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Abstract

Lyme disease is the most common vector-borne disease in temperate zones and a growing public 

health threat in the United States (US). The life cycles of the tick vectors and spirochete pathogen 

are highly sensitive to climate, but determining the impact of climate change on Lyme disease 

burden has been challenging due to the complex ecology of the disease and the presence of 

multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county-

level Lyme disease case data in a panel data statistical model to investigate prior effects of climate 

variation on disease incidence while controlling for other putative drivers. We then used these 

climate-disease relationships to project Lyme disease cases using CMIP5 global climate models 

and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual variation in 

Lyme disease incidence is associated with climate variation in all US regions encompassing the 

range of the primary vector species. In all regions, the climate predictors explained less of the 

variation in Lyme disease incidence than unobserved county-level heterogeneity, but the strongest 

climate-disease association detected was between warming annual temperatures and increasing 

incidence in the Northeast. Lyme disease projections indicate that cases in the Northeast will 

increase significantly by 2050 (23,619 ± 21,607 additional cases), but only under RCP8.5, and 

with large uncertainty around this projected increase. Significant case changes are not projected 

for any other region under either climate scenario. The results demonstrate a regionally variable 

and nuanced relationship between climate change and Lyme disease, indicating possible nonlinear 

responses of vector ticks and transmission dynamics to projected climate change. Moreover, our 

results highlight the need for improved preparedness and public health interventions in endemic 
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regions to minimize the impact of further climate change-induced increases in Lyme disease 

burden.

Keywords

Lyme disease; climate change; Ixodes scapularis; Ixodes pacificus; least squares dummy variables; 
disease projections

Introduction

Arthropod-transmitted pathogens pose a severe and growing threat to global public health 

(World Health Organization 2014). Because vector life cycles and disease transmission are 

highly sensitive to abiotic conditions (Mattingly 1969, Sonenshine and Roe 2013), climate 

change is expected to alter the magnitude and geographic distribution of vector-borne 

diseases (Kilpatrick and Randolph 2012, World Health Organization 2014). Climatic 

changes, in particular warming temperatures, have already facilitated expansion of several 

vector species (e.g., Purse et al. 2005, González et al. 2010, Roiz et al. 2011, Clow et al. 

2017a), and have been associated with increased vector-borne disease incidence (e.g., 

Loevinsohn 1994, Subak 2003, Hii et al. 2009). Identifying areas of high risk for current and 

future vector-borne disease transmission under climate change is critical for mitigating 

disease burden. However, the presence of interacting drivers of disease transmission such as 

land use change and globalization, and the complex ecology of vector-borne diseases make 

the effort to measure and predict effects of climate on vector-borne disease incidence 

challenging (Rogers and Randolph 2006, Tabachnick 2010, Mills et al. 2010, Ostfeld and 

Brunner 2015, Lafferty and Mordecai 2016).

This challenge is particularly apparent in the case of Lyme disease, the most common 

vector-borne disease in temperate zones (Kurtenbach et al. 2006, Rizzoli et al. 2011, 

Rosenberg et al. 2018), because transmission depends on a complex sequence of biotic 

interactions between vector and numerous host species that may respond differently to 

environmental change (Ostfeld 1997). In the United States (US), Lyme disease is caused by 

the bacteria Borrelia burgdorferi, and is vectored by two tick species: Ixodes scapularis in 

the eastern and midwestern US and Ixodes pacificus in the western US. After hatching from 

eggs, both tick species have three developmental stages—larva, nymph, and adult—during 

which they take a single blood meal from a wide range of vertebrate hosts before 

transitioning to the next developmental stage or reproducing (Sonenshine and Roe 2013). 

This life cycle takes 2–3 years to complete, 95% of which is spent at or below the ground 

surface in diapause, seeking a host, digesting a blood meal, or molting (i.e., off the host) 

(Sonenshine and Roe 2013, Ostfeld and Brunner 2015).

Given their long life spans, ectothermic physiology, and high degree of interaction with the 

physical environment, tick life cycles are sensitive to changes in climate and weather 

conditions (Sonenshine and Roe 2013). Prior research has demonstrated that temperature 

and moisture strongly influence tick mortality, development, and host-seeking abilities 

(reviewed in Ostfeld and Brunner 2015, Ogden and Lindsay 2016). In particular, both low 

and high temperatures decrease I. scapularis and I. pacificus survival and host-seeking 
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activity (Lindsay et al. 1995, Vandyk et al. 1996, Padgett and Lane 2001). Further, cool 

temperatures prolong tick development and increase generation times, leading to greater 

proportional mortality before reproduction (Peavey and Lane 1996, Ogden et al. 2004, 

2006). Rainfall and moisture availability also influence host-seeking activity in nonlinear 

ways. Low humidity exposure substantially increases tick mortality and inhibits host-seeking 

activity (Stafford 1994, Lane et al. 1995, Vail and Smith 1998, Schulze et al. 2001, Rodgers 

et al. 2007, Nieto et al. 2010, Ginsberg et al. 2017, MacDonald et al. 2019b). To avoid 

desiccating conditions, Ixodid ticks often modify their questing behavior to remain closer to 

the moist vegetative surface, or return frequently to rehydrate, both of which decrease the 

probability of obtaining a blood meal and thereby limiting survival and reproduction 

(Randolph and Storey 1999, Prusinski et al. 2006, Sonenshine and Roe 2013, Arsnoe et al. 

2015, McClure and Diuk-Wasser 2019). However, heavy rainfall may also directly impede 

tick host-seeking (Randolph 1997). Given these physiological relationships, temperature and 

precipitation are important predictors of these tick species’ latitudinal and altitudinal range 

limits (McEnroe 1977, Estrada-Peña 2002, Brownstein et al. 2003, Ogden et al. 2005, 

Leighton et al. 2012, Berger et al. 2014, Eisen et al. 2016, Hahn et al. 2016), and northward 

range expansion of I. scapularis has been associated with warming temperature (Ogden et al. 

2014b, Clow et al. 2017b, 2017a).

Yet despite well-known physiological relationships between specific climate variables and 

aspects of tick biology, and strong evidence of relationships between climate and tick range 

limits, it remains unclear how these effects translate into Lyme disease incidence - the 

outcome of interest to public health - and how broadly they apply across biogeographically 

distinct US regions. However, associations between climate and Lyme disease incidence are 

difficult to measure given the influence of many non-climate factors such as changing 

physician awareness, host movement, and human behavior (Morshed et al. 2006, Randolph 

2010, Ostfeld and Brunner 2015, Kilpatrick et al. 2017, Scott and Scott 2018). A handful of 

prior studies have attempted to isolate the effect of climate on incidence, but have been 

limited in geographic or temporal scope, and/or not controlled for confounding drivers of 

incidence, leading to conflicting results about the role of climate change on transmission 

(Subak 2003, McCabe and Bunnell 2004, Schauber et al. 2005, Burtis et al. 2016, Dumic 

and Severnini 2018). As a result, our ability to predict effects of future climate change on 

Lyme disease incidence remains limited.

