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Abstract

Introduction: Antipsychotic drugs that target the dopamine system have been central to the 

treatment of schizophrenia, but their limitations in efficacy, tolerability, and precision necessitate 

improved treatment strategies. Multiple lines of research have implicated glutamatergic 

dysfunction in the hippocampus as an early source of pathophysiology in schizophrenia. Novel 

compounds have been designed to treat glutamatergic dysfunction, but they have produced 

inconsistent results in clinical trials.

Areas Covered: This review discusses how the hippocampus is thought to drive psychotic 

symptoms through its influence on the dopamine system. It offers the reader an evaluation of 

proposed treatment strategies including direct modulation of GABA or glutamate 

neurotransmission or reducing the deleterious impact of stress on circuit development. Finally, we 

offer a perspective on aspects of future research that will advance our knowledge and may create 

new therapeutic opportunities. PubMed was searched for relevant literature between 2010–2020 

and related studies.

Expert Opinion: Targeting the aberrant excitatory-inhibitory functioning observed in the 

hippocampus and its related circuits has the potential to both alleviate symptoms and reduce the 

risk of transition to psychosis if implemented as an early intervention. Longitudinal multimodal 

brain imaging combined with mechanistic theories generated from animal models can be used to 

better understand the progression of hippocampal-dopamine circuit dysfunction and factors related 

to heterogeneity in treatment response.
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1.0 Introduction

Schizophrenia is most characteristically defined by psychotic symptoms, which include 

hallucinations and delusions. Psychosis in schizophrenia typically emerges in late 

adolescence and early adulthood (1). The first episode of psychosis (FEP) is often preceded 

by a prodromal period as sub-threshold symptoms develop, including attenuated psychotic 

symptoms, and deterioration in social and cognitive functioning (2). Some patients 

experience sustained symptom remittance with treatment and fully recover functional 

capability following FEP, However, many patients remain chronically ill with exacerbations 

and remissions of symptoms over time (3–5).

Current antipsychotic drugs are generally effective at dampening psychotic symptoms, but 

they often leave a high level of disease burden (6, 7), and numerous side effects that 

contribute to treatment nonadherence (8). Considerable heterogeneity exists in symptom 

profiles and treatment response. Up to 30% of patients display persistent symptoms despite 

multiple trials of antipsychotic drugs, referred to as treatment resistance (9, 10). There are 

few options available to patients with treatment resistance because all antipsychotic drugs 

produce their therapeutic effect via a common mechanism, by blocking D2 receptors (11). 

Blockade of D2 receptors reduces dopamine (DA) transmission, in line with the DA 

hypothesis, which postulates that increased presynaptic DA transmission in the striatum 

underlies the expression of psychosis (12, 13). However, it has been proposed that patients 

who do not respond to current drugs may either not display this hyperdopaminergic 

phenotype, which would be apparent from the start of treatment, or they may develop DA 

supersensitivity over time following prolonged D2 antagonist treatment (14–16). These 

situations highlight the need for alternative treatment strategies.

Although DA hyperactivity plays a critical role in schizophrenia, it is not the only 

neurotransmitter involved in the development of psychosis and multiple lines of research 

have demonstrated that it is secondary to dysregulation of excitatory and inhibitory 

neurotransmission (17, 18). In addition, current DA antagonist drugs fail to effectively 

address cognitive and negative symptoms of this disorder (19). Numerous novel target 

mechanisms have been tested in clinical trials, yet none have proven sufficiently effective to 

be approved for clinical practice (20, 21). This review will focus on promising strategies for 

treating DA dysfunction in schizophrenia through targeting upstream pathophysiology in the 

hippocampus, with a focus on targeting excitatory-inhibitory dysregulation through 1) drugs 

that act therapeutically to regulate glutamate, GABA, or inflammation 2) approaches that are 

preventative in nature, such as mitigating the effects of stress or early behavioral intervention 

(Table 1).

