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Abstract

Automated segmentation of individual calf muscle compartments from 3D magnetic resonance 

(MR) images is essential for developing quantitative biomarkers for muscular disease progression 

and its prediction. Achieving clinically acceptable results is a challenging task due to large 

variations in muscle shape and MR appearance. In this paper, we present a novel fully 

convolutional network (FCN) that utilizes contextual information in a large neighborhood and 

embeds edge-aware constraints for individual calf muscle compartment segmentations. An 

encoder-decoder architecture is used to systematically enlarge convolution receptive field and 

preserve information at all resolutions. Edge positions derived from the FCN output muscle 

probability maps are explicitly regularized using kernel-based edge detection in an end-to-end 

optimization framework. Our method was evaluated on 40 T1-weighted MR images of 10 healthy 

and 30 diseased subjects by 4-fold cross-validation. Mean DICE coefficients of 88.00%–91.29% 

and mean absolute surface positioning errors of 1.04–1.66 mm were achieved for the five 3D 

muscle compartments.
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1. Introduction

Calf muscle is a skeletal muscle group in the lower leg between the knee joint and the ankle, 

primarily supporting weight-bearing activities such as walking, running, and jumping. 

Anatomically, the group can be divided into five individual muscle compartments: Tibialis 
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Anterior (TA), Tibialis Posterior (TP), Soleus (Sol), Gastrocnemius (Gas), and Peroneus 

Longus (PL) [1], as shown in Fig. 1(a). Volumetric and structural changes of the muscle are 

important for evaluating muscular disease severity and progression. For example, myotonic 

dystrophy type 1 (DM1), the most common form of inherited muscular dystrophy in adults, 

causes severe fatty degeneration of calf muscle in most of the patients [2]. Magnetic 

resonance (MR) imaging has been widely used in the clinic for muscular disease diagnosis 

and follow-up evaluation due to its high sensitivity to dystrophic changes [2, 3]. Changes in 

MR images also correlate with clinical outcome measures potentially serving as imaging 

biomarkers for clinical research [4]. Current analysis approaches invariably include hand-

tracing of individual compartments that is time consuming and less than ideal for clinical 

trials. Automated segmentation of calf muscle is therefore essential for developing 

quantitative biomarkers of muscular disease progression and can contribute to its prediction.

A plethora of methods has been developed to separate calf muscle region, subcutaneous 

adipose tissue (SAT), and intermuscular adipose tissue (IMAT) from the lower leg tissue 

region, based on which a muscle fat percentage can be obtained as a measurement of fatty 

degeneration/infiltration that has been shown to have correlation with disease progression 

[5]. For example, Valentinitsch et al. [6] applied multi-stage K-means clustering [7] to 

segment calf muscle, SAT and IMAT. Amer et al. [8] first used a fully convolutional network 

(FCN) to segment the whole muscle mask and then classified healthy muscle and IMAT 

from the segmented mask by deep convolutional auto-encoder. These whole muscle 

segmentation approaches rely on the intra-object homogeneity to separate muscle and 

adipose tissues. Afterward, an overall muscle fat percentage can be obtained. However, 

specific muscle compartments may be more affected in different neuromuscular diseases 

(e.g., the posterior compartment shows initial changes in this population [9]). Assessing the 

changes in individual muscle compartments may be more sensitive than measuring change 

in the whole calf. In order to study the disease progression in individual muscle 

compartments [10, 11, 12], segmentation of individual muscle compartments is critical.

Different from the entire muscle-region segmentation, automated segmentation of individual 

muscle compartments is a challenging task due to the unique characteristics of MR muscle 

images as shown in Fig. 1. All non-diseased muscle compartments have similar appearances 

while the MR bias field exists across the whole image region. Besides, muscular dystrophy 

can introduce substantial appearance changes to a part or the whole compartment (Fig. 1d–

e). Therefore, identifying individual compartments using only local characteristics is 

unrealistic. On the other hand, shape model based approaches are unsuitable due to large 

shape variations and deformations caused by the disease as well as by patient’s positioning 

in the scanner.

Attempts to segment individual muscle compartments on MR images are rare. Essafi et al. 
[13] used a landmark-based approach with diffusion wavelets to represent shape variations 

for 3D segmentation of TA and PL and achieved a mean DICE coefficient of 0.55. Wang et 
al. [14] encoded shape prior by a point distribution model in a higher-order Markov Random 

Field framework to segment the medial Gas compartment on the same dataset used in [13] 

and obtained an averaged landmark error around 7 mm. Commean et al. [12] presented a 

semi-automated method to segment five individual muscle compartments by thresholding 
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and edge detection to study MR imaging measurement reproducibility. Troter et al. [15] used 

a multi-atlas registration approach for individual muscle segmentation in quadriceps femoris 

and achieved an averaged DICE of 0.87 ± 0.11 on an MRI dataset of healthy young adults. 