Here, we leverage an 18-year county-level Lyme disease case reporting dataset and explicitly 

control for other drivers of disease burden to ask: How has interannual variation in climate 

conditions contributed to past changes in Lyme disease incidence across distinct US regions? 

We include climate variables capturing changes in temperature and precipitation conditions 

and investigate how relationships between climate and Lyme disease outcomes vary across 

different regions of the US (i.e., the Northeast, Midwest, Southeast, Southwest, Pacific 

Southwest, and Pacific). We hypothesize that: a) warmer temperatures in northern regions 

and b) spring precipitation in all regions promote tick survival and therefore increase Lyme 

disease incidence, while c) hot, dry conditions during the questing period decrease tick host-

seeking activity, survival and disease incidence. To avoid drawing spurious conclusions 

about the effects of climate, we analyze the effects of other known and potential drivers of 

disease incidence such as changing forest cover, public awareness of tick-borne disease, and 
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health-seeking behavior, and use a statistical approach that explicitly accounts for 

unobserved heterogeneity in disease incidence between counties and years. We then use 

these modeled, regionally-specific relationships between climate and Lyme disease burden 

to investigate projected changes in US Lyme disease incidence under future climate 

scenarios. We report the projected change in Lyme disease incidence for individual US 

regions in 2040 – 2050 and 2090 – 2100 relative to hindcasted 2010 – 2020 levels under two 

potential climate scenarios: RCP8.5, which reflects the upper range of the literature on 

emissions, and RCP4.5, which reflects a moderate mitigation scenario (Hayhoe et al. 2017).

Materials and Methods

Lyme disease case data

We obtained annual, county-level reports of Lyme disease cases spanning from 2000 to 2017 

from the US Centers for Disease Control and Prevention (CDC) (see Supporting 

Information). These disease case data provide the most spatially-resolved, publicly available 

surveillance data in the US. Raw case counts were converted to incidence using annual 

county population sizes from the US Census Bureau (USCB) and were expressed in cases 

per 100,000 people.

Climate data

An overwhelming number of climate variables, such as the mean, range, and maximum or 

minimum temperature or precipitation at different time scales, could conceivably affect 

Lyme disease transmission. To reduce the probability of identifying significant but spurious 

relationships between climate and incidence, we limited the variables considered here to: 

average winter temperature lagged 1.5 years; average spring precipitation; the number of 

hot, dry days in May – July (the nymphal tick questing period); cumulative average 

temperature; total annual precipitation; daily temperature variability; and daily precipitation 

variability (Table 1). These variables have either been previously associated with variation in 

Lyme disease incidence, tick range limits or abundance, or, in the case of daily temperature 

and precipitation variability, are grounded in physiological relationships between climate 

and tick life history but have not been previously tested. In particular, interannual variation 

in Lyme disease incidence in endemic regions has been positively associated with lagged 

average winter temperature (Subak 2003), average spring precipitation (McCabe and 

Bunnell 2004), and negatively associated with the number of hot, dry days in May – July 

(Burtis et al. 2016). A measure of cumulative annual temperature (degree days > 0°C) has 

been associated with I. scapularis population establishment and abundance (Jones and Kitron 

2000, Ogden et al. 2004, 2006, Clow et al. 2017b), and cumulative annual precipitation has 

been associated with larval tick abundance (Jones and Kitron 2000). Frequent variation in 

temperature can decrease tick survival due to the energetic costs of adapting to changing 

conditions (Gigon 1985, Herrmann and Gern 2013), thus daily temperature and precipitation 

variability were included here to explore whether this effect scaled to affect transmission 

risk. Details about how these variables were calculated and further justification for their 

biological relevance are listed in Table 1.
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For past climate conditions, we obtained daily, county-level average temperature and total 

precipitation data from the National Oceanic and Atmospheric Administration (NOAA) 

weather stations accessed via the CDC’s Wide-ranging Online Data for Epidemiological 

Research (WONDER) database. To estimate future climate variables, we used NASA 

Goddard Institute for Space Studies CMIP5 data on modeled temperature and precipitation 

(Schmidt et al. 2014). Specifically, we obtained estimates of daily near-surface air 

temperature and precipitation through 2100 under the upper climate change scenario 

(RCP8.5) and a moderate climate change scenario (RCP4.5) (van Vuuren et al. 2011, Taylor 

et al. 2012). These climate scenarios are relatively similar in the radiative forcing levels 

assumed through 2050 but diverge substantially in the latter half of the century. Climate 

estimates from these two scenarios are provided at a 2° × 2.5° resolution; values were then 

ascribed to counties based on county latitude and longitude (see Figure S1). Mean values for 

hindcasted and projected climate variables for each region are listed in Table S1.

Awareness data

We controlled for variation in public awareness of ticks and Lyme disease using data from 

Google trends on the frequency of “ticks” as a search term. We obtained data on “ticks” 

search frequency, normalized for a given location and year, for 2004 (the first year the data 

were available) to 2017. We also initially used “tick bite”, and “Lyme disease” as search 

terms, but found that these generated nearly identical coefficient estimates, thus we 

proceeded to use only the “ticks” search term as a predictor. Search frequency data were 

aggregated at the designated market area (DMA), the smallest spatial scale available. Search 

frequency values for a given DMA, which contained an average of 14 counties, were applied 

equally to all counties therein. We used a 1-year lagged version of the tick search variable, 

as awareness of tick-borne disease is likely endogenous to incidence (i.e., higher Lyme 

disease incidence likely contributes to higher tick search frequency and awareness) and 

using predetermined values reduces endogeneity concerns (Bascle 2008).

Health-seeking behavior data

We explicitly controlled for variation in health-seeking behavior, previously posited as a 

driver of Lyme disease reporting (Armstrong et al. 2001, Wilking and Stark 2014) by 

including health insurance coverage and poverty as potential predictors. Given the logistical 

and financial challenges in obtaining a Lyme disease diagnosis and treatment (Johnson et al. 

2011, Adrion et al. 2015), access to health care services may play a role in whether a Lyme 

disease case is identified and reported. We obtained data on health insurance coverage, 

defined as the percent of county residents with any form of health insurance coverage in a 

given year, for 2005 to 2017 from USCB’s Small Area Health Insurance Estimates (SAHIE) 

program. We obtained data on poverty, defined as the percent of county residents living in 

poverty in a given year, for 2000 to 2017 from the USCB.