2.0 Neurotransmitter Dysregulation in Schizophrenia

2.1 Dopamine

Neuroimaging studies have demonstrated that psychotic symptoms are associated with 

increased presynaptic DA signaling in the striatum, including measures of synthesis capacity 

and release (22–27). Higher DA synthesis capacity is also observed in clinically high risk 

(CHR) individuals, which correlates with greater severity of prodromal symptoms (28, 29). 
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DA synthesis capacity progressively increases as CHR individuals transition to psychosis 

and it may be able to predict likelihood of conversion (28–31). These findings support the 

hypothesis that presynaptic DA dysfunction in subcortical projections, particularly to the 

associative striatum (26), is closely linked to the onset and expression of psychotic 

symptoms. The DA hypothesis has held up to decades of research, but it has also been 

modified based on evidence that the nature of DA dysregulation varies based on brain region 

(13). Specifically, blunted DA release has been reported in prefrontal cortical regions in 

patients with schizophrenia, which is suggested to contribute to cognitive symptoms (32). 

Potential therapeutic options for modifying cortical DA transmission have been discussed 

elsewhere (33, 34), and this review will focus on treatment of psychosis associated with the 

subcortical DA dysregulation and other target structures.

All current antipsychotics target the DA system by blocking D2 receptors (11). Animal 

research has shown that D2 antagonists reduce the number of spontaneously active DA 

neurons (i.e. population activity) (35–37). Blockade of both presynaptic and postsynaptic D2 

receptors results in overexcitation-induced depolarization block, leading to a broad reduction 

in DA signaling (38). The majority of antipsychotic drugs act as D2 antagonists; however, 

D2 partial agonists, such as aripiprazole are also available. D2 partial agonists produce a 

“normalizing” effect on DA neuron population activity depending on the state of the DA 

system (39, 40). In contrast to D2 antagonists, D2 partial agonists do not induce 

depolarization block in vivo, and instead may functionally act as an agonist on presynaptic 

D2 receptors to downregulate DA neuron activity (41). Although current antipsychotics 

directly target the DA system, there is little evidence for dysfunction within the DA system 

itself. Its hyperresponsiveness is instead proposed to be a consequence of excitatory-

inhibitory imbalance in afferent structures (42).

2.2 Glutamate and GABA

One strategy to address DA dysfunction in schizophrenia is to modulate the upstream 

abnormalities in glutamate and GABA neurotransmission. Schizophrenia is associated with 

altered excitatory-inhibitory transmission in several brain regions, and some studies have 

shown these abnormalities are present in CHR individuals (43). The hippocampus displays a 

hypermetabolic state in patients with schizophrenia (44–49). Increased perfusion has also 

been observed in CHR individuals in the CA1 region (50–52), which spreads to the 

subiculum, the predominant output structure of the hippocampus, upon onset of psychosis 

(48). Elevated hippocampal glutamate levels have been observed in patients diagnosed with 

schizophrenia (43, 53–55), and reported in CHR individuals in some studies (50, 53), 

although not all (56). There is evidence that glutamate levels in CHR individuals may 

predict conversion to psychosis (53, 57), although this is also not a consistent finding (50, 

56). It is possible that these changes in the hippocampus relate to a general psychosis 

spectrum that may or may not reach diagnostic criteria for schizophrenia, which may 

contribute to inconsistencies in longitudinal studies looking at CHR individuals. 

Additionally, there are different indices of glutamate functioning, including glutamate itself, 

its metabolite, glutamine, and Glx (glutamate + glutamine). Some studies have found 

increases in glutamate, whereas others have reported increases in glutamine, Glx (43, 58), or 
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the ratio of glutamine to glutamate (59, 60), which has been suggested to be a more sensitive 

measure of glutamate release (59)

The increased metabolism of the hippocampus is associated with a loss of local GABAergic 

parvalbumin (PV+) interneurons that normally regulate pyramidal neuron activity, and local 

atrophy, which is believed to reflect loss of the interneurons and neuropil (61–63). More 

research is needed to understand the relationship between these pathophysiological findings, 

how they relate to vulnerability to psychosis in the high-risk state, and their relative 

progression over time. Ultimately, the resulting loss of GABA interneuron function is 

proposed to lead dysregulation of excitatory neurotransmission within the hippocampus, and 

thereby a disruption of a polysynaptic circuit that regulates DA transmission.