Rodrigues et al. [16] adopted a two-stage mechanism to segment individual muscle 

compartments by first identifying all muscle voxels using Adaboost classifier and then 

registering the muscle mask to a reference atlas for muscle compartment labeling. However, 

the individual muscle compartment segmentation results were not visually promising and the 

accuracies were not reported.

Compared with traditional techniques, FCN has a large model capacity to learn complex 

representations and enables pixel-to-pixel training, which makes it suitable for this 

application. To overcome difficulties mentioned above, an FCN with strengthened 

neighborhood relationship is desired. Many methods have been reported that imposed high-

level neighborhood-aware or edge-aware relationships to either refine FCN outputs or 

directly change FCN internal architectures. Bauer et al. [17] adopted a Conditional Random 

Field strategy to regularize classification results for brain tumor segmentation. Similarly, 

Guo et al. [18] applied a topology-wise graph to refine FCN output for pancreatic tumor 

segmentation. Both Chen et al. [19] and Shen et al. [20] used a multi-task FCN to predict 

object region and edge maps simultaneously for histological object segmentation and brain 

tumor segmentation respectively, with each task regularized by a cross entropy loss term. 

Recently, Kampffmeyer et al. [21] proposed a single-task FCN to predict pixel level 

connectivity maps based on n-neighborhood (n=4, 8) relationships, and reverted the 

prediction to segmentation masks using pixel-pair connectivity agreement.

In this paper, we propose a novel neighborhood relationship-aware FCN based on a variant 

of 3D UNet [22], called FilterNet, for automated segmentation of all five calf muscle 

compartments. We enhance neighborhood relationships in two ways: efficiently enlarge 

convolution receptive field and explicitly derive object boundaries directly from object 

prediction maps in an end-to-end training optimization framework. Specifically, by enlarging 

the convolution receptive field, information in a larger neighborhood is taken into 

consideration when generating the prediction for each central voxel, increasing the model 

robustness. Additionally, we use kernel-based edge detectors on the prediction maps to 

regularize the voxel-level probability dissimilarity inside a neighborhood region defined by 

the kernel size. Motivations behind such kernel edge detector-based constraints are 3-fold. 

First, the sizes of medical datasets are often small, which makes it not favorable to learn 

edge regularization from scratch. Edge detectors assess pre-defined neighbor relations (often 

using derivative formulas) and can be regarded as high-level initialization of the edge 

regularization module. Second, kernel edge detectors played an important role in medical 

image segmentation approaches over the past several decades, and they are compatible with 

CNN end-to-end training. Third, this mechanism provides flexibility to further fine-tune 

hyper-parameters of the kernel, by making the parameters of interest trainable.

Compared with previously reported approaches, our work has several contributions: a) we 

report a fully automated approach for 3D segmentation of five calf muscle compartments 

simultaneously; b) by considering the similar textures shared by individual muscles, we are 
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able to efficiently impose edge constrains in an end-to-end training manner; c) our method is 

robust in MR images from both healthy subjects and patients with DM1.

To the best of our knowledge, this is the first automated approach for five calf muscle 

compartments segmentation. Methodologically, our work is the first attempt to regularize 

neighborhood relationships in the form of kernel-based edge detection on prediction maps 

that allows direct back-propagation.

2. Methods

2.1. Pre-processing

In the pre-processing step, a bias field correction method described in [23] is first applied to 

reduce image intensity inhomogeneity by estimating bias fields as Gaussian distributions 

and maximizing the high-frequency content of the estimated unbiased image. Each image is 

further normalized to zero mean and unit variance to reduce inter-subject variations.

Afterwards, to remove large portions of background and reduce model complexity, we 

utilize Otsu’s thresholding [24] and K-means clustering (k=2) to localize and separate left 

and right leg-areas. All right legs are mirrored to conform to left legs.

The workflow and dimensional change of images are shown in Fig. 2. Note that the pre-

processing step is completely unsupervised.

2.2. FilterNet

A typical FCN often consists of an encoder and a decoder. In the encoding phase, multiple 

levels of features are extracted from the raw input by down-sampling operations to obtain 

deep and compact representations. The deep representations are then up-sampled to the full 

resolution in the decoding phase. During the down-sampling and up-sampling steps, a 

significant problem is the loss of resolution and the associated loss of fine details. UNet [25, 

22] and RetinaNet [26] include long skip connections to concatenate encoding features to 

decoding features at the same feature scale to restore information lost during down-

sampling. FC-ResNet [27] further uses residual blocks with identity mapping introduced by 

ResNet [28] to allow direct gradient back-propagation to earlier layers.