Land cover data

We included two land cover variables putatively associated with higher tick-borne disease 

risk: the percent forest in a given county and year, and the percent mixed development 

(Brownstein et al. 2005b, Dister and Fish 1997, Frank et al. 1998, Glass et al. 1995, Killilea 

et al. 2008, MacDonald et al. 2019a). We calculated these variables using 30-m resolution 
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land cover data from the US Geological Survey (USGS) National Land Cover Database 

(NLCD) (Yang et al. 2018). Percent forest included any deciduous, evergreen, or mixed 

forest. Mixed development referred to the ‘Developed, Open Space’ NLCD category, 

defined as areas with a mixture of constructed materials and vegetation, including lawn 

grasses, parks, golf courses, and vegetation planted in developed settings. We calculated 

county-level values of these land cover variables for 2001, 2004, 2006, 2008, 2011, 2013, 

and 2016 as these are the only years the NLCD dataset is currently available.

To estimate future land cover variables, we used land cover projections generated by the 

USGS Earth Resources Observation and Science Center (EROS) using the IPCC Special 

Report on Emissions Scenarios (SRES) (Sohl et al. 2014). Although newer socioeconomic 

pathways have recently been developed (i.e., the “Shared Socioeconomic Pathways”), these 

scenarios have not yet been incorporated into US land cover projections (Sohl 2019). We 

used modeled land cover data under SRES B1, which reflects lower urban development, to 

align with the moderate climate change scenario (RCP4.5), and SRES A1B, which reflects 

higher urban development and conversion of natural lands, to align with the upper climate 

change scenario (RCP8.5) (Nakicenovic et al. 2000, Rogelj et al. 2012, Sohl et al. 2014). 

Using these data, we again calculated annual, county-level values of percent forest cover and 

mixed development for 2040 – 2050 and 2090 – 2100. However, as the ‘mixed development’ 

land cover class was not included in the projected data, we instead used the ‘mechanically 

disturbed’ public or private land cover class (see Supporting Information).

Regional divisions

Given the large variation in climatic conditions across the US, as well as variation in 

ecological dynamics of tick-borne diseases such as tick species identity, tick densities, tick 

questing behavior, and host community composition (Eisen et al. 2016, Kilpatrick et al. 

2017, Ostfeld 1997, Salkeld and Lane 2010), we examined regional differences in climate-

disease relationships. We used the US Fish & Wildlife Service regional boundaries to divide 

the US into the following seven regions for analysis: Northeast, Midwest, Mountain Prairie, 

Pacific, Pacific Southwest, Southwest, and Southeast (Figure 1). These regional divisions 

were selected as they roughly correspond to genetic structuring of I. scapularis and I. 
pacificus (Kain et al. 1997, 1999, Humphrey et al. 2010) and are likely distinct in 

environmental conditions and resources (Ricketts et al. 1999, Smith et al. 2018). These 

regional divisions are also similar to the nine ‘climatically consistent’ regions within the 

contiguous US identified by NOAA (Karl and Kloss 1984) but preserve larger regions in the 

South and Midwest to obtain higher power in the analysis. Further, each region contains only 

one vector species: I. scapularis in the Northeast, Midwest, Southeast, and Southwest, and I. 
pacificus in the Pacific and Pacific Southwest (Dennis et al. 1998). As neither species has an 

established presence in the Mountain Prairie, this region was removed from the analysis. 

Regional descriptions, including the population size (as of 2017), the number of counties, 

and the average climate conditions, are provided in Table S2.

Statistical analysis

We used a least squares dummy variable (termed “fixed-effects” in econometrics) regression 

approach to estimate changes in Lyme disease incidence using repeated observations of the 
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same groups (counties) from 2000 – 2017 (Larsen et al. 2019). This class of statistical 

approaches has been developed to isolate potential causal relationships in the absence of 

randomized experiments where such experiments are not feasible (Larsen et al. 2019, 

MacDonald and Mordecai 2019). We included ‘county’ and ‘year’ dummy variables to 

control for any unobserved heterogeneity that may influence reported Lyme disease 

incidence in a particular county across all years (e.g., geographic features, number of health 

care providers), or influence Lyme disease in all counties in a given year (e.g., changes in 

disease case definition), respectively. All counties (n = 2,232) for which there were complete 

data on Lyme disease cases, climate, and other predictors were included.

To account for regional variation in the predictors of tick-borne disease incidence (Wimberly 

et al. 2008, Raghavan et al. 2014), we ran separate models for each US region (see Methods: 

Regional divisions). We used stepwise variable selection, in which variables were added if 

they reduced model Akaike information criterion (AIC) by two or more, to identify the 

climate, land cover, and non-ecological predictors that best explained Lyme disease 

incidence in each region (Yamashita et al. 2007, Zhang 2016). We assessed the 

multicollinearity of these models by calculating the variance inflation factor (VIF). No 

predictors had VIF values greater than 10 after the stepwise variable selection procedure, 

thus we did not remove any variables from the final models due to high collinearity (Hair et 

al. 2014).

We accounted for spatial and temporal autocorrelation of model errors by using cluster-

robust standard errors. This nonparametric approach accounts for arbitrary forms of 

autocorrelation within a defined “cluster” to avoid misleadingly small standard errors and 

test statistics (Cameron and Miller 2015). We specified clusters as US Agricultural Statistics 

Districts (ASDs), which contain on average 9.9 ± 5.2 counties. These districts contain 

contiguous counties grouped by similarities in soil type, terrain, and climate such that each 

district is more homogenous with respect to these characteristics than the state as a whole 

(USDA 2018). Accounting for spatial and temporal correlation in this way may help to 

account for ecological similarities between neighboring counties not captured in the climate 

and land cover predictors. Along these lines, ASDs have previously been used to account for 

spatial autocorrelation when investigating relationships between forest fragmentation and 

Lyme disease incidence at the county-level (MacDonald et al. 2019a). When reporting on 

the significance of a predictor, we use standard errors and p-values calculated using this 

correction. To ensure our results were robust to cluster specification, we repeated the model 

runs using county as the cluster unit (Table S3). All analyses were conducted in R version 

3.6 (R Core Team 2017)

To capture any nonlinear relationships between climate predictors and Lyme disease 

incidence, we generated models using linear and quadratic versions of the climate variables 

as potential predictors. Specifically, we used the stepwise variable selection approach 

starting with linear and quadratic versions of each climate variable to determine the best fit 

model for each region. We compare model accuracy and the output of these models to those 

using only linear versions of climate predictors to assess the sensitivity of our results to the 

functional form of climate-disease relationships (see Methods: Model validation).
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Lyme disease projections

We projected Lyme disease incidence using the climate and land cover variables included in 

the best fit model for each region as well as a county dummy variable. Tick search 

frequency, poverty, and health insurance coverage were not included because annual, 

county-level projections for these variables are unavailable. Using these models, we obtained 

regional estimates for Lyme disease incidence under the upper and moderate climate change 

scenarios (RCP8.5 and RCP4.5) for 2040 – 2050 and 2090 – 2100. We calculated county-

level changes in Lyme disease incidence by subtracting modeled incidence for 2010 – 2020 

from projected incidence. Using modeled incidence for 2010 – 2020, rather than true case 

data for the years it was available, allowed for more direct comparisons between prior and 

projected cases because these estimates were made using the same climate and land cover 

data.