The methyazoxymethanol acetate (MAM) neurodevelopmental rodent model (64, 65) has 

demonstrated that increased pyramidal neuron activity in the hippocampus leads to an 

increased number of spontaneously active DA neurons available for phasic DA release. The 

offspring of pregnant females that receive an injection of MAM at gestational day (GD) 17 

develop adult phenotypes relevant to schizophrenia, in contrast to the offspring of pregnant 

females that receive a saline (SAL) injection (64, 66, 67). Similar to findings in 

schizophrenia patients (17), MAM rats show loss of PV+ interneurons in the hippocampus 

(63), resulting in an increase in pyramidal cell activity and a baseline hyperactive state (68). 

The subiculum of the hippocampus extends glutamatergic projections to the nucleus 

accumbens, which in turn inhibits the ventral pallidum. (69, 70). The ventral pallidum holds 

a variable proportion of DA neurons in the VTA in a hyperpolarized state. As a consequence 

of hippocampal hyperactivity, greater inhibition of GABAergic neurons in the ventral 

pallidum results in reduced inhibitory hold on DA neurons in the VTA and an increase in the 

number of spontaneously active DA neurons compared to control rats (68). This circuit is 

normally adaptive to environmental stimuli to set the gain of DA neurotransmission. 

However, with abnormally increased activity of the hippocampus, the DA neuron population 

activity is proposed to be set at a high gain state, allowing for increased release of DA in the 

striatum, consistent with clinical studies in patients with schizophrenia (42, 63, 68) (Figure 

1).

3.0 Promising Antipsychotic Drug Targets

Numerous novel target compounds for the treatment of schizophrenia have shown promise 

in preclinical research, but to date, none have shown sufficient efficacy in phase 3 clinical 

trials to enter clinical practice (34). However, the increased striatal DA signaling targeted by 

current antipsychotics is a consequence of upstream anomalies that are implicated in both 

the development and expression of psychotic symptoms (71). Indeed, the induction of DA 

supersensitivity by prior treatment with current antipsychotic drugs may interfere with the 

efficacy of such novel target agents (72). These targets are derived from a well-supported 

framework and still show promise, but future studies are required to better understand their 

mechanisms of action and optimal methods for clinical trial design and ultimately treatment.
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3.1 GABA

Compounds that target the GABA system aim to restore normal patterns of PV+ interneuron 

activity. Indeed, transplants of GABA interneuron precursor cells into the hippocampus of 

MAM rats has been shown to normalize hippocampal pyramidal neuron activity and DA 

neuron population activity, demonstrating that restoring GABA function is sufficient to 

normalize the aberrant hippocampus-DA circuit (73). Increased GABA signaling can also be 

accomplished through direct modulation of GABA receptors. Broad action GABA 

modulators, such as benzodiazepines are problematic due to their sedative actions, risk of 

dependency and inferiority in reducing psychotic symptoms compared to current 

antipsychotics in patients with chronic schizophrenia (74), but other, more localized options, 

have been studied for their potential therapeutic value.

One target that has shown promise is the α5 subtype of the GABAA (α5GABAA) receptor, 

which is highly expressed in limbic brain regions, including the hippocampus (75). 

α5GABAA receptors are involved in generating a tonic inhibitory current to pyramidal 

neurons, which may help coordinate spike timing (76–78). A positive allosteric modulator 

(PAM) that acts at α5GABAA receptors has been tested in the MAM model, and reduced 

DA neuron population activity and amphetamine-induced hyperlocomotion to control levels 

when administered either systemically or directly infused into the ventral hippocampus. 

α5GABAA PAM administration also reduced evoked responses in hippocampal neurons 

(79). The α5GABAA receptor may be an effective antipsychotic target to normalize 

hippocampal activity, but it has yet to be tested in patients.

