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Local spatial arrangement of nuclei in histopathology images of different cancer subtypes has been 

shown to have prognostic value. In order to capture localized nuclear architectural information, 

local cell cluster graph-based measurements have been proposed. However, conventional ways of 

cell graph construction only utilize nuclear spatial proximity, and do not differentiate between 

different cell types while constructing the graph. In this paper, we present feature-driven local cell 

cluster graph (FLocK), a new approach to constructing local cell graphs by simultaneously 

considering spatial proximity and attributes of the individual nuclei (e.g. shape, size, texture). In 

addition, we have designed a new set of quantitative graph-derived metrics to be extracted from 

FLocKs, in turn capturing the interplay between different proximally located clusters of nuclei. We 

have evaluated the efficacy of FLocK features extracted from H&E stained tissue images in two 

clinical applications: to classify short-term vs. long-term survival among patients of early stage 

non-small cell lung cancer (ES-NSCLC), and also to predict Human Papillomavirus (HPV) status 

of Oropharyngeal Squamous Cell Carcinoma (OP-SCCs).

In the classification of long-term vs. short-term survival among patients of ES-NSCLC (training 

cohort, n=434), the top 10 discriminative FLocK features related to the variation of FLocK sizes 

and intersected FLocK distance were identified, via the Minimum Redundancy and Maximum 

Relevance (MRMR), under 100 runs of 10-fold cross-validation, in conjunction with a linear 

discriminant classifier yielded a mean of AUC=0.68 for predicting survival in training cohort. This 
is better than when compared to other state-of-art histomorphometric and deep learning classifiers 

(cell cluster graphs (AUC=0.62), global cell graph (AUC=0.56), nuclear shape (AUC=0.54), 

nuclear orientation (AUC=0.61), AlexNet (AUC=0.55), ResNet (AUC=0.56)). The FLocK-based 

classifier yielded an AUC of 0.70 in an independent testing cohort (n=150). The patients identified 

as “high-risk” had significantly poorer overall survival in the independent testing cohort, with 

Hazard Ratio (95% Confident Interval) = 2.24 (1.24-4.05), p = 0.01144).

In the classification of HPV status of OP-SCC, the top three FLocK features pertaining to the 

portion of intersected FLocKs were identified to construct a classifier, which yielded an AUC of 

0.80 in the training cohort (n=50), and an accuracy of 0.78 in an independent testing cohort 

(n=35). The combination of FLocK measurements with cell cluster graphs, nuclear orientation, 

and nuclear shape improved the training AUC to 0.87, 0.91 and 0.85, respectively. Deep learning 

approaches yield marginally better performance compared to the FLocK-based classifier in 

this application, with AUC=0.78 for AlexNet, AUC=0.81 for ResNet, and AUC=0.76 for FLocK-

based classifier in the independent testing cohort. However, the combination of two hand-crafted 

features: FLocK and nuclear orientation yielded a better performance (with an AUC=0.84).

FLocK provides a unique and quantitative way to analyze histology image of solid tumor and 

interrogates tumor morphology from a different aspect compared to the existing 

histomorphometrics. The source code can be accessed at https://github.com/hacylu/FLocK.

Graphical abstract
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A. Introduction

Changes in distribution, appearance, size, morphology, and arrangement of histologic 

primitives, e.g., nuclei and glands, have been shown to predict cancer aggressiveness (Bera 

et al., 2019; Gurcan et al., 2009). For instance, in the context of lung cancer, it is known that 

lung cancer lethality can be characterized by the differences in nuclear shape, morphology 

and arrangement. For a number of different cancers, the hallmark of presence of disease is 

the disruption in the cohesion of architecture between cancer cells and other primitives 

belonging to the same family, e.g. lymphocytes. Conversely, more aggressive tumors tend to 

exhibit relatively lower degrees of structure and organization between the same class of 

primitives compared to less aggressive cancers.

There has been recent interest in developing computational graph-based approaches to 

characterize spatial arrangement of nuclei in histopathology images to be able to predict 

patient outcome (Ali et al., 2013a, 2013b; Bilgin et al., 2007; Lewis et al., 2014; Shin et al., 

2015). Many of these approaches are based on capturing measurements relating to spatial 

architecture of histologic primitives. For instance, global graphs such as Voronoi and 

Delaunay triangulation strategies have been used to connect individual cell nuclei 

(representing graph vertices or nodes) and then extracting statistics relating to edge length 

and node density to predict disease outcome. Lewis et al. (Lewis et al., 2014) proposed cell 

cluster graphs (CCG) in which the nodes are defined on groups/clusters of nuclei rather than 

as individual nuclei, since there is a growing recognition that tumor aggressiveness might be 

driven more by the spatial inter-actions of proximally situated nuclei, compared to global 

interactions of distally located nuclei. While these approaches showed that attributes relating 
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to spatial arrangement of proximal nuclei were prognostic (Ali et al., 2013a, 2013b; Bilgin et 

al., 2007; Lewis et al., 2014; Shin et al., 2015), the graph connections did not discriminate 

between different cell populations, e.g. whether the proximal cells were all cancer cells or 

belonged to other families such as immune cells.

Early-stage (Stage I, II) non-small cell lung carcinoma (ES-NSCLC) is typically treated with 

complete surgical excision followed by adjuvant chemotherapy, if required. However, 30 to 

55 percent of patients still tend to have either local or distant recurrence even after systemic 

therapy. Currently, there is no clinically-used biomarker that is accurate and reproducible 

which can identify patients with a high risk of recurrence who might need early treatment 

intensification, while low-risk patients might be treated with surgery alone. Recent research 

has shown that computerized measurements related to the density of immune cells (Saltz et 

al., 2018) as well as the interplay between immune cells and cancer cells were able to risk 

stratify these patients (Corredor et al., 2019).

Human Papillomavirus (HPV) positive Oropharyngeal Squamous Cell Carcinoma (OP-SCC) 

accounts for 70 to 80 percent of all OP-SCC in North America and Europe (Chaturvedi et 

al., 2011). HPV status is critical for staging, treatment, and prognosis. Current standards to 

determine HPV status relies on immunohistochemical stain for p16 protein on tissue. 

However, there are just few works have been shown to determine the HPV status via the 

traditional H&E stain images (Kather et al., 2019).

In this work, we seek to go beyond the traditional approach of constructing cell graphs, 

which focus solely on cell proximity. We incorporate intrinsic nuclear morphologic features 

coupled with spatial distance to construct locally and morphologically distinct cell clusters. 

