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Abstract

INTRODUCTION: Periprosthetic joint infection (PJI) data elements are contained in both 

structured and unstructured documents in electronic health records and require manual data 

collection. The goal of this study was to develop a natural language processing (NLP) algorithm to 

replicate manual chart review for PJI data elements.

METHODS: PJI were identified among all TJA procedures performed at a single academic 

institution between 2000 and 2017. Data elements that comprise the Musculoskeletal Infection 

Society (MSIS) criteria were manually extracted and used as the gold standard for validation. A 

training sample of 1197 TJA surgeries (170 PJI cases) was randomly selected to develop the 

prototype NLP algorithms and an additional 1179 surgeries (150 PJI cases) were randomly 

selected as the test sample. The algorithms were applied to all consultation notes, operative notes, 

pathology reports and microbiology reports to predict the correct status of PJI based on MSIS 

criteria.

RESULTS: The algorithm --which identified patients with PJI based on MSIS criteria--achieved 

an f1-score (harmonic mean of precision and recall) of 0.911. Algorithm performance in 

extracting the presence of sinus tract, purulence, pathological documentation of inflammation, and 
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growth of cultured organisms from the involved TJA achieved f1-scores ranged from 0.771 to 

0.982, sensitivity ranged from 0.730 to 1.000, and specificity ranged from 0.947 to 1.000.

CONCLUSION: NLP-enabled algorithms have the potential to automate data collection for PJI 

diagnostic elements, which could directly improve patient care and augment cohort surveillance 

and research efforts. Further validation is needed in other hospital settings.

Level of Evidence: Level III, Diagnostic
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INTRODUCTION

Periprosthetic joint infections (PJI) following total joint arthroplasty (TJA) are associated 

with significant morbidity, mortality and economic burden (1, 2). In the clinical setting, 

diagnosing PJI remains a major challenge as there are no singular, conclusive diagnostic 

tests. Most patients present with joint pain as the main symptom, which carries a broad 

differential diagnosis. PJI diagnosis is typically based on a combination of clinical findings, 

laboratory results from peripheral blood and synovial fluid, microbiological culture, 

histological evaluation of periprosthetic tissue and intraoperative findings, as defined by the 

Musculoskeletal Infection Society (MSIS) and the Infectious Diseases Society of America 

(3, 4). These definitions, although relatively new and subject to periodic refinement and 

scrutiny, are widely adopted in the orthopedic and infectious diseases communities. Since 

their creation, evidence-based criteria have significantly improved clinical decision-making 

and research by allowing for consistency across studies, thus enhancing the potential for 

collaboration. Yet, data elements that are included in these definitions are recorded in 

multiple sections of electronic health records (EHR), which leads to a cumbersome process 

for physicians caring for patients with suspected PJI and is an even more daunting challenge 

for patient surveillance and research efforts. Furthermore, although diagnostic tests for PJI 

continue to evolve, timely, consistent, and actionable diagnosis of PJI remains elusive in the 

clinical setting. Similarly, in the research setting, large administrative databases and 

surveillance programs (i.e., U.S. National Healthcare Safety Network) offer unique 

opportunities for evidence generation in large cohorts; yet distinguishing the type of surgical 

site infections (superficial infections involving the skin and soft tissues beneath the skin 

versus PJI involving deeper tissues and indwelling orthopedic hardware) remains a 

methodological challenge that prevents comparisons across studies. Manual abstraction of 

PJI data elements for research purposes is also time-intensive even for trained and 

experienced nurse abstractors.

As described by our group and others, natural language processing (NLP) methods are 

increasingly used for both clinical and research purposes and offer an opportunity to 

efficiently extract data elements that are embedded in the unstructured text of the EHR (5–

7). Several groups also described application of NLP methods for identification of surgical 

site infections (8–11). Most recently, Thirukumaran and colleagues developed an 
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orthopedic-specific NLP algorithm to retrospectively identify 172 surgical site infections in 

a cohort of 1,407 patients who underwent various orthopedic procedures (12). Yet, the 

algorithm was not specific to TJA (for which deep infections are more devastating than 

outside of a joint) and did not distinguish the type of surgical site infections (superficial 

versus deep versus PJI). In partnership with orthopedic surgeons, infectious disease 

physicians and data scientists, we developed a PJI-specific NLP algorithm to replicate 

manual chart review for specific PJI data elements as well as PJI case detection based on 

MSIS criteria. We evaluated the accuracy of the algorithm by comparing it against the gold 

standard of manual chart review by trained registry specialists.