Considering the numerous successes that UNet based neural networks achieved in medical 

image segmentation problems [18, 8], we based our FilterNet on a UNet-like architecture 

(still called UNet for simplicity). The network details of both the base UNet we used and our 

FilterNet are shown in Fig. 3 and Fig. 4. There are mainly two differences between the two 

networks. First, in order to preserve fine details and enlarge receptive field during the 

encoding phase, block B is used in the FilterNet. Block B in the FilterNet utilizes short skip 

connections to enable gradient identity mapping and therefore preserve fine details. It also 

provides a portal to increase convolution kernel size that allows the network to take account 

of a broadened view and utilize contextual information from a large neighborhood. However, 

a large kernel size significantly increases the number of parameters. To avoid this, FilterNet 

reduces feature channels in block B at down-sampled scales by a factor of 2 compared with 

block A used in UNet. Second, the FilterNet further employs an edge gate to extract 
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localized neighborhood relationships in the form of edge detection that allows gradient back-

propagation. Different from other works that predict object edges as an extra task to be fused 

with predictions of object regions [19, 20], FilterNet derives object edge information directly 

from the object region probability maps through the edge gate and regularizes the derived 

edge relationship using true edges. In this way, the neighborhood relationship is directly 

encoded into the region-based probability maps within a single-task FCN, without 

introducing a number of extra training parameters. In addition, FilterNet implements edge 

constraints in an end-to-end training manner, it avoids designing and fine-tuning an 

additional framework for post-processing purpose as [17] and [18] did. Details of block A, 

block B, edge gate, and loss function are described as follows.

2.2.1. Backbone blocks—Both blocks A and B work as backbone blocks for the 

FilterNet, as shown in Fig. 4. Block A consists of double layers of convolution (Conv) with 

kernel size k = 3×3×3 (padding p = (k − 1)/2, stride s = 1×1×1), batch normalization (BN), 

and rectified linear unit (ReLU) activation function. Block B adds one more Conv layer with 

undecided kernel size ζ at the beginning, and a short skip connection of addition to achieve 

identity mapping. During the encoding phase, the kernel sizes in block B are set as 7, 5, and 

3 for three scales of features to enlarge convolution receptive field. As a result [29], 

FilterNet increases receptive filed size by 22 voxels along each dimension. Note that due to 

padding and size restriction, the actual increased receptive field size along z axis is less than 

22 voxels.

2.2.2. Edge gate—Instead of stopping at FCN output of object pixel-wise probability 

maps as UNet does, an extra step is used in the FilterNet for the edge gate to directly and 

dynamically derive the true and predicted edge information, respectively, from the ground 

truth map and the output probability map and to impose constraints on the predicted edges. 

For the edge gate to support end-to-end training, kernel-based edge detections are used as 

convolutions with designed kernels inside the network. In this study, Laplacian of Gaussian 

(LoG) [30] is used. Suppose an input image patch is denoted as I, the function of LoG is 

defined as

FLoG(I) = κG * κL * I, (1)

where κL and κG represent the Laplacian kernel and the Gaussian smoothing kernel and * is 

the convolution operation. Since FLoG finds double edges, while the boundary of muscle 

compartments in this application is not sufficiently clear to define inside and outside edges, 

we add an activation function to remove the negative edges, and obtain a new function FLρG. 

To increase the flexibility of our edge gate and reduce the dependency on handcrafted 

parameters, the standard deviation σ of the Gaussian smoothing function is made trainable. 

Thus, under the condition of a σ, the edge gate respond function can be written as

FLρG(I ∣ σ) = κG(σ) * ρ κL * I , (2)

where ρ is a variant of the non-linear hard tanh function that restricts the input value into 

range [0, 1] such that
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ρ(x) =
0 x < 0
x 0 ⩽ x ⩽ 1
1 x > 1

. (3)

The MR images used in this study have in-plane (on x-y plane) resolution of 0.7 mm and 

slice thickness (along z direction) of 7 mm. Therefore, convolution kernels κL and κG(σ) are 

defined as below and applied to x-y slices.

κL =
0 −1 0

−1 4 −1
0 −1 0

∈ R3 × 3, (4)

κG(σ) = τ ai, j i, j ∈ R5 × 5, (5)

where τ is a constant adjusting factor under a given σ that ensures ∑i = 1
5 ∑j = 1

5 ai, j = 1. 

Element ai,j in κG(σ) is defined as,

ai, j = 1
2πσ2e− (i − i)2 + (j − j)2

2σ2 . (6)

In Eq. 6, i = j = 3.

