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Abstract

The evolving concept that cancer stem cells (CSCs) are the driving element in cancer
development, evolution and heterogeneity, has overridden the previous model of a tumor
consisting of cells all with similar sequentially acquired mutations and similar potential for
renewal, invasion and metastasis. This paradigm shift has focused attention on therapeutically
targeting CSCs directly as means of eradicating the disease. In breast cancers, CSCs can be
identified by cell surface markers and are characterized by their ability to self-renew and
differentiate, resist chemotherapy and radiation, and initiate new tumors upon serial
transplantation in xenografted mice. These functional properties of CSCs are regulated by both
intracellular and extracellular factors including pluripotency-related transcription factors,
intracellular signaling pathways and external stimuli. Several classes of natural products and
synthesized compounds have been studied to target these regulatory elements and force CSCs to
lose stemness and/or terminally differentiate and thereby achieve a therapeutic effect. However,
realization of an effective treatment for breast cancers, focused on the biological effects of these
agents on breast CSCs, their functions and signaling, has not yet been achieved. In this review, we
delineate the intrinsic and extrinsic factors identified to date that control or promote stemness in
breast CSCs and provide a comprehensive compilation of potential agents that have been studied
to target breast CSCs, transcription factors and stemness-related signaling. Our aim is to stimulate
further study of these agents that could become the basis for their use as stand-alone treatments or
components of combination therapies effective against breast cancers.
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Introduction

Breast cancer is a phenotypically diverse cancer with a large degree of inter- and intra-
tumoral genetic and epigenetic heterogeneity. Breast tumors are divided into subtypes based
on hormonal receptor status—specifically based on their expression of the estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2).
ER and PR are expressed either alone (ER+/PR- or ER—/PR+) or together (ER+/PR+) in a
majority of breast carcinomas, and are used as biomarkers and prognostic factors to guide
clinical management?. ER+ breast cancers are well differentiated and less aggressive relative
to ER- breast cancers. Co-expression of both ER and PR receptors carries better prognosis
when compared to ER+/PR- or ER-/PR+ cases?. HER2+ carcinomas, cancers comprising
about 25% of all breast cancer cases, feature the most aggressive phenotype among invasive
breast cancer3. However, a pathologically complete response often can be achieved from
HER2-targeted therapy along with conventional chemotherapy?. Breast carcinomas that do
not express ER, PR, or HER2 are referred to as triple negative breast cancers (TNBC) and
constitute about 15-20% of breast cancer cases. These are a group of genetically and
phenotypically heterogenous tumors with poor prognosis and limited responsiveness to
treatment®. Additional functional biomarkers have been investigated for potential
implications in diagnosis, treatment, and predictions of drug resistance and prognosis; these
include antigen Ki-67 (KI-67; cell proliferation), programmed death-ligand 1 (PD-L1;
immune response), HER2A16 (drug resistance), and matrix metalloproteinase 9 (MMP-9;
invasion and metastasis)®.

Compelling evidence indicates that within a cancer, there is a subpopulation of cells known
as tumor-initiating cells (TICs) or cancer stem-like cells (CSCs) that are responsible for the
tumor initiation, chemo-/radio-resistance and relapse’: 8. This population is characterized by
a stem-cell gene expression signature, drug-resistant phenotype and self-renewal capacity /in
vitroand in vive®. CSCs can self-renew through division and give rise to the bulk of tumor
cells in the mass through replication and differentiation from the stem cell

compartment0: 11, Thus, targeting CSCs can be a promising therapeutic strategy for
eradicating breast cancer.

Two models have been proposed to explain the evolution of CSCs!2. According to the clonal
evolution model, genetic mechanisms are the culprits underlying clonal expansions, with the
stepwise acquisition of mutations in single clones culminating in tumor progression. This is
followed by selection of more aggressive dominant subclones having a survival advantage
and tumorigenic potentiall3. Meanwhile, the CSC model hypothesizes a role for nongenetic
mechanisms as the source of intra-tumoral heterogeneity. In this model, cancers originate
from a small subpopulation of tumor cells that can initiate tumorigenesis. CSCs were first
identified in acute myeloid leukemia, when a CD34*/CD38™ subpopulation of human
leukemia cells transplanted into immunocompromised (NOD/SCID) mice, perpetuated the
disease and underwent leukemic transformation and differentiation /n vivoto form the bulk
of the cells phenotypically identifiable as leukemicl4. CSCs have now been identified in a
variety of cancer types, including breast cancer, colon cancer, melanoma, prostate cancer,
lung cancer, and glioblastomal®.
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In this review, we examine the known markers identifying and characterizing breast CSCs
(BCSCs), the signaling pathways and transcription factors that appear to regulate stemness
properties and agents that target them and that might be exploited in treatment of the disease.