METHODS

Study Setting

This study was approved by the institutional review board. The study cohort comprised 

48,962 primary total hip and knee arthroplasty procedures performed by 35 orthopedic 

surgeons at a single academic institution between 2000 and 2017. During this time frame, 
the EHR in our institution was an in-house system based on general electric (GE) 
Centricity, an EHR system developed by GE Healthcare. All infectious disease 

consultation notes, operative notes, pathology reports and microbiology reports present in 

the EHR since the date of TJA were evaluated. Our institution maintains a total joint 

arthroplasty registry as part of routine care of all patients. Registry data collection is 

performed in a comprehensive fashion on all aspects related to TJA outcomes through 

manual chart review of EHRs by trained registry personnel, including the use of 

standardized definitions for TJA-specific data elements and PJI. All MSIS criteria (3, 4) data 

elements were manually abstracted and recorded. Therefore, the gold standard data for 

validation was readily available for all PJI events. In this cohort, we defined positive cases as 

a PJI (hip or knee) infection found anytime within 12 months after the TJA procedures 

performed between 2000 and 2017. Of note, restricting PJI cases to those diagnosed 
within 12 months after TJA was for logistical reasons to ensure all data elements were 
available. Negative controls without PJI were defined as patients who had TJA between 

2000 and 2017 without prior or subsequent PJI (hip or knee) infection at any time after the 

surgery.

Study Design

PJI cases were sampled from primary TJA procedures at Mayo Clinic Rochester. Controls 

were matched on age, sex, and year of surgery. We then randomly split the study sample 

(total 2387) into 50% training and 50% test datasets, ensuring training and test datasets 

contained an equal number of cases and controls. The training dataset comprised 170 PJI 

cases and 1027 matched controls with a mean age of 64 (±15) years and women comprised 

50%. The test dataset comprised 150 PJI cases and 929 matched controls with a mean age of 

65 (±15) years and women comprised 48%.

The PJI data elements were searched within the twelve months’ time window after index 

surgery and included (a) presence of a sinus tract communicating with the prosthesis, (b) 

two or more intraoperative cultures or a combination of preoperative aspiration and 
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intraoperative cultures that yield the same organism, (c) presence of elevated laboratory 

results for erythrocyte sedimentation rate (ESR >29mm/h), Creactive protein (CRP >8 

mg/L), (d) synovial leukocyte count (>3000 cells/uL) and synovial neutrophil percentage 

>80%, (e) presence of purulence without another known etiology surrounding the prosthesis, 

(f) presence of acute inflammation on histopathologic examination (i.e., greater than five 

neutrophils per high-power field in five high-power fields observed from histologic analysis 

of periprosthetic tissue at ×400 magnification).

NLP Algorithm Development

The NLP algorithm for each MSIS criteria data element was developed on a training dataset 

and validated on a blinded test dataset. Our NLP algorithm was based on expert rules—

target “textual markers” (i.e., keywords related to PJI) that were specified in the clinical 

narratives defined by orthopedic surgeons or infectious diseases specialists. The NLP 

algorithm had three main components: text processing, concept extraction, and 

classification. The key components of the text processing pipeline were sentence 

segmentation, assertion identification, and temporal extraction. Assertion of each concept 

includes certainty (i.e., positive, possible, and negative) along with experiencer (i.e., patient 

or family member), while temporality determining whether the event is historical or present. 

For example, the sentence “Postoperative diagnosis: draining sinus tract on patient’s right 

knee was not found” will be processed into assertion status “negative”, temporality 

“present”, and experiencer “associated with the patient”. Concept extraction is a knowledge-

driven annotation and indexing process to identify phrases referring to concepts of interest in 

unstructured text (13). In the previous example, “draining sinus tract” would be extracted as 

a concept associated with sinus tract. After concepts are extracted, they are normalized to a 

patient phenotypic profile. Non-negated and present findings from a patient phenotypic 

profile are summarized into final PJI status based on MSIS criteria. Figure 1 shows the 

process for extracting and classifying PJI status.

The development of the NLP algorithm was an iterative process involving informatics 

frameworks, cross-functional expert knowledge, and logic. The algorithm was first applied 

to the training data. Error cases (falsely classified) were manually reviewed by an orthopedic 

surgeon or an infectious diseases specialist. Keywords were manually curated through an 

iteratively refining process until all issues were resolved.

The NLP algorithm was implemented using the institutional NLP-as-a-service infrastructure 

(14) which utilizes big data platforms to support high-throughput NLP. The infrastructure 

contains an open-source NLP pipeline MedTaggerIE resource-driven open-source with an 

Unstructured Information Management Architecture (UIMA) (15)-based IE framework. The 

solution separates domain-specific NLP knowledge engineering from the generic NLP 

process, which enables words and phrases containing clinical information to be directly 

coded by subject matter experts. The full list of concepts, keywords, modifiers, and rules are 

listed in Table 1.
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Statistical Analysis

The performance of each NLP algorithm was assessed using the gold standard manually 

abstracted data from the institutional total joint registry. Performance was assessed through 

sensitivity (recall), specificity, positive predictive value (PPV or precision), negative 

predictive value (NPV) and f1-score (weighted harmonic mean of precision and recall 
and calculated as 2* [ (precision*recall)/(precision+recall)] (13). The error analysis was 

performed by an orthopedic surgeon through manually reviewing falsely predicted cases 

from EHRs.