The mood stabilizer valproate has also been studied as a potential antipsychotic that affects 

the GABA system. Valproate inhibits histone deacetylation and can increase GABA 

synthesis at high concentrations (80–83). As a treatment for schizophrenia, some clinical 

trials found that valproate could enhance the rate of improvement of symptoms when used as 

an adjunct to current antipsychotics, but results were inconsistent (84–86). More recently, 

valproate has been studied for its potential in reinstating critical periods of plasticity in 

adulthood (87–89), and thus might provide additional value in conjunction with other 

therapies.

3.2 Glutamate

Evidence from preclinical and clinical studies have supported the role of glutamate system 

dysfunction in the pathophysiology of schizophrenia, including elevated levels of glutamate 

in the hippocampus of unmedicated patients (43). Thus, another promising option for the 

treatment of schizophrenia is inhibition of glutamate release.

Numerous glutamate-targeting compounds have been evaluated in clinical trials. NMDA 

receptor co-agonists, including D-cycloserine, D-serine, and glycine, were among the 

earliest studied in an effort to enhance NMDA-mediated interneuron function (90), thereby 

increasing inhibition of pyramidal neurons. Despite initial promise in clinical trials, none of 

these compounds passed phase 2 or phase 3 clinical trials as either a monotherapy or adjunct 

to current treatments (91, 92). Selective glycine transporter 1 (GlyT1) inhibitors, such as 

sarcosine and biopertin have also been tested as an alternative method to increase the 

Sonnenschein and Grace Page 5

Expert Opin Ther Targets. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



availability of glycine at NMDA receptors (93). Sarcosine has demonstrated success in 

clinical trials as an adjunct treatment in early clinical trials in improving positive, negative, 

and cognitive symptoms (94, 95) with some evidence for greater efficacy than NMDA 

receptor agonists (96). However, not all trials have shown significant results with GlyT1 

inhibitors, such as when added to clozapine or tested as a monotherapy (97–99). D-amino 

acid oxidase (DAAO) inhibition with compounds such as sodium benzoate, has also recently 

been explored as a method of enhancing NMDA receptor activation by blocking D-amino 

acid metabolism. Sodium benzoate has produced promising results as an adjunctive therapy 

in early clinical trials (100–102). Larger clinical trials are needed to better assess the 

potential benefits of NMDA receptor-targeting drugs.

Group II metabotropic glutamate receptor (mGluR2/3) agonists were another target that 

garnered interest as a novel treatment for schizophrenia. mGluR2/3 are expressed in limbic 

brain regions and localized presynaptically on glutamatergic terminals to negatively regulate 

glutamate release (103). Preclinical research produced extensive support for mGluR2/3 

agonists and PAMs (104–109). The mGluR2/3 agonist, pomagluemtad methionil, was shown 

to reduce hippocampal pyramidal neuron hyperactivity in the MAM model, resulting in the 

downstream normalization of DA neuron population activity and improvement in a 

hippocampal-dependent task, which were not observed in normal rats (110).However, while 

pomaglumetad methionil demonstrated efficacy in a phase 2 clinical trial (111) it 

subsequently failed to show efficacy in other phase 2 trials as a monotherapy or adjunct 

therapy (112–114) and as a monotherapy in a phase 3 trial (115). It has been suggested that 

it may be most effective early in the disease (116) or that the dose used in clinical trials was 

not adequate (117). Another possibility is that withdrawal from current D2 antagonist drugs 

leaves a state of DA receptor supersensitivity, impeding the efficacy of non-D2 drugs at 

reversing the hyperdopaminergic state, as suggested in animal models (72). This could also 

account for why patients that had not been treated as long with D2 antagonists show greater 

efficacy. Additional trials are needed in FEP and CHR populations for clarification and 

further research is needed to understand why certain groups may respond better to 

glutamate-targeting drugs.

