Skip to main content
. 2021 Jan 20;10:586292. doi: 10.3389/fonc.2020.586292

Table 5.

Confusion matrix of the classification of superpixels using the optimized Xception network in triple-negative breast cancer patients in six categories: tumor, necrosis, cluster of lymphocytes (Lym), stroma, fat, and lumen/empty space (separate test set of five whole-slide images).

Tumor Necrosis Lym Stroma Fat Empty space
Tumor 1830 13 15 42 0 0
Necrosis 50 1446 2 320 0 0
Lym 4 2 705 10 0 0
Stroma 42 120 20 3836 0 1
Fat 0 0 0 0 562 5
Empty space 0 0 0 0 67 1257

Overall accuracy = 93.1%, average precision = 93.9%, average recall = 93.6%.

The bold values indicate the correct predictions of the network.