RESULTS

Among the 48,962 primary TJA procedures at our institution, 338 PJI cases (occurring 

within 12 months of TJA) were randomly sampled. 2049 controls were matched on age, sex, 

and year of surgery. Age and date of surgery between cases and controls were similar with 

mean of 0 (0.60) years and 0 (0.23) years, respectively. 95% of controls were within 1 year 

of the cases on age and 0.57 years on surgery date. Among the 2387 cases and controls, 45% 

were primary total knee replacement and 55% were primary total hip replacement patients. 

Of the 338 PJI cases, 43% were diagnosed within the first month after surgery, and 66% 

were diagnosed within three months after surgery (cumulative). None of the PJI cases had 

infection in more than on joint.

The data element specific NLP algorithms were able to identify individual data elements 

very well except for the presence of sinus tract (Table 2). The performance of extracting the 

presence of sinus tract achieved f1-score of 0.771, sensitivity 0.887 and specificity 0.991. 

For presence of purulence, pathological documentation of inflammation and growth of 

cultured organisms, f1-scores ranged from 0.909 to 0.982, sensitivity ranged from 0.833 to 

1.000, and specificity ranged from 0.947 to 1.000. These results demonstrated a good 

feasibility of an automated PJI algorithm. The final PJI algorithm that combined the four 

data elements to identify patients with PJI based on MSIS criteria achieved the f1-score, 

sensitivity, specificity, PPV and NPV of 0.911, 0.887, 0.991, 0.937, and 0.984, respectively 

(Table 3).

DISCUSSION

The systematic identification of patients with PJI from EHRs can drastically improve the 

effectiveness and efficiency of chart review for clinical quality improvement, clinical 

research, and registry development. In our study, we developed and evaluated an NLP 

algorithm that identified patients with PJI from EHRs. The evaluation statistics showed a 

high performance, validating the proof-of-concept for this application.

The combination of multiple EHR sources and comprehensive MSIS criteria enhances the 

high stability of the PJI phenotyping algorithm described in this study. The PJI algorithm 

was developed using four different clinical report types (infectious disease consultation 

notes, operative notes, pathology reports, and microbiology reports) and seven MSIS 

criteria. These individual features such as laboratory values, documentation of a sinus tract 

communicating with the arthroplasty, pathologic evidence of inflammation, and the presence 
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of purulent materials are then aggregated to generate a positive or negative determination. 

This aggregation minimizes the variation caused by any inherent characteristics of individual 

features and allows the algorithm to remain robust.

Although the overall performance of the PJI algorithm was robust (Table 2), we found it 

challenging to extract some of the concepts, particularly the first MSIS major criteria – 

presence of sinus tract communicating with the joint. This was due to high variation in 

description of sinus tract in clinical and surgical notes. There are many different ways to 

express this finding in clinical documentation. For example, a positive indication can be 

expressed as “fluid tracking all the way to the joint.” Similarly, it can also be expressed as 

“there was a rent in the fascia.” Both sentences share the same semantic meaning but 

different syntactic structures. Our iterative chart review and rule refining process helped 

capture the majority of the cases. However, around 25% of expressions were still missed. We 

plan to address the challenge through leveraging statistical machine learning, a method that 

can learn patterns without explicit programming through learning the association of input 

data and labeled outputs (16, 17). We also identified that not all data elements were 

systematically documented for every patient. For example, orthopedic surgeons or infectious 

diseases specialists do not strictly follow all MSIS criteria to make diagnostic decisions. In 

addition, we found that some cases have minor data quality issues including abstraction 

errors from the registry and missing laboratory results.

Our study has potential limitations. First, despite the fact that we limited the search to a 

specific time range, inaccurate information from the heterogeneous EHR may still be copied 

and used. Furthermore, cases were restricted to those diagnosed within 12 months after 

index TJA. This time frame was chosen for convenience. The algorithm can 
theoretically be applied to other times frames both prospective and retrospectively and 
even as a real time screening tool. It should be noted that applying the algorithm to a 
longer time frame may pose additional complexity because a patient may experience 
multiple different procedures that makes it difficult to correctly associate a given TJA 
with a corresponding PJI. Second, despite the high feasibility of detecting PJI from EHR, 

the performances of the algorithm are limited by the number of positive cases. Additional 

data are required to have a comprehensive evaluation of the system. Third, the algorithms 

were only evaluated using datasets from one institution, and therefore, the generalizability of 

the systems may be limited. In future studies, we plan to validate and refine the algorithm in 

other health care systems.