We introduce a new way of constructing a local cell graph called the Feature driven local 

cell cluster graph (FLocK), along with a corresponding new set of quantitative 

histomorphometric features. It is well established that cellular diversity is intrinsically linked 

to morphologic heterogeneity, and that increased morphologic heterogeneity is strongly 

associated with worse prognosis for a number of different cancer types (Almendro et al., 

2013; Aum et al., 2014; Mroz and Rocco, 2016; Yuan et al., 2012). In fact, cellular diversity 

plays a critical role in a number of cancer-grading schemes, such as the Bloom-Richardson 

grading scheme for breast cancers (Genestie et al., 1998), where nuclear pleomorphism 

(which is focused on visual assessment of the diversity in nuclear shape, size and 

appearance) is the principal criteria. Similarly, pathologists have routinely observed spatial 

differences in arrangement of cancer cells and TILs in a variety of cancer types (Nawaz et 

al., 2015). However, unlike tasks relating to quantification of cell density, quantitating 

spatial architecture is more challenging. FLoCK allows for quantitatively capturing 

measurements relating to diversity in cellular appearance, morphology and architecture 

across the entirety of the whole slide image. FLoCK features are then used in conjunction 

with a machine learning classifier to prognosticate survival for early stage non-small cell 

lung carcinomas (ES-NSCLC), as also classifying HPV status for oropharyngeal cancers.
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B. Previous Work and Novel Contributions

In traditional digital histopathology image analysis, quantitative imaging features derived 

from the histologic primitives have been used to quantify issue morphology (Bose et al., 

2015; Gurcan et al., 2009; He et al., 2012). In non-small cell lung cancer, Yu et al. (Yu et al., 

2016) and Wang. et al. (Wang et al., 2017) showed that the nuclear shape variations were 

associated with patient outcome. Similarly, a set of nuclear features that quantify the 

disorder of nuclear/gland polarity were found to be prognostic in prostate (Lee et al., 2014, 

2013) and breast cancer (Lu et al., 2018) patients. In addition to the shape of nuclei, the 

textural intensity present on the surface of nuclei were also found to be correlated with 

patient outcomes (Bose et al., 2015; Noy et al., 2011). These above mentioned shape and 

texture features intended to quantify the nuclear morphology on a local and granular level, 

whereas the graph-based features aimed to capture the nuclear/glandular spatial arrangement 

(Ali et al., 2013a; Bilgin et al., 2007). Using nuclei or the glands as graph nodes, one can 

construct global graphs, such as Voronoi and Delaunay triangulation, and extract graph-

based measurements and relate them to disease outcome (Lee et al., 2016; Nguyen et al., 

2014). These graph measurements are mainly based on the density/distance of the graph 

nodes (i.e., the nuclei or gland locations), and do not take in to account the specific type of 

cells used to construct the graphs. Since a digitized histology image usually contains the 

entire tumoral landscape, which is informationally rich and complex, global graphs may 

dilute important diagnostic/prognostic signals that are only observed in local region. This 

has led to research which breaks down global graphs into local ones, and performed a more 

granular interrogation of local nuclear morphology (Ali et al., 2013a; Lewis et al., 2014). Ali 

et. al. (Ali et al., 2013b) proposed Cell Cluster Graph (CCG), in which the local cell graphs 

were constructed purely based on the proximity of nuclei. The graph complexity 

measurements (Ali et al., 2013b) were then extracted from the CCG to quantify the tumor 

morphology locally. While these approaches showed that attributes relating to spatial 

arrangement of proximal nuclei were prognostic (Ali et al., 2013a, 2013b; Bilgin et al., 

2007; Lewis et al., 2014; Shin et al., 2015), the local graph connections again did not 

discriminate between different cell populations, e.g. whether the proximal cells were all 

cancer cells or belonged to other families such as immune cells (lymphocytes, neutrophils).

In this work, we have introduced a new family of quantitative histomorphometric features 

named FLocK, derived from local cell graphs that are driven by nuclear properties. The 

novel contributions of this work include:

1) FLocK is a novel way to construct local cell cluster graphs which simultaneously consider 

nuclear properties as well proximities. This results in locally-packed cell graphs comprising 

nuclei with similar phenotype. Figure 1 illustrates the global cell graph (Bilgin et al., 2007), 

CCG (Lewis et al., 2014) and FLocK graph in the same local region contains lymphocytes 

and cancer cells in NSCLC. One may see that the global graph connects all the nuclei in the 

image and may not allow for capturing of local tumor morphology efficiently. Similarly, the 

CCG only considers nuclear locations, which results in connecting lymphocytes and cancer 

nuclei into a graph; important information involving local spatial interaction between 

different cellular clusters may be left unexploited. The FLocK incorporates nuclear 

morphologic feature (nuclear mean intensity in this case) into the graph constructing 
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process, which enables us to interrogate the interaction between different groups of cell type 

and to reveal more sub-visual information from the underlying tissue image.

2) In addition to constructing local cell graphs using FLocK, we designed a new set of 

quantitative histomorphometric features based on the constructed FLocKs. These feature 

sets are: Intersection between nearby FLocKs, size of FLocKs, disorder of nuclear 

morphology within FLocK, spatial arrangement of FLocK, and enrichment of the Nearest 

FLocKs. These features are different compared to standard features extracted from CCG and 

global graph methods, which only quantify the density of local/global graph, or the local/

global distances between cells. The FLocK features attempt to capture the interactions 

between and within local cell clusters with similar morphological properties. Also, we have 

provided two methods for computation of FLocK features: one with predefined cluster type 

numbers, and the other one without pre-defined cluster type numbers. For the method with 

pre-defined cluster type numbers, the user is able to specify the cluster type number based 

on the domain specific knowledge. For example, for ES-NSCLC, one may want to set the 

cluster type number as 2, if they want to check if the interaction between tumor infiltrated 

lymphocytes and cancer cells are correlated for the prognosis. This allows the user to 

validate their own hypothesis using FLocK features. For the method without pre-defined 

cluster type numbers, we construct FLocK purely driven by the nuclear morphology and 

compute the features based on the constructed FLocK, which may reveal some important 

signatures.