3.3 Inflammation

Another potential means of early intervention in schizophrenia is through targeting 

neuroinflammation and immune system dysregulation (118). Prenatal inflammatory events, 

such as infections, illicit maternal immune activation that may cause deleterious effects on 

neurodevelopment. In combination with other risk factors, it may lead to disrupted synaptic 

plasticity and impaired development of PV+ interneurons from oxidative stress that leave the 

brain vulnerable to additional hits of stress (119, 120). In animal models, early life immune 

activation, such as through injecting double-stranded RNA poly(I:C) or bacterial 

lipopolysaccharide (LPS), alter cytokine levels in the placenta, amniotic fluid and fetal brain 

(121–125). This leads to increased vulnerability to stress-induced increases in inflammatory 

markers in adulthood (126), consistent with findings in patients with schizophrenia (127, 

128). Risk of transition to psychosis is also associated with increases in inflammatory 

markers (129, 130). Some anti-inflammatory compounds have demonstrated prophylactic 

effects in maternal immune activation rodent models, including N-acetylcysteine and 
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sulforaphane (131, 132). Antioxidants that reduce inflammation, such as omega-3 fatty acids 

(133) have produced mixed success in reducing transition rates in patients (2, 134, 135), but 

investigation of other anti-inflammatory compounds may be warranted. For example, some 

studies have demonstrated a deficit in glutathione in patients with schizophrenia, which is a 

prominent cellular antioxidant. Glutamatergic dysfunction and subsequent atrophy may be 

most apparent in the presence of insufficient glutathione, and it has been proposed that 

interventions that increase glutathione may be beneficial in preventing the detrimental 

effects of oxidative stress (136, 137).

3.4 Stress

Based on the diathesis-stress model, early disruption in brain development can lead to 

heightened vulnerability to stress (138, 139). Increased vulnerability to stress implies that 

there does not need to be a difference in the acute stress exposure, but in vulnerable 

individuals stress may trigger the first episode and precede relapses (140, 141). Dysregulated 

hypothalamic-pituitary-adrenal (HPA) axis activity is implicated the development of 

schizophrenia (142). In CHR individuals, salivary cortisol levels are correlated with severity 

of anxiety, suspiciousness, and impaired stress tolerance (142, 143) and also higher in 

individuals who transition to schizophrenia compared to those who do not (144). It is 

specifically distressing psychotic-like experiences in adolescence that are most indicative of 

CHR state and greater risk of developing a psychotic disorder (145). Compared to healthy 

controls, patients with active psychosis and those at CHR demonstrate greater stress-induced 

DA release, associated with an elevated cortisol response to the stressor (146).Together, 

these findings suggest a close link between stress sensitivity and the development of DA 

dysfunction.

The hippocampus is highly susceptible to stress (147, 148) and the influence of the HPA axis 

on hippocampal circuits may serve as a critical mediating link between environmental 

stressors and the development of psychosis, as these systems can act synergistically to 

stimulate subcortical DA (149). Early neurodevelopmental insults and other factors that 

increase response to stress early in life may increase the vulnerability of the hippocampus to 

HPA activation. The prelimbic prefrontal cortex (plPFC) normally limits the impacts of 

stress on basolateral amygdala activation in rats (150, 151), which holds a robust modulatory 

influence on DA neuron activity (152). For example, plPFC lesions performed in naïve rats 

shortly post-weaning (postnatal day 25) caused the rats to show increased anxiety-like 

behaviors as adults. When exposed to stressors during puberty do not result in increased DA 

neuron population activity in adulthood in control rats, the plPFC-lesioned rats exhibit the 

hyperdopaminergic phenotype as adults (153). However, a combination of prepubertal 

stressors can lead to increased DA neuron population activity, increased hippocampal 

pyramidal neuron activity, and a loss of hippocampal PV+ interneurons even in naïve rats 

that have not experienced plPFC lesions (87, 153). Similarly, MAM rats exhibit a greater 

response to stress and amygdala hyperactivity pre-pubertally prior to the emergence of the 

hyperdopaminergic state in adulthood (154, 155). Prepubertal environmental enrichment was 

sufficient to prevent DA hyperresponsivity in MAM rats through normalizing ventral 

hippocampal pyramidal neuron activity; however, it was not sufficient to reduce anxiety-like 

behavior in an elevated plus maze nor hyperactivity of the basolateral amygdala (156). Thus, 
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treatments that reduce stress, and more specifically, protect PV+ interneurons in the 

hippocampus, may be particularly effective when administered during adolescence.

