Skip to main content
. Author manuscript; available in PMC: 2022 Feb 1.
Published in final edited form as: Med Image Anal. 2020 Nov 16;68:101903. doi: 10.1016/j.media.2020.101903

Table 9:

Performance comparison between FLocK-based classifiers MFLocK and CNN approaches, AlexNet MAlex and ResNet MRes, for (a) OP-SCC HPV status classification and (b) prognosis of ES-NSCLC use cases. For the results on the training set Otrain and Ltrain, we reported the mean AUC under 3-fold CV for the OP-SCC use case and the mean AUC under 10-fold CV for the ES-NSCLC use case.

OP-SCC HPV Status Classification
Classifier Cohort AUC Accuracy Specificity Sensitivity
MAlex Otrain 0.79±0.05 0.78±0.04 0.82±0.09 0.74±0.09
MAlex Otest 0.78 0.77 0.72 0.80
MRes Otrain 0.82±0.04 0.80±0.03 0.86±0.09 0.72±0.08
MRes Otest 0.81 0.80 0.75 0.84
MFLocK Otrain 0.80±0.04 0.77±0.03 0.83±0.09 0.71±0.08
MFLocK Otest 0.76 0.80 0.63 0.95
MFLocK+COrE Otest 0.84 0.85 0.82 0.88
ES-NSCLC Prognosis
Classifier Cohort AUC Accuracy Specificity Sensitivity
MAlex Ltrain 0.55±0.04 0.54±0.04 0.57±0.13 0.53±0.15
MAlex Ltest 0.56 0.57 0.55 0.58
MRes Ltrain 0.56±0.03 0.55±0.04 0.58±0.12 0.54±0.13
MRes Ltest 0.56 0.55 0.54 0.57
MFLocK Ltrain 0.68±0.03 0.67±0.06 0.71±0.10 0.65±0.09
MFLocK Ltest 0.70 0.72 0.70 0.75