3) We employ the FLocK and associated Quantitative Histomorphometric (QH) features in 

conjunction with a linear machine learning classifier (Linear Discriminant Analysis) to 

predict risk of recurrence for ES-NSCLC and to classify the HPV status for OP-SCCs. For 

the ES-NSCLC, similar work has been reported by Yu et al.(Yu et al., 2016) and Wang et al. 

(Wang et al., 2017) for predicting recurrence in early-stage NSCLC patients, in which the 

global architecture and shape of nuclei features were found to be predictive. However, the 

interactions between different local cell clusters have not been explored. For the OP-SCC, to 

our best knowledge, there is no prior work using computer extracted hand-crafted features to 

classify the HPV status based on the H&E stained image. In the experiment, we compared 

the FLocK feature with other handcrafted nuclear features. Figure 2 shows the flowchart of 

FLocK construction and associated feature computation, which include nuclei segmentation, 

FLocK construction, and FLocK feature extraction modules.

C. Feature-driven Local Cell Graph

The schematic of FLocK feature computation is illustrated in Figure 2. Briefly, the steps 

comprise (a) nuclei segmentation, (b) FLocK construction, (c) and (d) FLocK feature 

computation without or with pre-defined cluster type number, respectively. In the 

experiment, computer-extracted FLocK features are then used in conjunction with a machine 

learning classifier to predict the overall survival in NSCLC (n=434 patients), and 

classification of HPV status in OP-SCC (n=85 patients) using digital pathology images. We 

also compare FLocK features with several states of the art histopathology image analysis 

and machine learning based approaches.
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C.1 Nuclei segmentation and morphologic feature extraction

In order to efficiently segment nuclei, a multiple-pass adaptive voting method was employed 

to detect the cells (Lu et al., 2016) followed by a local optimal threshold method that 

segments nuclei based on analyzing the shape of these cells as well as the area occupied by 

them (Lu and Mandal, 2015). A set of 11 nuclear morphologic features that described the 

nuclear shape and texture were then computed based on these pre-segmented nuclei. There, 

nuclear features will be used in the downstream nuclear morphologic feature space analysis 

for constructing FLocK.

C.2 FLocK construction in nuclear morphologic feature space

In this step, spatial and morphological features of nuclei were used for feature space analysis 

to construct FLocK. Mean-shift clustering[25] was applied to perform the feature space 

analysis for sub-graph construction. It accomplishes this by first estimating the modes (i.e., 

stationary points of the density of nuclear morphologic feature) of the underlying density 

function of the nuclear morphologic feature. It then groups nuclei into different sub-graphs 

based on the corresponding modes.

We denote as N the total number of nuclei in the image, and each nucleus has a 

corresponding feature vector in d-dimensional Euclidean space Rd, so that we have a set of 

nuclear feature vectors X=x1, x2, …, xN, where xn∈Rd. For each feature vector xn ∈ X, there 

is a corresponding mode yi. In the beginning, the mode yi is initialized with the original 

feature vector xn, i.e., yi0 = xn. The yiu is then recursively updated, based on the neighborhood 

nuclear characteristics, using the following equation:

yi
u + 1 = yiu + mG(yiu), 1 ≤ i ≤ n (1)

where yi
u + 1 is the updated version of yiu. The vector mG(yiu) is called the mean-shift vector 

and calculates the difference between the weighted mean and the center of the kernel. It has 

been previously shown that the mean-shift vector always points toward the direction of 

maximum increase in the underlying density function (Comaniciu and Meer, 2002). At the 

final step, each nuclear feature vector xn finds a corresponding mode yi which will be used 

for constructing the FLocK.

In this work, we explored a Q-dimensional feature space which includes 2-D spatial 

coordinates (i.e., centroid location) of nuclei in the image and Q-2 of the nuclear 

morphologic features. These features are chosen based on the observation that the same 

types of nuclei are usually located closely together and have a similar phenotype. The 

corresponding multivariate kernel is defined as the product of two radially symmetric 

kernels as follows:

Kℎs, ℎm(xi) = C
ℎs

2ℎm
Q − 2k xi, s

ℎs
k xi, m

ℎm (2)

where k(·) is the profile of the kernel, xs is the spatial component, xm is the nuclear 

morphologic component, C is the normalization constant, and hs and hm are the kernel 
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bandwidths controlling the size of the kernels. The higher value of the kernel bandwidths hs 

and hm correspond to more neighboring data points that are used to estimate the density in 

the Q-D feature space. This can be seen in Figure 1(d), in which the FLocKs were 

constructed in a 3-D feature space, i.e., the spatial x- and y-coordination, plus the nuclear 

intensity. Also Figure 6 illustrates how the bandwidths affect construction of FLocKs. In 

Figure 6, we illustrate FLocKs constructed in a 4-D feature space, i.e., comprising the spatial 

x and y coordinate frame, the nuclear area, and nuclear intensity. Appendix 2-B also 

provides quantitative analysis of the effect of kernel bandwidths (hs from 20 to 50 with an 

increment of 5, hintensity from 0 to 40 with an increment of 5, and harea from 0 to 50 with an 

increment of 5) and three selected FLocK feature values (portion of intersected FLocKs, 
mean size of FLocKs, and mean of variance of nuclear feature 1 with respect to the 
centroid).

Based on the description above, we are able to construct FLocKs without specifying the 

number of cluster types presented on the histology image (see Figure 2(b), left panel). This 

will allow us to interrogate the interactions between different cell families distributed locally 

on the image. On the other hand, we also provide another realization of FLocK, in which 

FLocKs are constructed by a pre-defined number of cluster types k, e.g., k = 2, one for 

tumor cell the other for tumor infiltrated lymphocytes (TILs) (see Figure 2(b) right panel and 

Figure 6).

C.3 FLocK Features Computation

Based on the FLocK created, several groups of features were derived as shown in Table 2 

and Appendix 1 (see Figure 2 (c) and (d) for intuitive illustrations). These quantitative 

features are focused on capturing measurements relating to 1) the interaction between 

FLocKs, in which the relative portion, mean intersected region and number of intersected 

FLocKs are computed; 2) size of FLocK; 3) intrinsic variation of individual cells within 

each FLocK, in which variations are measured in terms of nuclear shape and appearance; 4) 

spatial arrangement of FLocKs, in which global graphs (Delaunay Triangulation, Voronoi 

Diagram, Minimum Spanning Trees) are constructed based on the centroids of FLocKs to 

quantify the architecture of FLocKs; 5) the enrichment of the K-nearest FLocKs, in which 

the diversity of neighboring FLocKs are captured.