Taken together, these studies suggest that severe stress or heightened stress responsivity 

during adolescence may exacerbate the impact of inflammation, leading to impaired 

development of PV+ interneurons in the hippocampus, and ultimately impaired DA system 

function that may reciprocally impact stress (157, 158). The hippocampus is a particularly 

promising target for reducing the effects of stress because PV+ interneurons in the 

hippocampus continue to mature through late adolescence (159), creating a potential 

window of opportunity for intervention. The interaction between stress and neurobiological 

changes indicates that psychological treatments, such as cognitive remediation, cognitive 

behavioral therapy, or psychosocial therapies, have the potential to be disease modifying. 

Psychotherapy can be implemented to mitigate stress reactivity and promote social 

integration, which could have beneficial effects in protecting circuits from disruption. 

Hybrid treatments with the use of psychotherapy alongside pharmacotherapy may be the 

most successful in reducing the impact of stress on the neurodevelopment schizophrenia and 

related disorders (160–162).

4.0 Timing of Treatment

The prodromal phase of schizophrenia is characterized by a period of functional decline, 

including the emergence of sub-clinical psychotic symptoms that generally begin after 

puberty and progress in severity (163). It is unclear to what extent schizophrenia is 

progressive following the prodromal period (164, 165), due to confounding variables such as 

antipsychotic medication (166–170). The duration of untreated psychosis is a critical factor 

in determining prognosis, suggesting that active psychosis may be progressively detrimental 

until treated and alterations in brain structure and neurophysiology may already be 

established by the time of diagnosis (163). Early interventions may thus provide greater 

benefits (171).

The developmental changes that occur during puberty have been suggested to be a critical 

period surrounding the onset of psychosis, such that targeting pathophysiological processes 

during this time may provide long-term amelioration of symptoms (158). This period of 

plasticity to allow for maturation may contribute to the vulnerability of the developing brain 

to environmental factors, including psychological stress, social isolation, and drug abuse, 

that can lead to the emergence of psychiatric disorders (126, 172). Critical period closure 

following puberty is marked by the development of perineuronal nets that surround PV+ 

interneurons to stabilize synapses (173). Oxidative stress may disrupt the formation of 

perineuronal nets, leading to impaired PV+ interneuron function (87, 174). Antioxidants and 

glutamate modulating agents have been shown to prevent damage to the perineuronal nets in 

rodent studies (175). Pharmacological treatments administered during puberty in the MAM 

model have also been shown to prevent PV+ interneuron loss and circumvent the emergence 

of schizophrenia-relevant phenotypes in adulthood. Furthermore, peripubertal administration 

of the anxiolytic drug diazepam prevented the increase in DA neuron population activity, 

increased anxiety-like behavior and the higher neuronal firing rates within the basolateral 

amygdala normally present in adult MAM rats, compared to adult SAL rats (154, 155). Long 
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term administration of benzodiazepines is not a feasible intervention due to issues including 

dependency (74), but these findings indicate that alleviating anxiety and abnormal stress 

responsivity during puberty may preserve PV+ interneurons and prevent the progression of 

abnormalities associated with psychosis.

5.0 Heterogeneity in Treatment Response

Due to the substantial variability in symptoms and treatment response, in addition to overlap 

with other disorders, schizophrenia is not likely to be a distinct disease entity. Its clinical 

presentation displays better conformity with the concept of a syndrome that lies upon a 

spectrum and potentially encompass multiple subtypes (176, 177). The heterogeneity is 

likely reflected in individual differences in the underlying neurobiology that are not 

adequately treated by current antipsychotics.