The gradient back-propagation keeps the fixed kernel κL unchanged and updates kernel κG 

with trainable σ. For the edge gate, an explicit neighborhood relationship is derived from the 

probability maps.

2.2.3. Loss function—For an input image I ∈ RW×H×D, the FilterNet predicted output 

map Y  can be denoted as,

Y = DA EB(I) ∈ RN × W × H × D, (7)

where EB is the encoder that uses block B’s and DA is the decoder that consists of block A’s.

The loss function of FilterNet consists of two terms, Lc for region learning amd Le for edge 

constraining, balanced by a weighting factor λ such that

L = (1 − λ)Lc + λLe, (8)

where Lc is a multi-class cross-entropy loss defined as

Lc = ∑
n = 1

N
− Y n ⋅ log Y n , (9)
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where N = 6, Yn is the one-hot encoded region label for class n, and Y n ∈ Y  is the 

corresponding predicted map for class n. Le represents the least absolute error (L1-norm) 

loss between the true edge maps and the derived edge maps. W = {wn|n = 1, …, 6} is a 

weighting array.

Le = ∑
n = 1

N
wn FLρG Y n ∣ σ − FLρG Y n ∣ σ . (10)

During gradient back-propagation, the partial derivative of loss L in terms of σ is,

∂L
∂σ = λ∂Le

∂σ . (11)

According to the derivative chain rule,

∂Le
∂σ = ∂Le

∂κG(σ)
⋅

∂κG(σ)
∂σ = ∂Le

∂κG(σ)
⋅ ∂ai, j

∂σ i, j
, (12)

where 
∂Le

∂κG(σ)
 can be obtained from the differentiation of the Gaussian smoothing Conv layer, 

and 
∂ai, j

∂σ i, j
 is calculated according to the definition of ai,j in Eq. 6.

The final multi-class classification output can be defined as the indices of the maximum 

values on probability maps Y  along the channel dimension.

FilterNet is optimized by stochastic gradient descent [31]. The initial learning rate is 10−3, 

which is divided by 5 every 10 epochs. In order to increase the robustness and generalization 

of the network, the input training patches are sub-regions sized 120 × 120 × 28, cropped 

from the localized leg-areas (described in Fig. 2) with a step size of 20 voxels along x and y 

directions, which results in 9 times as large the number of the training patches as that of the 

leg-areas. The batch size is set as 2. We train the network with 30 epochs. Data 

augmentation is performed, where 3 more patches are generated for each training patch. 

Namely, a rotation value is randomly chosen between −10o to 10o, two scaling factors are 

randomly chosen between 0.8 and 1.2 along x and y directions. The initial value of λ is 

0.001, multiplied by 10 every 10 epochs. W is [0,0.2,0.2,0.15,0.15,0.3] for the 6 classes of 

background, TA, TP, Sol, Gas, and PL, respectively. The initial value of σ is 1.

3. Experiments and Results

3.1. Experimental Setting

40 lower leg T1-weighted MR images of 40 subjects (10 were healthy, 30 with DM1) were 

included in this work. The original image size is 512×512×30 and the voxel size is 

0.7×0.7×7 mm. The acquisition of these images used the first echo of a 3-point Dixon 

gradient echo sequence with repetition time (TR) 150 ms, echo time (TE) 3.5 ms, field of 
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view (FOV) 36 cm, bandwidth 224 Hz/pixel, and scan time 156 s. Expert-traced muscle 

compartment segmentations served as the independent standard.

Besides FilterNet, we also designed several other neural networks for performance 

evaluation and comparison purposes. In Section 3.2, based on the differences between UNet 

and FilterNet, an ablation study was conducted to show the effectiveness of block B and 

edge gate. Then in Section 3.3, thorough performance comparisons were presented among 

the UNet, a multi-task FCN that aggregates region and edge predictions, and FilterNet to 

demonstrate the superiority and efficiency of the FilterNet. All neural networks were 

implemented using the PyTorch platform [32] and applied to the same dataset. The training 

parameters were identical for these methods. The models were trained on Nvidia GeForce 

GTX 1070 GPU with 8 GB of memory.

Given a limited-size dataset, 4-fold cross-validation was used to evaluate the performance of 

each method. The dataset that included both legs was divided in the 4 fold-groups at the 

subject level so that data from the same subject were never simultaneously used for both 

training and testing. In 4-fold cross-validation, the 40 subjects were evenly and randomly 

divided to 4 groups. Each time, one group was taken as the test set, and the remaining three 

groups were used as the training set. The process was repeated 4 times so every group served 

as a test set exactly once. As a result, each subject was used for testing just once. DICE 

Similarity Coefficient (DSC) and absolute surface-to-surface distance (ASSD, in mm) 

between the automated surface and the manual surface were used as evaluation metrics. For 

each subject, the performance was averaged for left and right legs.