We converted projected Lyme disease incidence to cases under two differing assumptions 

about county population sizes. In the first calculation, we account for projected population 

growth by using county-level population projections under the Shared Socioeconomic 

Pathway “Middle of the Road” scenario (SSP2) as generated by Hauer 2019 (Samir and Lutz 

2017). In the second, we assume that county population sizes remained the same as those in 

2017, the last year of available county-level Lyme disease case reports. We focus our results 

and discussion on the projections made using population size projections, but compare 

results from these two approaches to ensure that changes in projected Lyme disease case 

counts resulted from predicted changes in incidence rather than projected population growth 

or decline. We report point estimates and 95% prediction intervals when discussing 

projected changes in Lyme disease case counts.

Model validation

To evaluate predictive model accuracy, we compared hindcasted Lyme disease incidence 

under both emissions scenarios to observed values for 2008 – 2017 (Judge et al. 1985, Clark 

et al. 2001). We compared model accuracy under four model specifications to check the 

robustness of the climate-disease relationships. In the first specification, each regional model 

contained the predictors (climate, land cover, and non-ecological variables) determined 

through variable selection (see Methods: Statistical analysis) as well as county and year 

dummy variables. In the second specification, each regional model contained the same 

predictors as in the first specification, but only linear versions of the climate predictors were 

included. This is to assess the sensitivity of our results to the functional form of climate-

disease relationships. Under the third specification, regional models contained the same 

climate and non-climate predictors as in the first specification but no dummy variables. 

Under the fourth specification, regional models contained all possible climate and non-

climate variables, and the county and year dummy variables. Using each of these 

specifications, we created models of Lyme disease incidence on a training dataset containing 

a randomly selected 75% subset of counties and years and used the withheld 25% of 

observations for validation (Hijmans 2012, Caldwell et al. 2016). To evaluate the 

performance of each model specification, we calculated the root-mean-square error (RMSE) 

and correlation coefficient between projected and observed Lyme disease incidence for a 

given county and year between 2008 – 2017 (the years with complete data for all predictors) 
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for each regional model. We also compared estimated average annual incidence to observed 

average annual incidence for each model specification and each region. We used the 

modeled climate and land cover data when hindcasting as these datasets were used for Lyme 

disease projections.

Results

Climate and Lyme disease incidence

At least one climate variable was included in the best fit model of Lyme disease incidence 

for all US regions with vector species present (Table 2). However, the specific climate 

variable(s) included in the model varied between regions and were often not significant 

predictors of incidence. As hypothesized, cumulative temperature was a significant, positive 

predictor in the Northeast, while the number of hot, dry days in May - July was a significant, 

negative predictor in this region (Table 2). Hot, dry days was also a significant, negative 

predictor in the Midwest. In the Southeast, daily temperature variability was a significant, 

positive predictor of incidence. In all other regions, the temperature and/or precipitation 

variables included in the best fit models were not statistically significant predictors. Further, 

for all regions, the climate predictors explained relatively little of the variation in Lyme 

disease incidence compared to the county dummy variables (Table 2). In many cases, 

quadratic versions of climate predictors were included in the best fit model for a particular 

region, indicating nonlinearity in climate-disease relationships (Table 2). For example, the 

number of hot, dry days, total annual precipitation, and temperature variability were all 

nonlinear predictors in the best fit model for the Northeast.

Non-climate predictors and Lyme disease incidence

For all regions, the best fit model of Lyme disease incidence included the 1-year lagged tick 

search frequency as well one health-seeking predictor and/or a land cover variable (Table 2). 

Lagged tick search frequency was a significant, positive predictor in the Northeast, and had 

regionally variable, and non-significant effects in other regions. Poverty was negatively 

associated with Lyme disease incidence in the Northeast, and positively associated with 

incidence in the Midwest and Southwest, but was not a significant predictor in any of these 

models. Health insurance coverage was a non-significant, negative predictor of Lyme disease 

in the Southeast. Forest cover was included in all regional models except the Southwest, but 

had regionally variable effects and was only a significant predictor in the Pacific. Mixed 

development cover was a positive predictor in the Southeast and Southwest, but only 

significant in the Southeast. The above non-climate predictors were included in each 

regional model of incidence along with county and year dummy variables. The majority of 

the variation in incidence for each region was explained by the county dummy variable 

(Table 2), indicating that there was a great deal of unobserved county-level heterogeneity 

driving Lyme disease incidence that was captured by the dummy variables. However, the 

estimated effect sizes of the predictors are the marginal effects of deviations from county- 

and year-means, meaning the total effect of a given variable, such as forest cover, may be 

larger if much of the variation is captured by the county fixed effects.
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Model Validation

Under the main model specification, hindcasted Lyme disease incidence matched the 

observed values with reasonable accuracy in the high incidence regions (Table 3 and Figure 

S1). In the Northeast and Midwest, the correlations between estimated Lyme disease 

incidence for a given county and year and the observed incidence were 0.85 and 0.90, 

respectively. Model accuracy was lower in the Pacific, Pacific Southwest, Southwest, and 

Southeast, where incidence is much lower (r = 0.40, 0.26, 0.07, 0.32, respectively). 

However, the estimated annual average Lyme disease incidence (i.e., average incidence for a 

given region between 2008 – 2017) closely matched the observed annual average for all 

regions (Table 3). For each region, the estimated incidence was within 13% of the observed 

incidence, and was within 5% for the Northeast specifically.

Model accuracy also varied across the four model specifications (Table 3). In particular, 

model specifications with dummy variables outperformed (i.e., lower RMSE, higher 

correlation coefficients) those without. Models including only linear versions of climate 

predictors (i.e., model specification two) along with non-climate and dummy variables 

performed similarly to the main model specification but with slightly lower correlation 

coefficients and higher RMSE in the Northeast and Midwest, where the majority of cases 

occur. Coefficient estimates and Lyme disease projections using this model specification are 

shown in Tables S4 and S5. Models including all potential climate and non-climate 

predictors along with dummy variables had similar accuracy to the main model specification 

and model specification two (Table 3). We designated the simpler, variable selection-based 

model specification using nonlinear climate predictors (where applicable) as the main model 

specification to minimize overfitting (Allen and Fildes 2001, Wenger et al. 2011, Wenger 

and Olden 2012), and to achieve the greatest accuracy in high Lyme disease incidence 

regions.