D. Experimental Result and Discussion

D.1. Dataset Description

HPV classification for OP-SCC: A training cohort of 50 patients, Otrain, with primary 

OP-SCC from Vanderbilt University Medical Center, including 25 HPV+ and 25 HPV−, 

were used to build the classifier. The H&E stained whole-mounted tissue slides from the 

primary tumors (biopsy or resection) were digitized at 40x magnification. Non-overlapped 

2048 x 2048 pixels patches were cropped from the tumor region. FLocK features were then 

extracted from these patches, with nuclear Area and Mean Intensity as the feature space and 

spatial bandwidth Hs=100, nuclear morphology bandwidth Harea=40, Hintensity=10. The 
mean feature value for all patches from the same whole slide image was used to 

represent the signature of a patient. The top 3 FLocK features were selected to build the final 
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classifier using 3-fold cross validation over 100 runs. To validate our classifier on an 

independent set Otest, we utilized another cohort of 35 patients with OP-SCC from Kaiser 

Permanente Medical System, of which 16 and 19 were HPV− and HPV+, respectively. One 

should note that the Kaiser cohort was not used in any way during the model training.

Predicting Patient Outcomes of ES-NSCLC: The ES-NSCLC cohort comprises a 

total of 434 patients in the form of digitized TMA image (scanned at 20X magnification 

digitally). All of these patients are Stage I, II NSCLC cancers with long-term clinical 

survival follow-ups available for all patients in this cohort (collected between 2004 and 2014 

from Cleveland Clinic), which ends up with 280 short-term survival patients (<5 years after 

surgery) and 154 long-term survival patients (>5 years after surgery). We used the same 

feature space as the case of OP-SCC, i.e., with nuclear Area and Mean Intensity as the 

feature space. Since the image was at 20X magnification, we divided the bandwidths that 

used in the OP-SCC case by two, i.e., the spatial bandwidth Hs=50, nuclear morphology 

bandwidth Harea=20, Hintensity=5. FLocK features were extracted from the TMA image and 

the top 10 features were selected to build the classifier using 10-fold cross validation over 

100 runs. To validate our classifier on an independent test set Ltest, we utilized another 

cohort of 150 patients with Stage I, II NSCLC cancers collected from Yale Pathology 
between 2004 and 2014, the slides being scanned at 20x magnification. One should note 

that this independent test set Ltest was not used in any way during model training.

D.2. Classifier Construction and Performance Evaluation

Three different machine learning classifiers, Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), and Random Forest (RF) were implemented and trained 

based on the patient ground truth labels, under k-fold cross-validation (CV) with 100 runs. 

Three different feature selection methods were implemented to select the most 

discriminative FLocK features within the training folds. The feature selection methods 

included minimum redundancy, maximum relevance (MRMR) feature selection method 

(Peng et al., 2005), Wilcoxon rank sum test (WRST), and T-test (TT).

We identified the top performing classifier-feature selection scheme combination based off 

the AUC values under k-fold CV with 100 runs. The best performing feature selection-

classification combination was designated as the lock-down classifier, and the associated top 

features were further analyzed using box-plot and visualizing with feature map (Figure 3 and 

Figure 4). For both tasks, an independent testing cohort was used to validate the lock-down 

classifier. For prognosis on ES-NSCLC, the stratification of patients based on the predicted 

label obtained from the FLocK-based classier was evaluated using Kaplan-Meier (KM) 

product limit method.

D.3. Experimental Result

Experiment 1 - FLocK Classifier on HPV classification for OP-SCC: The 

performance of the nine combinations of feature selection and classifier schemes in terms of 

AUC, sensitivity, specificity, and accuracy on the OP-SCC Cancer TMA cohort are 

summarized in Table 3. One may observe that the classification performance using FLocK 

features are relatively consistent across different feature selection and classifier 
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combinations. Note that since the combination of WRST and LDA yielded the best 

performance in distinguishing two patient groups, AUC=0.80±0.04, we settled on the 

combination for WRST and LDA for constructing a lock-down classifier and comparative 

evaluation with other HQs using training cohort Otrain (Table 6). On the independent 

validation cohort (n=35 patients), the lock-down FLocK classifier achieved an AUC=0.76, 

accuracy=0.80, sensitivity=0.95, and specificity=0.63.

Experiment 2 - FLocK Classifier for Predicting Patient Outcomes of ES-
NSCLC: The performance of the nine combinations of feature selection and classifier 

schemes in terms of AUC, sensitivity, specificity, and accuracy on the ES-NSCLC TMA 

cohort are summarized in Table 4. Since the combination of MRMR and LDA yielded the 

best performance in distinguishing two patient groups, AUC=0.68±0.03, we settled on the 

combination for MRMR and LDA for constructing the final classifier for survival analysis 

and comparative evaluation (Table 4). On the independent testing cohort Ltest (n=150 

patients), the lock-down FLocK classifier achieved 0.70 AUC, with 0.72 accuracy, 0.75 

sensitivity, and 0.70 specificity.

Experiment 3 - Comparison between FLocK and States of the Art 
Histomorphometric and Deep Learning Approaches

Description of the histomorphometric feature approaches: We compared the efficacy of 

FLocK features with four previously published histomorphometric feature approaches (Ali 

et al., 2013b; Kothari et al., 2013; Lee et al., 2016, 2013; Shin et al., 2015) describing both 

cell morphology and cellular architecture. In total, we investigated the performance of five 

hand-crafted feature families: (1) 100 features describing nuclear shape (Kothari et al., 

2013), (2) 51 features describing global cell architectures (Shin et al., 2015), (3) 72 features 

describing cell orientation entropy by COrE (Lee et al., 2013) (24 features with three cell 

sub-graph setups), (4) 105 Cell Cluster Graph (CCG) features describing local cell cluster 

arrangement (Ali et al., 2013b) (35 features with three cell sub-graph setups), and (5) 235 

FLocK features, characterizing the interaction between local cell clusters.

Description of the deep learning-based approaches: We also compared the FLocK based 

classifier MFLocK with the deep learning (DL)-based approaches: AlexNet (Janowczyk and 

Madabhushi, n.d.; Krizhevsky et al., 2012) MAlex and ResNet (He et al., 2016) MRes. The 

rationale for choosing AlexNet is based on our previous experience that a simple DL 

architecture with fewer parameters could achieve satisfactory or comparable performance 

compared to a more sophisticated one (Janowczyk and Madabhushi, n.d.). On the other 

hand, ResNet is a relatively deeper convolutional neural network (CNN) compared to 

AlexNet. We explored different configurations of MAlex and MRes, as well as the 

hyperparameters settings, and found that the following two CNNs achieved the best 

performance.