PET studies have demonstrated that some patients with treatment resistant schizophrenia do 

not display striatal hyperdopaminergic activity that is observed in treatment-responsive 

patients. In contrast, treatment resistant patients displayed increased levels of glutamate in 

the anterior cingulate, which is present from the first episode (14, 15, 178–180). Differences 

in glutamate have also been observed in patients who respond to clozapine, the antipsychotic 

that currently has the highest efficacy for refractory symptoms (181). Clozapine-responsive 

patients displayed higher levels of glutamate and glutamine in the putamen compared to 

patients who respond to first-line treatment and those who are resistant to clozapine (“ultra-

treatment resistant”) (182). Whether this is indicative of a different disease pathophysiology 

or differences in system responsivity is unclear. For example, rapid antipsychotic drug-

induced induction of depolarization block of DA neurons requires the presence of a hyper-

excited DA system at baseline. If the DA system function is attenuated, addition of 

antipsychotics may be subthreshold for inducing depolarization block and preventing 

abnormal DA system activation (35, 183). Further research is needed to determine whether 

treatment resistance from the first psychotic episode lies on a spectrum or represents 

multiple distinct subtypes. A greater understanding of how individual patterns of network 

dysfunction contribute to differences in symptoms and clinical outcomes is critical to 

developing personalized treatments.

6.0 Summary

Current D2-targeting antipsychotics alleviate certain symptoms in patients, but given their 

central role in the pathophysiology of schizophrenia (17, 63, 68, 184), GABAergic and 

glutamatergic targets still hold promise as an effective therapy to regulate glutamate activity 

and downstream dopamine hyperactivity. Additionally, they may provide options for 

individuals who are resistant to current antipsychotics and display glutamate hyperactivity, 

as demonstrated by neuroimaging studies. Early interventions that protect excitatory-

inhibitory circuits, such as by reducing stress and neuroinflammation, have the potential to 

modify illness progression. Additional research on the development of psychosis and factors 

that contribute to heterogeneity in treatment response is needed to best implement these 

novel strategies.
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7.0 Expert Opinion: A Framework for Future Research

The findings discussed in this review support the hypothesis that targeting prodromal and 

early phase schizophrenia has the potential to limit the pathophysiological progression that 

leads to a chronic illness state. The implementation of early intervention strategies for CHR 

individuals requires reliable biomarkers to predict disease course and treatment response. 

Potential candidates include striatal DA concentrations, metabolic activity and glutamate and 

GABA concentrations in regions including the hippocampus and anterior cingulate, resting 

state connectivity, salivary cortisol, and serologic markers of oxidative stress and 

inflammation (10, 163, 185–188). More research is needed to understand the relative 

reliability of these options, how different trajectories progress, whether current clinical trial 

designs are effective at identifying novel non-D2 agents, and whether treating general 

psychopathology at the CHR state is beneficial across psychiatric disorders (189). It is also 

imperative to accurately predict the risk of transition to schizophrenia to avoid 

consequences, such as stigma, unnecessary treatment, and related adverse effects (190). 

Treatment of CHR individuals may reduce their risk of transition to schizophrenia, but they 

may remain at risk for other psychiatric disorders, such as depression or anxiety (189). A 

greater understanding of the neurobiology underlying the heterogeneity in schizophrenia 

will help to determine which therapeutic strategies are most effective for preventing or 

minimizing psychotic symptoms for an individual. We propose that the most promising 

avenues of research for novel antipsychotics and early intervention strategies are compounds 

that normalize excitatory-inhibitory transmission and either reduce stress or mitigate its 

effects.

Targeting excitatory-inhibitory processes, particularly compounds that regulate hippocampal 

activity, may avoid the side effects associated with D2 antagonist treatment and may also 

alleviate more symptoms of the disorder, including negative and cognitive symptoms. 

Indeed, a hyperactive hippocampus can impact more than the DA system; its dysrhythmia 

may also interfere with functions in its other targets related to cognition and affect/negative 

symptoms (119). Clinical trials of excitatory-inhibitory-targeting agents have yielded 

disappointing results, but further research is needed to understand why these compounds 

failed, what impact prior treatments may have had on novel compound response, whether 

there are additional variables that must be considered, and how to more effectively target 

symptoms. There is evidence to suggest that these compounds may not be effective in 

patients with chronic schizophrenia who have already received prior D2 antagonist 

antipsychotic drug treatment (72). However, some of these treatments may be effective in 

appropriate circumstances, such as in antipsychotic-naïve patients or those who are early in 

the disease (116). In addition to their prophylactic potential, treatments that normalize 

glutamate in the hippocampus may provide much-needed options for patients resistant to 

current antipsychotics (10, 14).