3.2. Ablation Study

In order to reveal the performance improvement introduced by block B and edge gate 

respectively, ablation experiments that included UNet, UNet with block B, UNet with edge 

gate, and FilterNet were conducted. Therefore, in addition to FilterNet, the other three were 

described as follows.

• UNet: The details of UNet architecture used in this application are displayed in 

Fig. 3(a). UNet output Y  is

Y = DA EA(I) , (13)

where EA is the encoder consisting of block A’s. The loss function is a multi-

class cross-entropy loss the same as in Eq. 9.

• BUNet: BUNet utilizes block B’s in the encoding path of UNet to enlarge 

convolution receptive field. BUNet output Y  is the same as FilterNet output in 

Eq. 7. However, compared with FilterNet, BUNet does not have edge gate. 

Therefore, λ in Eq. 8 is set as 0, such that the loss function here is

L = Lc (14)

• UNet-F: Similarly, UNet-F and UNet share the same network architecture. The 

prediction output Y  of UNet-F is the same as in Eq. 13. However, different from 
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UNet, edge gate is added onto Y  in UNet-F. Thus the loss function of UNet-F is 

the same as in Eq. 8.

Fig. 5 shows mean values of DICE and ASSD for five individual muscle compartments 

obtained from the aforementioned approaches. Overall, FilterNet achieved the best 

accuracies in terms of DICE and ASSD among the four methods. Both BUNet and UNet-F 
outperformed UNet. However, UNet-F had better surface positioning accuracy than BUNet.

3.3. Performance Comparison

In this section, the performance of FilterNet was thoroughly compared with the performance 

of UNet and a multi-task FCN, called Boundary-Aware FCN.

• Boundary-Aware FCN: Boundary-Aware FCN follows the basic idea of the kind 

of FCN proposed in [20], where the network integrates the predictions for region 

and edge maps explicitly. The schematic of Boundary-Aware FCN used in this 

application is shown in Fig. 6. The input patches, encoder and decoders are the 

same as those in UNet. One decoder DA
r  attempts to predict region maps while 

the other decoder DA
e  learns the corresponding edge maps. Then the predicted 

region and edge maps are concatenated and fed into several Conv, BN, and 

ReLU layers (denoted as Φ) to get the final region prediction Y c. Thus, Y c can be 

described as,

Y c = Φ Y r ⊙ Y e , (15)

where ⨀ is the concatenation operation, Y r = DA
r EA(I)  is the predicted region 

map, and Y e = DA
e EA(I)  is the predicted edge map.

The loss function L includes three cross-entropy loss terms, region loss Lr, edge loss Le, and 

a final combined loss Lc.

L = ∑
i = e, r, c

Li = ∑
i = e, r, c

− Y ilog Y i , (16)

where each Yi is the corresponding label map. Note that our implementation of Boundary-

Aware FCN uses the same encoder and decoder as described in our baseline UNet design, 

which is different from the original description in [20].

As a result, Table 1 summarizes DSC and ASSD between the automated segmentations and 

the independent standard on five calf muscle compartments for the UNet, Boundary-Aware 

FCN and FilterNet. Compared with UNet, FilterNet generated significantly better results for 

each compartment in terms of both DICE and ASSD. FilterNet was also shown to have 

significant differences from Boundary-Aware FCN in DICE for TP and Sol and in ASSD for 

each muscle compartment.

From top to bottom, Fig. 7 displays four 2D segmentation examples from images of four 

patients, with each representing a unique situation. The first example shows a normal subject 
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with calf muscle surrounded by a thick SAT layer. In this case, Gas segmented by UNet had 

leakage into Sol and SAT, while Gas and Sol segmented by Boundary-Aware FCN also 

leaked into the SAT layer. The second example is from an MR image of a patient with severe 

DM1, where TA segmentation obtained from UNet spread into TP and PL, as well as holes 

existing in Sol. TP segmentation from Boundary-Aware FCN had false positives in true PL, 

and a hole appeared in Gas. The third example shows notable intensity inhomogeneity 

around the boundary of TP and Sol. Both UNet and Boundary-Aware FCN were sensitive to 

the inhomogeneity. The last example presents a 2D cross-sectional slice that is near to one 

end of the lower leg, where the muscle compartment boundaries are complicated and tough 

to identify. UNet and Boundary-Aware FCN generated strangely shaped Sol and some 

voxels inside the true TA were misclassified as TP. In contrast to the situations happened to 

UNet and Boundary-Aware FCN, though the segmentations from FilterNet were not always 

perfect, FilterNet was able to relief these problems and appeared to be more robust to image 

inhomogeneity and object shape maintenance on these examples.

