advocate for the use of functional survival forests as 

an extension of RSF for improved model prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Dynamic progression-free probabilities with 95% bootstrap confidence intervals for patient 

A (upper panels) and patient B (lower panels). Landmark times are represented by vertical 

dashed lines. Survival curves are overlaid in the final column.
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Figure 2. 
First 10 covariates ranked by variable importance: PC1, first principal component; FDG-

PET, average FDG-PET of angular, temporal, and posterior cingulate at baseline; PC5, fifth 

principal component; Hippocampus, baseline hippocampus; ABETA, baseline Amyloid 

Beta; PTAU, baseline phosphorylated Tau protein; PC2, second principal component; TAU, 

baseline Tau protein; APOE4, apolipoprotein E4 allele; AGE, baseline age.
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Table 1.

Scenario 1: survival data were simulated from a joint model with two baseline covariates and three 

longitudinal outcomes.

RSF Cox

t Δt True AUC AUC BS AUC BS

MFPCA

1 1 0.929(0.050) 0.898(0.060) 0.054(0.017) 0.927(0.050) 0.044(0.016)

1 2 0.938(0.033) 0.906(0.046) 0.087(0.019) 0.934(0.034) 0.067(0.020)

2 1 0.924(0.050) 0.878(0.066) 0.062(0.021) 0.920(0.051) 0.051(0.019)

2 2 0.930(0.045) 0.892(0.053) 0.101(0.022) 0.927(0.045) 0.077(0.023)

3 1 0.915(0.056) 0.871(0.072) 0.072(0.022) 0.915(0.059) 0.059(0.019)

3 2 0.923(0.036) 0.879(0.045) 0.119(0.028) 0.920(0.037) 0.090(0.025)

4 1 0.903(0.055) 0.832(0.089) 0.086(0.029) 0.899(0.056) 0.070(0.025)

4 2 0.918(0.042) 0.867(0.057) 0.140(0.031) 0.914(0.042) 0.106(0.031)

mFACEs

1 1 0.929(0.050) 0.890(0.064) 0.056(0.017) 0.926(0.051) 0.045(0.016)

1 2 0.938(0.033) 0.896(0.050) 0.092(0.019) 0.934(0.035) 0.067(0.020)

2 1 0.924(0.050) 0.865(0.076) 0.063(0.021) 0.919(0.052) 0.051(0.020)

2 2 0.930(0.045) 0.872(0.066) 0.109(0.024) 0.925(0.048) 0.079(0.024)

3 1 0.915(0.056) 0.843(0.097) 0.076(0.022) 0.913(0.063) 0.061(0.020)

3 2 0.923(0.036) 0.859(0.062) 0.130(0.031) 0.918(0.039) 0.094(0.027)

4 1 0.903(0.055) 0.812(0.095) 0.090(0.029) 0.896(0.055) 0.073(0.026)

4 2 0.918(0.042) 0.846(0.069) 0.152(0.033) 0.910(0.044) 0.111(0.031)

AUC and BS are averaged across 100 simulated datasets with standard deviations provided in subscripts.

RSF, random survival forest; AUC, area under the curve; BS, Brier score; MFPCA, multivariate functional principal component analysis; mFACEs, 
multivariate fast covariance estimation.
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Table 2.

Scenario 2: survival data were simulated from a joint model with two baseline covariates with their interaction 

and three longitudinal outcomes.

RSF Cox

t Δt True AUC AUC BS AUC BS

MFPCA

1 1 0.930(0.047) 0.880(0.084) 0.052(0.016) 0.849(0.096) 0.057(0.018)

1 2 0.940(0.034) 0.905(0.052) 0.081(0.019) 0.857(0.073) 0.093(0.020)

2 1 0.924(0.061) 0.877(0.082) 0.058(0.020) 0.838(0.123) 0.061(0.020)

2 2 0.932(0.047) 0.899(0.057) 0.095(0.023) 0.833(0.075) 0.108(0.024)

3 1 0.916(0.057) 0.865(0.093) 0.071(0.022) 0.808(0.108) 0.075(0.024)

3 2 0.925(0.039) 0.886(0.050) 0.113(0.029) 0.807(0.074) 0.128(0.031)

4 1 0.906(0.056) 0.846(0.077) 0.083(0.028) 0.774(0.125) 0.087(0.028)

4 2 0.916(0.039) 0.869(0.048) 0.132(0.028) 0.773(0.084) 0.151(0.035)

mFACEs

1 1 0.930(0.047) 0.863(0.090) 0.056(0.017) 0.837(0.093) 0.058(0.018)

1 2 0.940(0.034) 0.886(0.058) 0.093(0.021) 0.845(0.077) 0.097(0.023)

2 1 0.924(0.061) 0.856(0.103) 0.062(0.020) 0.827(0.126) 0.063(0.020)

2 2 0.932(0.047) 0.874(0.056) 0.111(0.023) 0.825(0.074) 0.116(0.028)

3 1 0.916(0.057) 0.843(0.085) 0.078(0.022) 0.803(0.102) 0.080(0.026)

3 2 0.925(0.039) 0.859(0.061) 0.132(0.030) 0.796(0.077) 0.143(0.040)

4 1 0.906(0.056) 0.821(0.088) 0.089(0.029) 0.760(0.125) 0.096(0.034)

4 2 0.916(0.039) 0.842(0.060) 0.154(0.033) 0.767(0.086) 0.175(0.052)

The interaction term was not specified in the model. AUC and BS are averaged across 100 simulated datasets with standard deviations provided in 
subscripts.

RSF, random survival forest; AUC, area under the curve; BS, Brier score; MFPCA, multivariate functional principal component analysis; mFACEs, 
multivariate fast covariance estimation.
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Table 3.

Comparison of RSF and Cox as survival submodels in the ADNI study.

RSF Cox

t Δt AUC BS AUC BS

MFPCA

1 1 0.860 0.076 0.878 0.085

1 2 0.923 0.150 0.912 0.163

2 1 0.942 0.086 0.911 0.096

2 2 0.922 0.128 0.903 0.136

3 1 0.844 0.052 0.865 0.058

3 2 0.899 0.097 0.902 0.106

mFACEs

1 1 0.871 0.079 0.871 0.085

1 2 0.922 0.160 0.907 0.176

2 1 0.935 0.089 0.897 0.098

2 2 0.924 0.131 0.900 0.142

3 1 0.848 0.051 0.857 0.056

3 2 0.912 0.097 0.871 0.103

RSF, random survival forest; AUC, area under the curve; BS, Brier score; MFPCA, multivariate functional principal component analysis; mFACEs, 
multivariate fast covariance estimation.
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