For the AlexNet, denoted as MAlex hence forth, a 10-layer CNN architecture comprising one 
input layer, five convolution layers, three fully connected layers and one output layer was 

constructed. The input layer accepts an image patch of 256 x 256 pixels, and the output layer 

is a soft-max function which outputs the class probability of being positive or negative (for 
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the NSCLC use case, the positive label corresponds to the short-term survival patient, 

whereas the negative label corresponds to the long-term survival patient; for the OP-SCC use 

case, the positive label corresponds to the HPV+ patient, whereas the negative label 

corresponds to the HPV- patient). The batch size was set to 16 with initial learning rate at 

0.001 and was divided by 10 when the error plateaued, and the weight decay was 0.004. 

Learning rate schedule was set to the adaptive gradient algorithm (Duchi et al., n.d.). The 

AlexNet has been reported to yield satisfactory performance for several pathology image 

analysis applications (Alom et al., 2019; Janowczyk and Madabhushi, n.d.; Nawaz et al., 

2018).

For the ResNet network, denoted as MRes hence forth, a 34-layer architecture was chosen, 

with Stochastic Gradient Descent as optimizer, momentum being set to 0.9, binary 

crossentropy as the loss function, and the batch size being set to 16 with an initial learning 

rate at 0.01 and divided by 10 when the error plateaued. We used a weight decay of 0.0001 

and dropout rate of 0.5.

For both CNN models, we split the training set (Otest for OP-SCC and Ltest for NSCLC) into 

train and validation sets with a ratio of 8:2. We performed the training and internal validation 

within the training cohort, all training and internal validation being done at the patient and 

not at the individual image patch-level. Once each of the individual image patches have been 

assigned a class label, majority voting is employed to aggregate all the individual predictions 

to generate a patient-level prediction. The model was trained for 100 epochs with the 

internal validation set being employed at the end of each epoch to track model convergence. 

The final model was selected in a way to minimize the error on the internal validation set 

and was subsequently locked down.

While we prepared the training data, we split each image into smaller patches of 256 x 256 

pixels, the individual image patches from a single patient were all assigned the same class 

label, corresponding to the patient level diagnosis or prognosis. After filtering out unusable 

patches (not enough tissue, image patches with image markings, or other artifacts), the 

following number of image patches were left for evaluation in conjunction with the different 

use cases. For the OP-SCC training cohort Otrain, we have 115,968 patches at 40X 

magnification, each image patch of size 256 x 256 pixels, 30,848 patches from HPV+ 

patients, and 85,120 patches from HPV− patients. For the ES-NSCLC training cohort Ltrain, 

the average image size of the TMA spot was 3000x3000 pixels at 20x magnification, which 

in turn resulted in 43,872 patches for the short-term survival patients, and 24,129 patches for 

the long-term survival patients.

HPV classification for OP-SCC: While comparing FLocK feature family with other QH 

families, FLocK provided comparable classification AUC (Table 6). Since the FLocK 

feature family does not provide the best classification performance, we have investigated if it 

provides add-on information for separating HPV+ vs HPV− patients. We evaluated the 

performance of a classifier that utilized the combination of top two features from FLocK 

features and another feature family, i.e. FLocK + CCG (Ali et al., 2013b), FLocK + Nuclear 

shape, and FLocK + COrE (Lee et al., 2013), shown in Table 7. As one may observe that by 

combining the top features from different feature families, the classification performance 
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improved significantly, especially in the case of COrE + FLocK. This suggests that the 

different ways of nuclear morphology quantification could help to stratify the HPV status for 

OP-SCC, and FLocK could provide a unique aspect to interrogate the local nuclear 

morphology. The boxplot of the top two FLocK features that were selected as most 

discriminative features during the training are shown in Figure 3 (a) and (b). It is interesting 

to observe that the feature portion of intersected FLocK has higher expression in HPV− 

image compared to that of the HPV+ image (representative FLocK configuration can be 

found in Figure 4(c) and (f) respectively). This suggests that in HPV+ cases, in general, 

there are less interactions between different FLocKs; in other words, the nuclear on the 

image are more homogeneous in terms of nuclear size and intensity. The other feature - 

portion of highly intersected FLocK (Figure 3(b)) shows that there are more highly 

overlapped FLocKs in HPV+ cases than that in HPV− cases, which suggests that locally 

there are more pleomorphism observed.

The performance of the FLocK feature-based classifier MFLock and CNN approaches MAlex 

and MRes, are shown in Table 9-A. In the independent test cohort Otrain, the CNN 

approaches MAlex and MRes outperformed the FLocK-based classifier MFLock as well. 

However, the combination of FLocK and COrE feature-based classifier MFlock+COrE yielded 

the best performance in the test cohort Otest.

Predicting Patient Outcomes of ES-NSCLC: While comparing FLocK feature family with 

other QH families, as shown in Table 8, the FLocK based classifier MFLock achieved the 

highest AUC of 0.68±0.02, outperforming the other handcrafted feature families. The Global 

graph, shape, COrE, and CCG based classifiers yielded AUCs of 0.56±0.02, 0.54±0.03, 0.61 

±0.02, and 0.62±0.03, respectively. The classification results suggested that the locally-

extracted nuclear features provided better prognostic value than those associated with global 

architecture. Comparing the performance of CCG and FLocK based classifiers suggests that 

the organization of local cell clusters, where cluster membership was defined not solely 

based off spatial proximity but also on morphologic similarity, resulted in more prognostic 

signatures. Figure 4 shows two representative H&E stained TMA spot images for long-term 

and short-term survival NSCLC patients, along with the corresponding CCG and FLocK 

feature representations. The panel inset for FLocK reveals the grouping of the TIL and 

cancer nuclei as distinct clusters with the associated spatial interaction between these two 

cell families, unlike the CCG representation, which does not distinguish between the nuclei 

and TILs.