Fig. 8 lists the 3D shapes of the muscle segmentations from the same leg of a patient. From 

the x-y view, FilterNet generated smoother and topologically superior segmentations. When 

observing the individual muscle compartment models, UNet and Boundary-Aware FCN 

showed obvious region leakages of TA, TP, and PL, while FilterNet segmentations were free 

from such leakages. Table 2 compared the number of model parameters, memory usage and 

averaged training time per epoch. FilterNet has the lowest number of parameters and 

memory usage, and UNet ran the fastest during training.

4. Discussion

4.1. Ablation Study

The superiority of BUNet against UNet as shown in Fig. 5 indicates the effectiveness of 

block B. However, the calculated ASSD index for Gas segmentation by BUNet became 

worse compared with UNet. Gas has a long and flexible shape on the x-y plane and also 

shares similar appearance patterns with nearby objects, when neighborhood was broadened 

while proper edge-aware regulations were lacking, false positives might have been increased 

across the whole scope and reflected in worsened surface positioning accuracy.

When edge gate was added, UNet-F generated segmentations with apparent improvement in 

ASSD over UNet. The loss term associated with edge gate in Eq. 10 implies that a) when a 

pixel is not close to an object boundary, either inside or outside of the object, the probability 

values of all voxels located inside the neighborhood that belongs to the same class should be 

similar while b) when a pixel is close to an object boundary, probability value differences 

between such voxels may show dissimilarity. Therefore, with edge gate, UNet-F was able to 

impose neighborhood-wise constraints to the predicted output and achieved more 

topologically correct results.

Compared with UNet, FilterNet reached a new level of accuracy. As we mentioned earlier, 

when neighborhood is broadened, edge-aware regulations are needed to reduce false 

positives and strengthen boundary information. Likewise, when edge-aware regulations are 

presented, broadened neighborhood helps reduce sensitivity to local noise and results in 
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improved segmentation accuracy. Therefore, the two mechanisms can benefit from each 

other and lead to the best performance of FilterNet in the ablation study.

4.2. FilterNet vs. UNet, Boundary-Aware FCN

UNet is a single-task FCN that includes only one decoder to learn object region maps, while 

Boundary-Aware FCN is a multi-task FCN with two decoders to learn region and edge maps 

respectively and extra layers to fuse the output of the two tasks, with the cost of substantially 

increased numbers of parameters and computational time, as shown in Table 2. With 

emphasized boundary information and integration of region and edge learning, Boundary-

Aware FCN achieved superior performance in terms of DICE and ASSD compared with 

UNet (Table 1).

Both FilterNet and Boundary-Aware FCN intended to take advantage of object boundary to 

improve object segmentation accuracy. Boundary-Aware FCN learns object boundary from 

scratch and regards predicted boundary maps as extra feature channels into region learning. 

While FilterNet derives object boundary directly from the predicted region maps and 

encodes the neighborhood-wise relationship by designed edge detectors with little cost. 

Instead of learning from scratch, FilterNet avoided introducing a lot of extra parameters to 

learn the desired edge pattern. The edge detectors turned out to be more efficient than an 

edge-learning decoder, from the numerical and visual comparisons in Table 1, Fig. 7, and 

Fig. 8. There are two potential reasons behind such phenomena. First, given a small training 

dataset, a model with a huge amount of parameters may result in over-fitting, and thus the 

performance may be compromised. Second, calf muscle compartment boundaries are hard to 

learn, due to the fact that all muscle compartments share similar appearance patterns. 

Besides, edge-like appearances caused by intramuscular nerves and vessels [33, 34] can be 

misleading.

Fig. 7 and Fig. 8 further demonstrated that when multiple objects are close to each other and 

share very similar textures, optimization that is based on pure pixel-level classification loss 

may cause disjoint regions or holes inside the true object. When neighborhood-wise 

dissimilarity penalty were added for voxels away from the boundary, as edge gate did in 

FilterNet, the situations of disjoint regions and holes were mitigated.

4.3. Approach and Future Work

The application of calf muscle compartment segmentation represents a category of multi-

class segmentation problems, where nearby objects are next to each other and have very 

similar textures. In order to segment each object accurately and at the same time maintain 

object shape topology, we proposed FilterNet as a neighborhood relationship enhanced FCN 

that has broadened convolution receptive field and an edge detector based gate to apply 

constraints directly to the probability maps in an end-to-end training manner.