Projected Lyme disease incidence

Under the upper climate change scenario (RCP8.5), the number of Lyme disease cases in the 

Northeast is projected to increase by 23,619 ± 21,607 by 2040 – 2050 and 61,776 ± 27,578 

by 2090 – 2100 (Figures 2 and 3, Table 4). Non-significant decreases in the Midwest and 

increases in the Southeast were also projected under this scenario, and minimal, non-

significant changes were projected for other regions (Table 4). By contrast, under the 

moderate climate change scenario (RCP4.5), no regions were projected to significantly 

increase or decrease. Non-significant increases in the Midwest, and non-significant increases 

or decreases, depending on the decade, were projected for the Northeast, with minimal 

changes elsewhere. Given the regionally variable projections and the large prediction 

intervals around all point estimates, total US Lyme disease incidence is not projected to 

change significantly under either climate scenario by 2040 – 2050 or 2090 – 2100 (Table 4).

These Lyme disease projections were qualitatively similar to those generated using only 

linear versions of the climate variables (Table S5). Under this model specification (model 

specification two, see Methods: Model validation), the number of Lyme disease cases in the 

Northeast is projected to increase under the upper climate change scenario (21,467 ± 21,354 

by 2040 – 2050 and 42,538 ± 24,129 by 2090 – 2100), but not under the moderate climate 
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scenario. Non-significant decreases and increases in the Midwest were projected for the 

upper and moderate climate scenario, respectively, and non-significant changes in the US as 

a whole were projected under both scenarios and time periods. These results are all 

consistent with those generated under the main model specification, indicating that our 

projections are generally robust to the functional form of climate-disease relationships 

specified in the model. The one qualitative difference in results is the significant increase in 

cases in the Southeast under the upper climate change scenario (1,522 ± 1,213 by 2040 – 

2050 and 3,460 ± 1,736 by 2090 – 2100) under model specification two, which was 

marginally non-significant under the main model specification.

Lyme disease case projections made using county-level population size projections were 

similar to those using constant (i.e., 2017) population sizes. In particular, large but uncertain 

increases in Lyme diseases cases were still projected for the Northeast under the upper 

climate change scenario (18,885 ± 19,509 by 2040 – 2050 and 40,320 ± 21,886 by 2090 – 

2100) when assuming constant population sizes. This indicates that our results are generally 

robust to population size assumptions and are not solely driven by projected changes in 

human demography. However, because population growth is projected for the Northeast 

(Hauer et al. 2019; Table S7), projections made assuming constant population sizes are 

smaller (but not significantly) than those using projected population sizes.

Discussion

Given the increasing rate of vector-borne disease emergence and re-emergence in recent 

decades, including Zika in Central and South America and tick-borne encephalitis in 

Europe, identifying the environmental drivers of vector-borne disease transmission has been 

a major research theme (Rogers and Randolph 2006, Kilpatrick and Randolph 2012, Lafferty 

and Mordecai 2016, Swei et al. 2019). Extensive prior research indicates that temperature 

and moisture conditions can impact vector life cycles, activity patterns, abundance, and 

range limits (reviewed in Ogden and Lindsay 2016). Yet despite clear relationships between 

specific features of climate and aspects of vector life cycles and biology, identifying how 

these relationships translate to affect disease incidence has remained challenging. Here we 

use 18 years of disease and climate data in a panel data statistical modeling approach to 

identify the impacts of climate change on human Lyme disease incidence across 

biogeographically distinct US regions. We find that climate was a predictor of interannual 

variation in Lyme disease incidence in all US regions with established vector species 

(Northeast, Midwest, Pacific, Pacific Southwest, Southwest, and Southeast), even after 

controlling for potentially confounding factors and spurious relationships spatially and 

temporally. However, the specific climate variable(s) that best predicted burdens varied 

between regions and had highly variable effect sizes and often nonlinear relationships with 

incidence. While these results underscore the complexity of climate-Lyme disease 

relationships, the specific associations observed here tended to reflect known relationships 

between climate and the life histories of the US vectors of Lyme disease, I. scapularis and I. 
pacificus.

The strongest climate-disease association detected was between warming annual 

temperatures and increasing Lyme disease incidence in the Northeast. Previous studies have 
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found that warming year-round temperatures at high latitudes contribute to more rapid tick 

development rates, increased survival, and I. scapularis range expansion (Clow et al. 2017a, 

Leighton et al. 2012, Lindsay et al. 1995, Ogden et al. 2004, Rand et al. 2004). This suggests 

warmer temperatures near the ticks’ northern range limit would promote Lyme disease 

transmission – an expectation empirically supported in this study. We also found a 

significant negative association between hot, dry conditions during the nymphal questing 

period (May – July) and incidence in the Northeast and Midwest. Prior studies indicate that 

desiccating conditions reduce tick questing activity, which can lead to decreased contact 

rates with larger vertebrate hosts, including humans (Randolph and Storey 1999, Prusinski et 

al. 2006, Sonenshine and Roe 2013). Further, Burtis et al. 2016 found the number of hot, dry 

days during this period was significantly negatively associated with I. scapularis questing 

density as well as Lyme disease incidence in the Hudson Valley, Southern New England, and 

northern New Jersey. Our work thus provides evidence that these prior relationships between 

desiccating conditions and tick questing behavior scale to incidence across the Northeast and 

Midwest. That this relationship was not observed or significant in the Southeast or 

Southwest is also consistent with prior evidence of differing questing behavior in northern 

and southern I. scapularis nymphs. Northern I. scapularis nymphs are much more likely to 

quest above the leaf litter, while southern I. scapularis nymphs primarily use habitats below 

the vegetative surface (Arsnoe et al. 2015). As this different questing behavior buffers 

southern I. scapularis from desiccating conditions, variation in the number of hot, dry days is 

less likely to impact tick-host contact rates and disease transmission here. Similar 

differences in questing behavior have been demonstrated between northern and southern 

population of I. pacificus (Lane et al. 2013, MacDonald and Briggs 2016), but we find no 

significant relationship between hot, dry days and incidence in the Pacific, potentially 

because low Lyme disease incidence in this region reduces the power to detect effects of 

variation in climate on incidence. Although we did find the expected negative relationship 

between hot, dry days and incidence in the Northeast and Midwest, we did not detect the 

hypothesized positive relationship between spring precipitation and Lyme disease incidence 

in any region. We did find a positive association in the Northeast and Pacific Southwest, but 

the association was not significant, and it was negative (but non-significant) in the Midwest 

and Southwest. This may be due to counteracting effects of precipitation on human behavior 

leading to reduced tick-human contact rates (Jaenson et al. 2012), independent of effects of 

precipitation on tick host-seeking suitability.