Additional longitudinal studies in clinical populations and neurodevelopmental animal 

models are needed to characterize the pathophysiological progression of the hippocampus-

DA circuit over time and its relationship with changes in symptoms. Additional time points 

in large samples may provide clarity to the interplay between hippocampal glutamate levels, 

increased metabolism, and atrophy and how these factors relate to changes in the DA system 
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(191). A timeline of whether a strategy may be most effective in the high-risk state, and to 

what extent it remains beneficial following the first episode could provide valuable insight 

into early intervention strategies.

Compounds that treat schizophrenia closer to the site of pathology by modulating glutamate 

and GABA transmission and/or mitigating the effects of stress hold promise for improving 

outcomes in patients with schizophrenia. Future research must focus on improving our 

understanding of the heterogeneity of the disease to determine which patients are most likely 

to respond to a given intervention. Additionally, a more detailed timeline of the progression 

of pathophysiological changes involved in schizophrenia is required to determine the 

optimal window for treatment. Targeted research questions from clinical studies and animal 

models that move toward the goal of a more reliable and individualized process of treatment, 

driven by a more informed understanding of the variables at hand, will ultimately help break 

the status quo and improve clinical outcomes.
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Article Highlights

• Developmental animal models relevant to schizophrenia are an effective 

approach to examine how neurotransmitter systems interact and change over 

time, which can provide valuable information about potential targets for early 

intervention and treatment.

• Animal models have demonstrated that stress during puberty can impair 

perineuronal nets around interneurons and have long-lasting impacts on 

dopamine neuron activity.

• Modulating excitatory-inhibitory dysregulation is promising as an alternative 

therapeutic strategy to D2-targeting antipsychotic drugs, and merits further 

research as a potential early intervention.

• Targeting hippocampal pathophysiology upstream of dopamine neuron 

dysfunction has the potential to both normalize dopamine neuron activity and 

alleviate other symptoms of schizophrenia.

• Future research must focus on categorizing subtypes to determine which 

patients may benefit most from a treatment, adapting clinical trial design for 

non-dopaminergic agents, and employing animal models to study changes 

that may not be apparent in normal rodents.
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Figure 1. The hippocampus regulates DA neuron population activity through a polysynaptic 
circuit.
Pyramidal neurons (Pyr) in the subiculum of the hippocampus send excitatory projections to 

neurons in the nucleus accumbens that, in turn, inhibit activity in the ventral pallidum. The 

ventral pallidum holds a variable subset of DA neurons in the ventral tegmental area (VTA) 

in an inhibited state. Through this circuit, activation of the hippocampus modulates the 

number of spontaneously active DA neurons. In schizophrenia, hyperactivity of Pyr in the 

hippocampus, following a loss of PV+ interneurons, drives an increase in DA neuron 

population activity. The increased gain results in increased phasic striatal DA release.
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Table 1.

A summary of potential targets for the treatment of psychosis.

Approach Therapeutic/
Preventative

Putative Clinical Effect Examples

GABA receptors Therapeutic Increase GABA signaling to increase inhibition 
of pyramidal neurons

• α5GABAA PAM

• Valproate

NMDA receptors Therapeutic Enhance NMDA-mediated interneuron function 
to increase inhibition of pyramidal neurons

• GlyT1

• DAAO inhibitors

mGluR2/3 
receptors

Therapeutic Normalize glutamate release to reduce 
pyramidal neuron hyperactivity

• mGluR2/3 agonists

Inflammation Both Prevent oxidative stress to protect PV+ 
interneurons

• Glutathione

Stress Preventative Protect hippocampal circuits from 
environmental stressors/excessive HPA 
activation

• Psychotherapy to reduce stress 
reactivity
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