During feature discovery, we found that measures which reflect the degree of FLocKs 

intersection and the variance of FLocK graph sizes were the two most frequently selected 

features by WRST across 100 runs of 10-fold cross-validation (the boxplot of these two 

FLocK features are shown in Figure 3(c) and (d)). The top feature reflects the degree of 

interactions between the different local cell families. The boxplot in Figure 3(c) suggests 

that tumor outcome is improved with an increase in the total number of local cell cluster 

interactions. This may in turn reflect increase spatial interplay between tumor infiltrating 

lymphocytes (TIL) and cancer nuclei clusters. This is also reflected in the FLocK maps 

shown in Figure 4 (c) and (f), in which we observe a higher number of intersections between 
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nearby FLocK graphs in the case of patient with long-term survival (Figure 4 (c)), compared 

to a short-term survivor (Figure 4 (f)).

The performance of the FLocK feature-based classifier MFLock and CNN approaches MAlex 

and MRes are shown in Table 9-B. One may observe that AlexNet MAlex and ResNet MRes 

resulted in mean AUCs of 0.55 and 0.56 respectively on Ltrain, lower compared to the 

FLocK-based classifier MFLock In the Ltest, MFLock outperformed the CNN approach. 

Considering the fact that in the ES-NSCLC case, we had a relatively small number of 

training samples (n=434), we also evaluated a transfer learning strategy (Litjens et al., 2017) 

in which a pre-trained ResNet on ImageNet dataset was fine-tuned using patches from the 

ES-NSCLC training cohort Ltrain. However, the performance of the transfer learning strategy 

was still found to be inferior to MFLocK (reported in Table 9). While CNN models have been 

reported good at low-level visual object detection and segmentation tasks, it is still unclear 

how to use models to summarize the sub-visual information extract from image patches in 

order to make prognostic predictions. Also, the deep learning approach we employed may be 

constrained by the fact that we had an unbalanced dataset, (280 short-term vs. 154 long-term 

survivals). It is likely that the relatively few long-term survival patients, coupled with the 

class imbalance resulted in a sub-optimally trained deep learning network. We have also 

implemented other CNN models, i.e., DenseNet (Huang et al., 2018); however, they suffered 

from the overfitting and did not provide better result compared to AlexNet MAlex.

Note that one limitation of the DL models implemented in this work is that we have not 

investigated how different resolutions of the patches used for the DL model training affect 

network performance. More specifically, we used the FLocK features from 3000x3000 

pixels patches for the FLocK-based classifier, and we used 256 x 256 pixels patches for DL 

models training, which may have limited the spatial context and resolvability of the network.

Since we have survival data in this application, we also performed survival analysis using a 

Cox proportional hazard model based on the predicted labels generated by the FLocK-based 

classifier. For each TMA spot image, the FLocK-based classifier MFLocK assigned a 

probability of risk. The Kaplan-Meier (KM) product limit method was used to estimate 

empirical survival probabilities as illustrated by KM curves. Log-rank tests were applied to 

examine survival differences, indicating the significance of a categorical variable being 

prognostic for a survival endpoint. Hazard ratios, associated 95 percent confidence intervals, 

and P-values from Log-rank tests were reported to evaluate their ability to predict patient 

survival, significance level being set at 0.05.

In univariable survival analysis, the Log-rank test was performed based on 1) the predicted 

labels generated by FLocK classifier in training cohort under a leave-one-out framework. 

The patients identified as high risk had significantly poorer overall survival, with Hazard 

Ratio (95% Confident Interval) =1.59 (1.15-2.21), p=0.00672; 2) the predicted labels 

generated by MFLocK in test set Ltest. The patients identified as high-risk had significantly 

poorer overall survival, with Hazard Ratio (95% Confidence Interval) = 2.24 (1.24-4.05), 

p=0.01144. The Kaplan-Meier (KM) curves for MFLocK applied to the training and testing 

sets, Ltrain and Ltest, are shown in Figures 5(a) and (b), respectively.
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Concluding Remarks

In this work, we presented a novel way to quantify nuclear morphology from histology 

image, Feature-driven Local Cell Graph (FLocK), and a new set of quantitative 

histomorphometrics that associated with FLocK which could interrogate the interactions 

between different local cell clusters presented in digitized tissue images. We applied the 

FLocK features in conjunction with linear classifiers on 1) classification of HPV status of 

OP-SCC patients and 2) prediction of patient survival of ES-NSCLC on traditionally used 

H&E stained histology images.

Although the results obtained via FLocK provide similar or outperformed other existing 

histomorphometric methods, we acknowledge limitations of our study. The FLocK 

construction required user to specify parameters for feature space analysis. For example, in 

our experiments for both of the two applications, the FLocK features were constructed under 

the feature space consisted of nuclear co-ordinations (i.e., x and y locations of nuclei), 

nuclear Area and nuclear Mean Intensity, and the spatial bandwidth Hs was set to 100 and 

the nuclear Area and Mean Intensity bandwidth were set to 40 and 10, respectively (this 

setting is for 40X magnification, for 20X magnification, the parameters should be divided by 

two). Since the combination of nuclear properties and bandwidth will affect the 

configuration of FLocKs, one should first check and visualize if the default parameters make 

sense in the underlying application (see Figure 6). However, in Appendix 2 and our released 

Matlab code at Github ((Lu, 2020) https://github.com/hacylu/FLocK/), we have provided a 

GUI to allow the user to check the FLocK configuration interactively, and also performed 

qualitative analysis on the effect of parameters on some final feature values with respect to 

feature space bandwidth (hs and hm).

In summary, FLocK is a unique and general quantitative methodology to analyze histology 

image of solid tumor and is able to provide nuclear morphology information from a different 

aspect compared to the existing histomorphometrics. With further larger scale clinical 

validation, we hope to be able to employ FLocK in different solid tumors for disease 

prognosis and predict to treatment response. The source code can be accessed at https://

github.com/hacylu/FLocK.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A new way to construct local cell graphs, named Feature-driven Local Cell 

Graph (FLocK), which simultaneously consider nuclear properties as well 

proximities, and enable us to interrogate the interaction between different 

groups of cell type and to reveal more sub-visual information from the 

underlying tissue image.

• A new set of quantitative histomorphometric features based on the 

constructed FLocKs, which attempts to capture the interactions between and 

within local cell clusters with similar morphological properties.

• Two ways for computation of FLocK features, one with pre-defined cluster 

type numbers, the other one without pre-defined cluster type numbers.