The associations between climate conditions and Lyme disease incidence found here were 

detected while rigorously controlling for non-climate predictors of disease as well as 

unobserved predictors that covary with climate at the county and year levels. In particular, 

we explicitly controlled for variation in human awareness of ticks, land use and land cover 

characteristics, proxies for health-seeking behavior, and other unobserved heterogeneity 

between US counties and years in our modeling approach. Increasing tick awareness, as 

determined by the frequency of tick-related Google searches, was generally positively 

associated with Lyme disease incidence, while land cover and health-seeking behavior 

predictors had regionally variable relationships. By controlling for these effects, we provide 

strong evidence that the positive association between warming temperatures and Lyme 

disease incidence in the Northeast found in this study is not simply driven by increasing 
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human awareness of tick-borne disease, temporal trends, or other concurrent changes as has 

been previously suggested (Morshed et al. 2006, Randolph 2010, Scott and Scott 2018). 

Further, the total effects of climate and land use predictors may be larger than those 

estimated here, because these ecological predictors may underlie some of the variation 

included in the county and year dummy variables.

While our statistical models included both climate and non-climate predictors of Lyme 

disease incidence, model accuracy varied widely between regions. Most notably, model 

accuracy was substantially greater for endemic regions (Northeast and Midwest), compared 

to low incidence (non-endemic) regions (Pacific, Pacific Southwest, Southwest, and 

Southeast) (Ciesielski et al. 1988). The relatively poor predictive accuracy in non-endemic 

regions could be due to higher misdiagnosis rates and/or higher travel-associated Lyme 

disease transmission (Eldin and Parola 2018, Parola and Paddock 2018) decoupling the 

relationship between local conditions and disease. However, evidence suggests that most 

Lyme disease transmission occurs in the peri-domestic environment, in which the county of 

transmission and reporting are likely to be the same (Falco and Fish 1988, Maupin et al. 

1991, Jackson et al. 2006, Connally et al. 2009). The lower predictive accuracy in these 

regions more likely reflects a lack of sufficient annual variation in Lyme disease incidence 

needed to detect effects of climate in these regions above and beyond the county and year 

fixed effects, and/or weaker effects of climate conditions on Lyme disease transmission 

relative to confounding drivers not included in our model such as host movement and 

community composition. In contrast, the largest effect of climate on disease transmission is 

expected at the edges of the climate suitability for transmission (Githeko et al. 2000). As 

portions of the Northeast and Midwest are near the I. scapularis northern range limit, the 

higher model accuracy here likely indicates stronger climate – Lyme disease relationships. 

Supporting this assertion, the climate predictors explained a relatively larger proportion of 

the variation in incidence in these regions.

Our Lyme disease projections, made using regionally-specific incidence models and 

projected climate and land cover data, suggest that climate change may lead to substantial 

increases in incidence in coming decades, but that these increases are largely concentrated in 

the Northeast, are highly uncertain, and depend upon the magnitude of climate change. In 

particular, under the upper climate change scenario (RCP8.5), Lyme disease cases in the 

Northeast are projected to increase by 23,619 ± 21,607 by 2040 – 2050 and 61,776 ± 27,578 

by 2090 – 2100 (Table 4). However, increases are not projected in the Northeast under the 

moderate climate change scenario (RCP4.5), nor for any other region under either scenario. 

Large increases in the Midwest under less severe warming are possible, as are large 

increases in total US cases under more severe warming, but these projections are non-

significant. While the significant increase in Lyme disease cases projected for the Northeast 

under RCP8.5 was robust to alternative model specifications and assumptions about county-

level population growth, the large prediction intervals around our point estimates for this 

region and all others indicate a wide range of potential disease outcomes under climate 

change.

These results indicate that climate change will likely contribute to increasing Lyme disease 

incidence in the Northeast, but the specific numerical projections should be interpreted with 
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caution. While significant increases were projected in the Northeast, many other factors 

contribute to Lyme disease transmission including host movement and community 

composition, and human avoidance behaviors (Ostfeld 1997, Brownstein et al. 2005b, 

Ogden et al. 2008, Brinkerhoff et al. 2011, Larsen et al. 2014, Berry et al. 2018, MacDonald 

et al. 2019a). Accordingly, we found that unobserved county-level heterogeneity, which 

would encompass these factors, was a predominant driver of incidence in each of our 

regional models. Thus, while climate may contribute to increasing Lyme disease incidence 

in northern regions, it may not be the dominant driver of future changes in Lyme disease. 

Further, while we examined the effects of two potential climate scenarios, uncertainty in 

these climate change projections was not incorporated into our predictive models and would 

contribute additional uncertainty in Lyme disease projections. Lastly, the projection models 

extrapolate from climate and disease relationships observed in the previous 18 years, 

assuming that these relationships can be extended to climate conditions not yet experienced. 

That is, we assume that the relationship between cumulative temperature, for example, and 

Lyme disease incidence in a given region will remain the same even as cumulative 

temperatures exceed prior values. This could generate inaccurate projections for regions near 

current tick upper thermal limits such as the Southeast and Southwest as further warming 

and drought here may reduce tick survival and host-seeking suitability (Vail and Smith 1998, 

Randolph and Storey 1999, Schulze et al. 2001, Berger et al. 2014, MacDonald et al. 2020). 

Generating more accurate projections for these regions would require experiments 

investigating effects of future temperatures on aspects of tick-borne disease transmission.

Despite these limitations and the large uncertainty in our Lyme disease projections, our 

results are consistent with a growing body of evidence linking increased Lyme disease risk 

with climate warming (Brownstein et al. 2005a, Burtis et al. 2016, Clow et al. 2017b, Dumic 

and Severnini 2018, Kilpatrick et al. 2017, Leighton et al. 2012, Ogden et al. 2008,2014b, 

Robinson et al. 2015, Subak 2003, Tuite et al. 2013). Specifically, our finding of climate 

change-induced increases in Lyme disease burden at higher latitudes, is consistent with prior 

studies projecting or observing increasing I. scapularis habitat suitability and range 

expansion under climate warming (Ogden et al. 2008, 2014a, McPherson et al. 2017). 

Similar range expansions have also been projected and observed for Ixodes ricinus, the 

European Lyme disease vector, under climate warming (Gray et al. 2009, Jaenson and 

Lindgren 2011, Lindgren et al. 2000, Porretta et al. 2013). Further, our finding that the 

projected changes in incidence depend on the degree of future warming is also consistent 

with prior work. I. scapularis range expansion and population growth, and the proportion of 

Eastern Canadians at risk for Lyme disease, are projected to be higher under upper climate 

change scenarios than under mitigation scenarios (Leighton et al. 2012, McPherson et al. 

2017). These results suggest that vector range expansions and future Lyme disease burdens 

depend in part on climate policy actions.

More generally, our results are consistent with expectations from vector thermal biology that 

suggest that warming temperatures generally increase transmission near the cold edge of a 

vector’s range limit, but may decrease or have variable effects elsewhere (Martens et al. 