Besides increasing convolution kernel size as we did with block B, there are other ways to 

broaden the receptive field or integrate context information from a larger scope. For 

example, dilated convolutions [35] can be applied to enlarged ranges without increasing 

filter sizes. Attention [36] has the potential to take into account of multi-scale features 
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simultaneously by trainable weights. Exploration of more efficient ways to enlarge feature 

neighborhood will remain as future work.

For the edge gate used in our FilterNet, Laplacian edge detector and Gaussian smoothing 

kernel with trainable σ were applied to derive object edges. After optimization, we obtained 

a σ of 0.89, 0.85, 0.92 and 0.90 pixel for each fold, respectively. We have also explored a 

sole use of the Laplacian edge detector in the edge gate, FLρG with fixed σ (σ = 1) while 

leaving largest connected component for each label of the results to be generated by FLρG(σ 
= 1) as a post processing step. Note that only keeping the largest connected component is 

only feasible when the desired object is known to be a single region while our method does 

not have this restriction. It turns out that though the performance differences in terms of 

DSC are small, the performance differences in terms of ASSD are notable. As the ASSD 

values shown in Table 3, our current FilterNet outperforms the other tested methods. This 

means that the usage of Gaussian smoothing makes the edge gate more robust to noise and 

the neural network has the ability to fine-tune hyper-parameters like σ to further improve the 

performance. Finding advanced convolution-based detectors with trainable hyper-parameters 

is also worth exploring in the future. In addition to reducing the sensitivity to noise, 

Gaussian smoothing also increases edge response area sizes, given extremely small portion 

of edge voxels in a volume. Due to the sparsity of edge response areas and the optimization 

efficiency of L1-norm in this case [37], the L1-norm was used in Eq. 10 instead of the L2-

norm.

Use of edge constraints in a light-weight manner was previously considered, e.g., by 

Ronneberger et al. [25] who computed a weight map that highlighted the edge areas and 

calculated the weighted cross-entropy loss. This approach increases the importance of edge 

areas, but the weight map calculation is based on ground truth only. Our edge gate is applied 

to prediction maps during each back-propagation, thus has a high penalty in holes and 

undesired disjoint objects that may otherwise appear during prediction. In [38], deep 

features are used to directly learn shape parameters that reflect shape differences from a 

mean shape representation for cervical vertebrae on X-ray images. In this way, disjoint 

regions are eliminated and the edge is smooth. Cervical vertebrae are rigid with stable 

(position-independent) shapes, while muscle compartments consist of soft tissues that may 

change their shapes dramatically in response to changes in position, large deviations from 

the mean shape representation result. A boundary loss term based on the summation of 

nearest distances from segmentation pixels to the true boundary in level set representation 

was proposed in [39] with pixels given penalties according to the distance from the true 

boundary. However, since the calculation is only carried out for pixels segmented as the 

target, regions corresponding to holes inside the prediction do not have any penalty 

associated with them. As an highly relevant improvement, our method penalizes both holes 

and regions away from the true edges while being computationally efficient. In this study, 

we applied edge constraints on the axial plane only, due to the extreme anisotropic 

resolution of the dataset. The clinical reality of MR imaging protocols that are used when 

imaging calf muscles unfortunately results in such anisotropic acquisition parameters. If 

more isometric data become available, we plan to use 3D edge detectors in the future and 

expect to see additional performance gains.
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Different from muscle segmentation by atlas-based methods applied to MR images from 

homogeneous populations [40], the dataset of 40 images we used in this study was quite 

diverse and included unaffected patients (10/40) and patients with DM1 (30/40). For patients 

with DM1, the posterior compartment muscles, gastrocnemius and soleus, are usually the 

earliest and eventually most severely affected muscles. The changes are not limited to these 

muscles. However, for the purpose of measuring changes over time for eventual clinical 

trials, being able to track muscles that are less severely affected may be equal or more 

important than those that are affected earliest and most severely in DM1. In this work, we 

have shown the feasibility and robustness of our approach in segmenting individual calf 

muscle compartments in normals and when DM1 was presented. In the future, for each 

muscle compartment segmentation, disease-affected regions can be easily clustered from the 

healthy muscle structure to develop compartment-based biomarkers guiding a disease 

progression study in the clinic.