• We validated the FLocK features in conjunction with a linear machine 

learning classifier (Linear Discriminant Analysis) to 1) predict risk of 

recurrence for early-stage lung cancers and 2) to classify the Human 

Papillomavirus status for oropharyngeal cancers.
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Figure 1: 
Illustration of (a) original H&E stained color histology image of NSCLC, (b) global cell 

graph (Delaunay triangulation), (c) CCG, the cell clusters were created based on the 

proximity of nuclei, (d) FLocK driven by nuclear intensity and proximity.
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Figure 2: 
Flowchart of FLocK construction and associated feature computation. (a) Green contours 

indicate the nuclear boundaries (b) FLocK construction based on the nuclear features (used 

mean intensity of nuclei in this case). Nuclei that belong to the same FLocK have connecting 

edges with the same color. (c) FLocK feature computation without pre-defined cluster type 

number. (d) FLocK feature computation with pre-defined cluster type number.
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Figure 3: 
The box plots of top two features for OP-SCC HPV status classification (upper panel (a) and 

(b)), and ES-NSCLC (lower panel, (c) to (d)). The p value was evaluated using WRST with 

all patients in training cohort. The separation between two groups of patients are statistically 

significant considering the significant level as 0.05.
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Figure 4: 
Representative H&E stained images for OP-SCC HPV status classification (upper panel (a) 

to (f)), and ES-NSCLC (lower panel, (g) to (l)). The first column shows the original image, 

the second column shows the CCG configuration, and the third column shows the FLocK 

configuration, in which different FLocKs have different colors. The FLocKs shown in (c), 

(f), (i), and (l) reveal the grouping of different sub-type of nuclear as distinct clusters, unlike 

the CCG representation (shown in (b), (e), (h), and (k)) which does not distinguish between 

them.
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Figure 5: 
(a) KM curves for the FLocK classifier associated with short-term and long-term survival 

under a leave-one-out framework in training cohort Ltrain. The patients identified as high-

risk had significantly poorer overall survival, with Hazard Ratio (95% Confident Interval) 

=1.59 (1.15-2.21), p=0.00672. (b) KM curves for the FLocK classifier associated with short-

term and long-term survival in testing cohort Ltest. The patients identified as high risk had 

significantly poorer overall survival, with Hazard Ratio (95% Confident Interval) = 2.24 

(1.24-4.05), p = 0.01144.

Lu et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6: 
An example of FLocK configuration with different parameter settings. (a) and (b) show the 

original H&E stained image of OP-SCC and the segmented nuclei overlaid on the image, 

respectively. (c) to (e) show FLocKs constructed under the feature space consisted of nuclear 

co-ordinations (i.e., x and y locations of nuclei), nuclear Area and nuclear Mean Intensity, 
with spatial bandwidth Hs =100 to 200 (with an increasing step of 50), the nuclear Area and 

Mean Intensity bandwidth Harea=40, Hintensity=10. The left panel shows the FLocK 

configuration without predefined cluster types number (different FLocKs were highlighted 

with distinct colors), whereas the right panel shows the FLocK configuration with 

predefined cluster types number k=2. (f) to (h) show FLocKs with similar parameter settings 

compared to (c) to (e) with Hintensity=20.
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Table 1:

Nuclear features considered in FLocK construction

Feature Class No. Specific Attributes

Nuclear shape 6 Area, Eccentricity, Solidity, Circularity, Major/minor axis length of best fit eclipse

Nuclear appearance 5 Mean intensity, Intensity range, Mean inside/outside boundary intensity, Boundary Saliency
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Table 2.

Description of FLocK features. If the pre-defined cluster type number is set to zero, we have feature set A, 

these are the features that do not consider a pre-defined cluster types. If the predefined cluster number is set to 

>1, we have feature set B, these are the features that do consider a pre-defined cluster types. For more details 

on these feature names and the corresponding computation, we direct the reader to appendix 1 and to the code 

released on Github (Lu, 2020).

A. Features that do not consider cluster types

Feature groups # Feature names Explanation

Intersection between different 
FLocKs

44 Portion/ number of intersected FLocKs, 
mean intersected area

Quantify the interaction between FLocKs

Size of FLocK 12 Size of FLocK, nuclei number in FLocK Quantify the size of FLocKs

Disorder of nuclear morphology 18 Variation in nuclear morphology within a 
FLocK

Quantify disorder of nuclear morphology 
locally

Spatial arrangement of FLocKs 102 Global graph measurements Quantify global architecture of FLocKs

B. Features that consider cluster types (k is the number of cluster types).

Feature groups # Feature names Explanation

Intersection between different 
types of FLocKs

2xk Portion of intersected FLocKs from 
different cluster types

Portion of intersected FLocKs, quantifying the 
intersection between different types (intertype) 
and within same type (intra-type) of FLocKs

Enrichment of the K-nearest 
FLocKs

24 Portion of other types of FLocKs within 5, 
10, 15 nearest neighbors

Quantify the diversity of FLocKs, with pre-
defined phenotype number, in terms of nearest 

neighbors

Spatial arrangement of a specific 
type of FLocK

44xk Global graph measurements based on a 
specific type of FLocK

Quantify the diversity of a specific type of 
FLocK, in terms of nearest neighbors
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Table 3:

Performance of three different classifiers (LDA, QDA, and RF) with three different feature selection methods 

(WRST, TT, and MRMR) in the OP-SCC training cohort Otrain under 3-fold CV scheme.

Classifier Feature
selection

AUC Accuracy Specificity Sensitivity

LDA WRST 0.80±0.04 0.76±0.03 0.82±0.11 0.71±0.10

TT 0.79±0.04 0.77±0.03 0.83±0.09 0.71±0.08

MRMR 0.76±0.05 0.75±0.04 0.75±0.13 0.74±0.14

QDA WRST 0.77±0.04 0.75±0.03 0.78±0.12 0.72±0.12

TT 0.79±0.03 0.76±0.03 0.85±0.09 0.67±0.09

MRMR 0.74±0.07 0.74±0.05 0.76±0.12 0.72±0.13

RF WRST 0.77±0.05 0.75±0.04 0.80±0.11 0.70±0.13

TT 0.78±0.04 0.77±0.04 0.85±0.10 0.68±0.11

MRMR 0.76±0.05 0.75±0.05 0.76±0.11 0.73±0.14
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Table 4:

Performance of three different classifiers (LDA, QDA, and RF) with three different feature selection methods 

(WRST, TT, and MRMR) in the ES-NSCLC training cohort Ltrain, n=434, under a 10-fold CV scheme.