1995, Ogden and Lindsay 2016, Lafferty and Mordecai 2016, Mordecai et al. 2019). For 

tick-borne diseases, as for other vector-borne diseases, multiple temperature-sensitive traits 

combine to influence transmission, including survival, development rates, and host-seeking 
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(Randolph et al. 2002, Ogden et al. 2004, Randolph 2004, Ogden and Lindsay 2016, Ogden 

2017). Nonlinear effects of temperature on these traits typically leads to vector-borne disease 

transmission peaking at intermediate temperatures and declining as temperatures approach 

lower and upper thermal limits (Mordecai et al. 2019). This suggests that climate warming 

would most strongly increase transmission near the lower thermal limits, such as in the 

Northeast, as was observed here. This further suggests the effects of climate warming would 

differ in magnitude and direction depending on the extent of warming, as seen in the 

Midwest region where non-significant increases were projected under the moderate climate 

change scenario while decreases were projected under the upper scenario. The theoretical 

expectations of nonlinear thermal responses therefore help to explain some of the context-

dependent effects of temperature found empirically in this study.

Conclusions

We demonstrate that interannual variation in Lyme disease incidence is associated with 

climate in all US regions with established vector species, independent of other drivers of 

disease risk and excluding potentially spurious relationships with county- and year-specific 

variation. The specific climate variable(s) associated with incidence and their effect sizes 

varied by region, but the strongest climate-disease association observed was between 

warming temperatures and increasing incidence in the Northeast. However, in all regions, 

climate explained less variation in incidence than unobserved county-specific heterogeneity, 

highlighting that climate is one of many factors influencing Lyme disease transmission. We 

project that future climate change could substantially increase Lyme disease burden in the 

Northeast in coming decades under an upper climate change scenario. Cases in the Northeast 

were not projected to increase under a moderate climate change scenario, highlighting the 

potential for climate change mitigation to protect human health by preventing further 

increases in Lyme disease incidence. However, the projected effects in this region and all 

others are highly uncertain, indicating a wide range of potential disease outcomes under 

climate change. Our projections provide an essential first step in determining broad patterns 

of Lyme disease risk under climate change, but ongoing surveillance efforts and mechanistic 

studies linking changes in vector ecology under climate change to human disease incidence 

should be conducted to refine these risk assessments.

Supplementary Material
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Figure 1. 
a) Regional boundaries designated by US Fish & Wildlife Service. These regions were used 

to analyze spatial variation in the effects of climate conditions on disease outcomes. Map 

recreated from: https://www.fws.gov/endangered/regions/index.html.Dashed black lines 

denote the approximate eastern boundary of Ixodes pacificus and western boundary of 

Ixodes scapularis based on distribution maps created by the CDC. b) Regional time series of 

log Lyme disease incidence (the number of cases per 100,000 people in the population) from 

2000 – 2017. The Mountain Prairie region is not shown here as it was removed from the 

analysis due to low vector presence at the start of the analysis period.
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Figure 2. 
Projected change in Lyme disease cases by region for 2040 – 2050 and 2090 – 2100 under 

the a) upper (RCP8.5) and b) moderate (RCP4.5) climate change scenarios. Case changes 

refer to raw case counts rather than incidence and indicate the average change in cases for a 

particular decade relative to hindcasted values for 2010 – 2020. Bars represent 95% 

prediction intervals. Regions are defined in Fig. 1.
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Figure 3. 
Projected change in Lyme disease cases for 2100 shown at the county level under the a) 
upper (RCP8.5) and b) moderate (RCP4.5) climate change scenarios. Case changes refer to 

raw case counts rather than incidence and are relative to hindcasted values for 2010 – 2020. 

All counties within the Mountain Prairie are shown in gray as this region was not included in 

the analysis. Other counties shown in gray (n = 49) containing missing disease, land cover or 

climate data.
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Table 1.

Climate variables considered for models of disease incidence by region, along with descriptions and 

justification of their relevance to disease transmission.

Climate 
Variable Description Biological Relevance

Lagged winter 
temperature

Average monthly temperatures for Dec - 
Feb 1.5 years prior. Identified by Subak 
2003 as significantly positively 
correlated with Lyme disease incidence 
in highly endemic areas.

Colder winter temperatures are associated with reduced host-seeking abilities 
of the adult tick (Duffy and Campbell 1994, Clark 1995, Carroll and Kramer 
2003) and reduced abundance of the white-footed mouse, a highly competent 
reservoir host (Wolff 1996).

Spring 
precipitation

Average precipitation in May and June. 
Identified by McCabe and Bunnell 2004 
as significantly positively correlated with 
Lyme disease incidence in highly 
endemic areas.

Greater precipitation during the late spring and early summer increases the 
moisture of the leaf litter, providing conditions which promote the survival and 
questing activity of the nymphal life stage (Knülle and Rudolph 1982, Berger 
et al. 2014).

Hot, dry days

The number of days with temperature > 
25°C and precipitation = 0 during May – 
July (or May – June for counties with 
Ixodes pacificus). Identified by Burtis et 
al. 2016 as significantly negatively 
correlated with Lyme disease incidence 
in highly endemic areas.

Hot, dry conditions are associated with decreased questing activity and 
questing height of ticks (Randolph and Storey 1999, Schulze et al. 2001), 
reducing the likelihood of attachment to humans (Arsnoe et al. 2015). The May 
- July, and May - June, time periods capture the peak nymphal questing periods 
for I. scapularis and I. pacificus, respectively (Eisen et al. 2016).

Cumulative 
average 

temperature

The sum of average daily temperatures 
(°F) over the entire year

Cumulative temperature appears to control most developmental stages of I. 
scapularis (Lindsay et al. 1995, Rand et al. 2004). Lower cumulative 
temperature is associated with longer development periods and/or higher tick 
mortality (McEnroe 1977, Estrada-Peña 2002, Brownstein et al. 2003, Ogden 
et al. 2004, Leighton et al. 2012).

Total annual 
precipitation

The sum of total daily precipitation 
(mm) over the entire year

Greater precipitation increases the moisture of the leaf litter, providing 
conditions which favor tick survival and questing activity (Knülle and Rudolph 
1982, Jones and Kitron 2000, Berger et al. 2014a).

Daily 
temperature 
variability

The variance in average daily 
temperatures (°F) over the entire year

Frequent temperature variation can decrease tick survival, even beyond that of 
constant cold exposure, due to energetic costs associated with adapting to 
changing temperatures (Gigon 1985, Hermann and Gern, 2013); however, 
effects will vary based on the average temperature of the region.

Daily 
precipitation 
variability

The variance in total daily precipitation 
(mm) over the entire year

Both drought and heavy rainfall are associated with deceased tick questing 
activity and survival (Randolph 1997, Jones and Kitron 2000, Perret et al. 
2004). Variation in precipitation, as opposed to consistent rainfall supplying 
favorable high relative humidity conditions, may thus be detrimental for tick 
survival, but will depend on the average precipitation of the region and the 
magnitude of variation.
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Table 2.

