Skip to main content
. Author manuscript; available in PMC: 2022 Feb 1.
Published in final edited form as: Med Image Anal. 2020 Nov 16;68:101903. doi: 10.1016/j.media.2020.101903

Table 4:

Performance of three different classifiers (LDA, QDA, and RF) with three different feature selection methods (WRST, TT, and MRMR) in the ES-NSCLC training cohort Ltrain, n=434, under a 10-fold CV scheme.

Classifier Feature
selection
AUC Accuracy Specificity Sensitivity
LDA WRST 0.66±0.02 0.68±0.05 0.65±0.05 0.69±0.05
MRMR 0.68±0.03 0.67±0.06 0.71±0.10 0.65±0.09
TT 0.65±0.03 0.70±0.07 0.57±0.04 0.76±0.03
QDA WRST 0.63±0.04 0.69±0.09 0.57±0.17 0.74±0.16
MRMR 0.67±0.04 0.71±0.05 0.63±0.09 0.75±0.17
TT 0.63±0.07 0.68±0.08 0.66±0.21 0.68±0.13
RF WRST 0.67±0.02 0.66±0.06 0.77±0.14 0.61±0.16
MRMR 0.67±0.03 0.68±0.07 0.70±0.14 0.66±0.13
TT 0.65±0.03 0.66±0.07 0.75±0.17 0.62±0.09