5. Conclusion

A neighborhood relationship enhanced FCN was reported and applied to individual calf 

muscle compartment segmentation on T1-weighted MR images. With an increased 

convolution receptive field, resolution-preserving skip connections, and explicitly edge-

aware regulations by a kernel-base edge gate to constrain pixel-level probability values 

inside a neighborhood, our FilterNet considered the specialty of adjacent multi-class muscle 

segmentation and delivered a striking performance improvement (DSC>0.88, ASSD<1.66 

mm) over previously-reported methods (DSC<0.55, ASSD~7 mm), suggesting clinical-use 

feasibility of automated calf-compartment segmentation.
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Figure 1: 
Examples of T1-weighted MR images of calf muscle cross sections. Each panel shows the 

original image and the corresponding expert segmentations for TA, TP, Sol, Gas and PL. (a–

c) Normal subjects. (d–e) Patients with severe DM1. Best viewed in color.
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Figure 2: 
Workflow of the pre-processing step. After Bias field correction, Otsu’s thresholding, and K-

means clustering, each leg-area is localized on the original MR images. The leg-areas are 

then extracted and resized to get a uniform dimensionality. Right leg is mirrored to left.
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Figure 3: 
UNet (a) vs. FilterNet (b) for multi-class calf muscle segmentation. The two networks have 

the same input and output. [C, W, H, D]: channel, width, height, depth. “BG” represents 

background. Best viewed in color.
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Figure 4: 
Details of block A, block B, and edge gate in FilterNet. An example is shown along with 

edge gate flow chart. Best viewed in color.
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Figure 5: 
Mean values of DICE and ASSD (in mm) from UNet, BUNet, UNet-F and FilterNet.

Guo et al. Page 20

Comput Med Imaging Graph. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
The schematic of Boundary-Aware FCN. Best viewed in color.
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Figure 7: 
Cross-sectional segmentation examples overlaid with MR images. (a) Original scan. (b) 

Ground truth. (c) UNet. (d) Boundary-Aware FCN. (e) FilterNet. Each row represents a 2D 

cross-sectional example from a different image. Best viewed in color.
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Figure 8: 
3D demonstration of muscle compartment segmentations from the same leg. Each row 

represents a method while each column represents a view category. (a) Ground truth. (b) 

UNet. (c) Boundary-Aware FCN. (d) FilterNet. The first three columns are three orthogonal 

views of the five muscle compartment segmentations, followed by five columns showing 

individual segmentations. Note the extra objects generated by UNet and Boundary-Aware 

FCN for TA, TP, Gas and PL. Best viewed in color.
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Table 1:

DSC and ASSD (mean±std) for five calf muscle compartments from UNet, Boundary-Aware FCN and 

FilterNet. The unit for ASSD is mm. Statistical significance in bold.

Methods
UNet Boundary-Aware FCN FilterNet

Mean±STD p value* Mean±STD p value* Mean±STD p value*

TA
DSC 89.86±11.07 0.033 90.51±13.22 0.333 91.29±10.11 /

ASSD 2.17±2.00 ≪0.001 1.80±1.97 ≪0.001 1.04±0.81 /

TP
DSC 87.20±6.89 0.007 88.11±6.16 0.043 89.46±4.19 /

ASSD 2.15±1.39 ≪0.001 2.10±1.56 0.002 1.42±0.66 /

Sol
DSC 86.05±8.94 ≪0.001 87.09±8.50 0.041 88.00±7.92 /

ASSD 2.64±1.87 ≪0.001 2.35±1.87 0.001 1.66±<.82 /

Gas
DSC 87.81±10.19 0.017 88.33±9.84 0.075 89.50±7.99 /

ASSD 2.44±1.99 ≪0.001 2.38±2.17 0.001 1.60±1.29 /

PL
DSC 86.45±12.36 ≪0.001 89.22±11.12 0.568 89.49±12.44 /

ASSD 2.93±3.37 ≪0.001 1.64±1.60 0.007 1.14±1.02 /

*
Paired t-test with FilterNet (significance level p < 0.05)
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Table 2:

Number of model parameters, memory usage, and averaged training time per epoch for UNet, Boundary-

Aware FCN and FilterNet. Best performance in bold.

Methods # parameters (Millions) Memory (GB) Training time (mins)

UNet 1.97 4.67 11

Boundary-Aware FCN 2.39 6.01 25

FilterNet 1.44 3.76 16
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Table 3:

Averaged ASSD for each muscle compartment. FL: FilterNet with only Laplacian kernel used in the edge gate. 

FLρG(σ = 1): FilterNet with fixed σ=1 in the Gaussian kernel. FLρG(σ = 1) & LLC: leaving largest connected 

component for each label is applied to the results of FLρG(σ = 1). FLρG(·|σ): FilterNet with trainable σ. Best 

performance in bold.

Method TA TP Sol Gas PL

FL 1.57 1.85 2.28 2.24 2.02

FLρG(σ = 1) 1.48 1.84 2.11 2.15 1.85

FLρG(σ = 1) & LLC 1.01 1.56 1.69 1.65 1.21

FLρG(·|σ) 1.04 1.42 1.66 1.60 1.14
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