Effect of climate and non-climate variables on Lyme disease incidence by region. Only variables included in 

the best fit model, as determined by variable selection, are shown. The scaled coefficient estimates (Coef.) 

shown here reflect the standard deviation change in Lyme disease incidence for a one standard deviation 

change in the climate variable. The coefficients are scaled so that the effects of different variables are directly 

comparable. The standard errors (SE) shown are clustered by the agricultural statistics district (see Methods: 

Statistical analysis). Statistically significant (p < 0.05) coefficients are denoted with *.

Northeast Midwest Pacific Pacific Southwest Southwest Southeast

Variable Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE

Avg. winter 
temp. −0.073 0.237 −0.967 1.039 0.119 0.172

Avg. winter 
temp,2

0.381 0.253 1.268 0.894 0.391 0.403

Avg. spring 
precip. 0.067 0.129 −0.051 0.041 0.089 0.089 −0.998 0.836

Avg. spring 
precip,2

−0.094 0.083

Hot, dry days −0.302* 0.128 −0.264* 0.099 0.151 0.137 −0.029 0.022

Hot, dry days2 0.106 0.062 0.121* 0.055

Cumulative 
temp. 1.034* 0.468 1.589 1.429 1.928 1.657

Cumulative 
temp,2

−2.127 1.620 −2.405 1.811

Total annual 
precip. −0.141 0.283 −0.046 0.176 1.192 0.981

Total annual 
precip,2

0.183 0.229 −0.010 0.115

Temp. 
variability 0.365 0.596 0.112 0.954 0.813* 0.310

Temp. 
variability,2

0.131 0.483 0.224 0.488 −0.473* 0.241

Precip. 
variability 0.040 0.048 −0.220 0.176

Precip. 
variability2 0.012 0.019

Lag ‘ticks’ 
search 0.168* 0.075 0.016 0.017 0.014 0.036 0.049 0.059 0.020 0.069 −0.016 0.019

Poverty −0.055 0.087 0.046 0.072 0.210 0.133

Percent insured −0.009 0.039

Forest cover 1.988 1.283 −3.966 3.896 −1.515* 0.763 −0.365 0.513 0.663 0.383

Mixed dev. 
cover 1.447 1.650 1.441* 0.686

R2 0.728 0.829 0.405 0.327 0.309 0.330

Model with only climate and dummy variables

R2 0.681 0.768 0.230 0.137 0.112 0.146

Model with only non-climate and dummy variables

Glob Chang Biol. Author manuscript; available in PMC 2022 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Couper et al. Page 28

Northeast Midwest Pacific Pacific Southwest Southwest Southeast

Variable Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE Coef. SE

R2 0.712 0.820 0.400 0.308 0.258 0.320

Model with only county dummy variable

R2 0.606 0.700 0.156 0.114 0.090 0.149

Model with only year dummy variable

R2 0.045 0.018 0.028 0.014 0.007 0.010
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Table 3.

Model validation metrics for four specifications of models of Lyme disease incidence (see Methods: Model 

validation). The model validation metrics shown are the root-mean-square error (RMSE) and correlation 

coefficient (r) for estimated versus observed Lyme disease incidence in the testing data sets. The observed and 

estimated average (± 1 standard deviation) annual Lyme disease incidence is also shown for each region and 

each model specification. Model validation was performed using data from 2008 – 2017 (the years with 

complete data for all predictors).

Main Model Model Spec. 2 Model Spec. 3 Model Spec. 4

Observed 
annual 

incidence

Est. 
annual 

inc.
RMSE r

Est. 
annual 

inc.
RMSE r

Est. 
annual 

inc.
RMSE r

Est. 
annual 

inc.
RMSE r

NE 48.9 ± 
17.4

51.3 ± 
13.3 38.970 0.853 51.8 ± 

15.6 39.138 0.851 49.4 ± 
9.4 65.419 0.458 51.2 ± 

13.2 38.343 0.858

MW 14.5 ± 3.2 12.7 ± 
2.1 15.709 0.903 12.6 ± 

3.1 15.706 0.902 14.2 ± 
4.0 29.023 0.602 12.7 ± 

2.1 15.49 0.906

PC 0.8 ± 0.3 0.8 ± 
0.1 1.739 0.402 0.9 ± 

0.3 1.739 0.404 0.9 ± 
0.1 1.777 0.282 0.8 ± 

0.1 1.736 0.423

PS 0.9 ± 0.6 0.8 ± 
0.4 1.682 0.264 0.8 ± 

0.4 1.682 0.268 0.8 ± 
0.2 1.316 0.321 0.8 ± 

0.4 1.747 0.262

SW 0.4 ± 0.3 0.4 ± 
0.2 5.169 0.071 0.4 ± 

0.3 5.170 0.070 0.3 ± 
0.2 5.131 0.040 0.4 ± 

0.2 5.157 0.086

SE 0.5 ± 0.2 0.5 ± 
0.2 1.685 0.323 0.5 ± 

0.2 1.694 0.313 0.5 ± 
0.2 1.725 0.172 0.5 ± 

0.2 1.682 0.326

Glob Chang Biol. Author manuscript; available in PMC 2022 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Couper et al. Page 30

Table 4.

Projected change in the number of Lyme disease cases, relative to hindcasted 2010 – 2020 levels, for each 

region under the upper and moderate climate change scenario. Lyme disease projections incorporate county-

level population size projections under SSP2 for 2050 and 2100 from Hauer et al. 2019 (see Tables S6 & S7). 

Point estimates and 95% prediction intervals are shown.

Upper climate change scenario (RCP8.5) Moderate climate change scenario (RCP4.5)

2040 – 2050 2090 – 2100 2040 – 2050 2090 – 2100

Northeast 23,619 [2,013, 45,226] 61,776 [34,197, 89,354] 7,415 [−14,646, 29,476] −7,385 [−36,417, 21,647]

Midwest −2,470 [−10,839, 5,899] −4,217 [−13,681, 5,247] 2,504 [−5,633, 10,641] 477 [−10,305, 11,529]

Pacific 48 [−218, 315] 104 [−379, 587] 17 [−212, 246] 113 [−246, 471]

Pacific Southwest −84 [1,948, 1,780] −239 [−2,490, 2,012] −11 [−1,726, 1,705] 90 [−2,012, 2,192]

Southwest −148 [−1325, 1,029] −608 [−2,434, 1,217] −133 [−1,301, 1,034] −240 [−1,884, 1,403]

Southeast 991 [−236, 2,217] 1,768 [−61, 3,597] 339 [−865 1,543] 776 [−807, 2,339]

US Total 22,485 [−8,585, 57,451] 33,639 [−9,916, 77,194] 10,131 [−24,383, 44,645] −6,169 [−51,671, 39,581]
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