Classifier Feature
selection

AUC Accuracy Specificity Sensitivity

LDA WRST 0.66±0.02 0.68±0.05 0.65±0.05 0.69±0.05

MRMR 0.68±0.03 0.67±0.06 0.71±0.10 0.65±0.09

TT 0.65±0.03 0.70±0.07 0.57±0.04 0.76±0.03

QDA WRST 0.63±0.04 0.69±0.09 0.57±0.17 0.74±0.16

MRMR 0.67±0.04 0.71±0.05 0.63±0.09 0.75±0.17

TT 0.63±0.07 0.68±0.08 0.66±0.21 0.68±0.13

RF WRST 0.67±0.02 0.66±0.06 0.77±0.14 0.61±0.16

MRMR 0.67±0.03 0.68±0.07 0.70±0.14 0.66±0.13

TT 0.65±0.03 0.66±0.07 0.75±0.17 0.62±0.09
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Table 5:

Description of global cell graph, nuclear shape, COrE, CCG features in quantitative evaluation experiments.

Feature set # Description

Global Cell Graph 51 Voronoi Diagram: Polygon area, perimeter, chord length; Delaunay Triangulation: Triangle side length, area; 
Minimum Spanning Tree: Edge length (compute mean, std. dev., range, skewness, kurtosis, disorder of each); 
Nearest Neighbors: Density of nuclei, distance to nearest nuclei

Nuclear Shape 100 Area, Mean Intensity/Intensity Range of Nuclei, Mean Intensity/Intensity Range Around Nuclei, Eccentricity, 
Perimeter, Smoothness, Invariant Moment 1-7, Fractal Dimension, Fourier Descriptor 1-10 (Mean, Std. Dev, 
Median, range, skewness, kurtosis of each)

Cell orientation 
entropy (CorE)

72 4 Haralick measurements computed from nuclear orientation co-occurrence matrix (Mean, Std. Dev, median, 
range, skewness, kurtosis of each with three cell sub-graph setups)

Cell Cluster Graph 
(CCG)

105 Clustering Coeff C, Clustering Coeff D, Giant Connected Component, Average Eccentricity, Percent of Isolated 
Points, Number of Central Points, Skewness of Edge Lengths (Mean, Std. Dev, skewness, kurtosis, range of 
each with three cell sub-graph setups)

Feature-driven 
Local Cell Graph 
(FLocK)

235 See Table 2 and appendix 1 for more details. The total number of FLocK features depends on the pre-defined 
cell cluster type number k, and the feature space selected. In our experiment, we used the nuclear Centroid, 
Area and Mean Intensity as the feature space, and set Hs= 100, Area bandwidth Harea =40, Mean Intensity 
bandwidth Hintensity=10, and k=0 for feature calculation for 40x magnification image, which yielded 235 
features.
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Table 6:

Performance of five different histomorphometric feature families in the Vanderbilt OP-SCC training cohort 
Otrain under a 3-fold CV scheme.

Model Feature
Family

AUC Accuracy Specificity Sensitivity

MCCG CCG 0.80±0.03 0.77±0.03 0.84±0.10 0.70±0.10

MGlobalGraph Global Cell Graph 0.79±0.03 0.77±0.03 0.73±0.09 0.80±0.11

MShape Nuclear shape 0.80±0.03 0.77±0.03 0.76±0.08 0.78±0.09

MCOrE COrE 0.82±0.04 0.78±0.03 0.89±0.11 0.67±0.13

MFLocK FLocK 0.80±0.04 0.77±0.03 0.83±0.09 0.71±0.08
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Table 7:

Performance of classifier based on top four features from the combination of two feature families in the OP-

SCC training cohort under 3-fold CV scheme.

Model Feature Family AUC Accuracy Specificity Sensitivity

MFLocK+CCG CCG + FLocK 0.87±0.03 0.80±0.02 0.89±0.09 0.72±0.08

MFLocK+COrE COrE +FLocK 0.91±0.02 0.84±0.02 0.83±0.11 0.86±0.10

MFLocK+Shape Nuclear shape+FLocK 0.85±0.03 0.80±0.02 0.77±0.08 0.83±0.09
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Table 8:

Performance of five different histomorphometric feature families in the ES-NSCLC training cohort under 10-

fold CV scheme.

Feature Family AUC Accuracy Specificity Sensitivity

CCG 0.62±0.04 0.61±0.06 0.63±0.11 0.60±0.10

Global Cell Graph 0.56±0.07 0.58±0.09 0.60±0.12 0.54±0.15

Nuclear shape 0.54±0.09 0.55±0.08 0.58±0.14 0.52±0.16

COrE 0.61±0.05 0.60±0.07 0.65±0.11 0.57±0.11

FLocK 0.68±0.03 0.67±0.06 0.71±0.10 0.65±0.09
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Table 9:

Performance comparison between FLocK-based classifiers MFLocK and CNN approaches, AlexNet MAlex and 

ResNet MRes, for (a) OP-SCC HPV status classification and (b) prognosis of ES-NSCLC use cases. For the 

results on the training set Otrain and Ltrain, we reported the mean AUC under 3-fold CV for the OP-SCC use 

case and the mean AUC under 10-fold CV for the ES-NSCLC use case.

OP-SCC HPV Status Classification

Classifier Cohort AUC Accuracy Specificity Sensitivity

MAlex Otrain 0.79±0.05 0.78±0.04 0.82±0.09 0.74±0.09

MAlex Otest 0.78 0.77 0.72 0.80

MRes Otrain 0.82±0.04 0.80±0.03 0.86±0.09 0.72±0.08

MRes Otest 0.81 0.80 0.75 0.84

MFLocK Otrain 0.80±0.04 0.77±0.03 0.83±0.09 0.71±0.08

MFLocK Otest 0.76 0.80 0.63 0.95

MFLocK+COrE Otest 0.84 0.85 0.82 0.88

ES-NSCLC Prognosis

Classifier Cohort AUC Accuracy Specificity Sensitivity

MAlex Ltrain 0.55±0.04 0.54±0.04 0.57±0.13 0.53±0.15

MAlex Ltest 0.56 0.57 0.55 0.58

MRes Ltrain 0.56±0.03 0.55±0.04 0.58±0.12 0.54±0.13

MRes Ltest 0.56 0.55 0.54 0.57

MFLocK Ltrain 0.68±0.03 0.67±0.06 0.71±0.10 0.65±0.09

MFLocK Ltest 0.70 0.72 0.70 0.75
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