In conclusion, PJI is a common complication following TJA, and our results indicate that it 

is feasible to ascertain both structured and unstructured PJI data elements in an automated 

fashion using rule-based natural language processing algorithms. These algorithms offer 

great potential to augment data collection capabilities for clinical and research purposes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Process for Extracting and Classifying PJI Status
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Table 1.

PJI Keywords and Rules for Concept Extraction.

Confirmation keywords Rules Data sources

Purulent Material: purulence; purulent; purulently; purulent-appearing;
Drain: abscess drained; abscessed drained; abscesses drained; drain 
abscesses; drained abscess; drained abscesses; draining abscesses;
Fluid: fluid cloudy; turbid fluid; yellowish fluid; infected fluid collection; 
cloudy looking fluid; brown yellow discharge; cloudy serous fluid; 
serosanguineous fluid; greenish fluid; draining cloudy fluid; cloudy fluid; 
aspiration cloudy
Negation: minor amount of; slightly; nothing

Positive purulent material:
• Mention of Purulent Material
• Mention of Drain
• Mention of Fluid AND NOT Negation 
(within 3-word distance)

Operative report; 
ID consultation 
notes

Acute inflammation: acute inflammation; acute inflammatory cells; acute 
inflammatory debris
Negation: looking for

Positive acute inflammation:
• Mention of Acute Inflammation 
(within 8-word distance)

Pathology 
Report

Sinus Tract: sinu tract; sinus tract; sinus tracts; sinus track; draining sinus; 
fistulization tract; fistulizing tract; fistulous tract; fistulous tracts; sinus drain; 
sinus draining; sinus-draining; sinus drainage; draining chronic sinus;
Communication: communicated; communication; communicate; tracked 
down; tracking all the way; pinhole leaking; coming from deep
Joint and Tissue-related: calf; cavity; joint; deep; tissue; periprosthetic; 
fracture; hip; knee; femur; arthroplasty
Fascia: fascia
Size of Defect: cm; -cm; 1-cm; 2-cm
Surgical Complication: rent; defect; dehiscence; exposing; large hole; not 
well sealed
Negation: completely sealed; no further fluid; low threshold to open; well-
sealed; closed

Positive sinus tract:
• Mention of Sinus Tract
• Mention of (Fluid AND 
Communication AND Joint and Tissue-
related AND NOT Negation) within 5-
word distance
• Mention of Fascia AND Size of Defect 
AND NOT Negation
• Mention of Surgical Complication 
AND Fascia AND NOT Negation

Operative report, 
ID consultation 
notes

Bacteria: streptococcus agalactiae; staphylococcus epidermidis; 
staphylococcus aureus; pseudomonas aeruginosa; proteus mirabilis; 
enterococcus sp; staphylococcus coagulase negative; actinomyces neuii; 
finegoldia magna; clostridium perfringens; clostridium bifermentans; 
klebsiella pneumoniae complex; escherichia coli; streptococcus beta 
hemolytic group b; small nonsporeforming gpb res coryne sp not c jeikeium; 
corynebacterium striatum; peptoniphilus sp; helcococcus sueciensis; bacillus; 
propionibacterium acnes; enterococcus faecalis; candida albicans; 
basidiomycete; peptostreptococcus sp; peptostreptococcus magnus; lelliottia 
enterobacter amnigena; lelliottia (enterobacter) amnigena
Anatomic: leg; hip; joint; knee; femur; femoral; synovial; cartilage; 
acetabulum; trochanter; pelvis; buttock; left aspirate; right aspirate
Soft Order Number: retrieve from laboratory

One positive culture:
• Bacteria AND Anatomic AND (One 
unique) Soft Order Number

Microbiology 
Report

*
All findings need to be within 180 days after the TJA surgery; Generic negation status from MedTaggerIE needs to be applied to all findings.
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Table 2.

Concordance in PJI Status between NLP and gold standard

PJI Status / Data Element F1-score Sensitivity Specificity PPV NPV

 Sinus Tract 0.771 0.730 0.951 0.818 0.921

 Purulence 0.946 0.940 0.947 0.951 0.935

 Pathology Inflammation 0.909 0.833 1.000 1.000 0.944

 Growth of Cultured Organisms 0.982 1.000 0.998 0.965 1.000

PJI (n = 1179) 0.911 0.887 0.991 0.937 0.984

PPV positive predictive value, NPV negative predictive value
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Table 3.

Confusion Matrix for PJI detection.

Gold Standard → NLP 
↓

Yes No Total

Yes 133 9 142 Positive predictive value (Precision) 
133/142=0.937

No 17 1020 1037 Negative predictive value 
1020/1037=0.984

Total 150 1029 1179 F1 score=0.911

Sensitivity (recall) 
133/150=0.887

Specificity 1020/1029=0.991
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