1.2 Cancer stem cells
1.2.1 Identification of BCSCs

Stem cell surface markers that are used to isolate BCSCs provide key insights into BCSC
biology along with opportunities to develop therapeutics that target them. To date, CSCs in
various human cancers have been identified by using one or multiple cell surface markers in
fluorescence-activated cell sorting (FACS); measuring functional markers such as aldehyde
dehydrogenase 1 (ALDH1) enzyme activity and ATP-binding cassette (ABC) transporter
expression; single-cell DNA sequencing; and screening side population cells with the
Hoechst-33342 dye exclusion techniquel®. Identifying, isolating, and characterizing the
BCSC populations has so far primarily utilized cell surface markers. In particular, the CD44,
CD24, and ALDH1* markers have become increasingly used to isolate BCSCs, characterize
them, and use them as prognostic markers for patients®.

CD44, a non-kinase single-span transmembrane glycoprotein that binds hyaluronan, is
involved in controlling cell proliferation, survival, and differentiation; it thus regulates CSC
properties including self-renewal, tumor initiation, metastasis, and radio- and chemo-
resistance. Alternatively-spliced variants of CD44 play roles in tumor development and
progression. CD44 expression is high in BCSCs; its downregulation induces differentiation
and sensitizes the cells to chemotherapyl’: 18, CD24 is a glycosylphosphatidylinositol-linked
cell surface glycoprotein that has been implicated in immunological functions,
tumorigenesis, chemoresistance, and metastasis. CD24 expression is low or absent in
BCSCs, and its upregulation is associated with poor prognosis in the luminal A and TNBC
subtypes®. ALDH1 is a member of group of enzymes that oxidize intracellular aldehydes to
carboxylic acids. Its activity is measured by the ALDEFLUOR assay, which assesses nine
active isoforms of ALDH; in breast cancer, high ALDH1 activity is associated with stem-
like features and chemoresistance. ALDH1* breast cancers are also characterized by being
ER-, EGFRII* and Ki-67" 20, Suppression of ALDH1 decreases tumorigenicity and cell
migration?1,

BCSCs were first isolated from xenografts using a combination of cell surface markers:
CD44*/CD247°W Lin~. The cells with this phenotype are tumorigenic in numbers as low as
100 cells; in contrast, those with different phenotypes failed to form tumors even with tens
of thousands of cells’. A high CD44/CD24 ratio is directly correlated with cell proliferation
and tumorigenesis, as indicated by increased formation of mammospheres /n vitro and
xenograft tumors2L. In addition, CD44*/CD24~ breast cancer cells are enriched for EMT-
associated traits, including expression of matrix metalloproteinase 1 (MMP-1), vimentin,
and zinc finger E-box binding homeobox 1 (ZEB1); this is suggestive of interplay between
EMT and CSC status?2. These cells also demonstrate increased expression of the molecular
chaperones glucose-regulated protein 78 (GRP78) and 94 (GRP94), which regulate
endoplasmic reticulum homeostasis in stem cell development and in invasion of cancer23.
Furthermore, the cells exhibit dysregulation of major signaling pathways otherwise involved
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in the regulation of normal mammary stem cells, such as the Notch, Hedgehog, and Wnt/p-
catenin pathways; blockage of these pathways by chemotherapeutic agents inhibits the CSC-
like phenotype and tumorigenesis?4. In mice, breast cancer cells derived from BRCA1-
deficient mammary tumors show increased numbers of CD44*/CD24~ and CD133* cells
and increased expression of stem cell-associated genes including Oct4, Notchl, Aldh1,
Fgfrl, and Sox125. In the clinical context, the CD44*/CD24~ phenotype is associated with
resistance to cytostatic agents, grade of malignancy, and patient survival?6. Furthermore,
CD44*/CD24~ BCSCs are resistant to radiation treatment and demonstrate increased
expression of Jagged-1, Notch-1, and p-S6K1 (a major downstream regulator of the mTOR
pathway)2’. The radioresistance of these cells is mediated through upregulation of the
checkpoint kinase pathway (CHK); application of the CHK inhibitor,
debromohymenialdisine, effectively overcoming the resistance?,

Regarding ALDH as a CSC population marker, Ginestier et al. found that ALDH1
enzymatic activity is high in a subpopulation of breast carcinomas having tumorigenic and
self-renewal abilities both Jn vivoand in vitro®®. ALDHNCD44* subpopulations of BCSCs
are resistant to chemotherapy and radiotherapy and feature increased expression of
glutathione-S-transferase pi, p-glycoprotein, and checkpoint kinase 1 (CHK1). Pretreatment
of these cell populations with all-trans retinoic acid or the ALDH inhibitor
diethylaminobenzaldehyde (DEAB) significantly sensitizes the stem-like breast cancer cells
and reduces resistance3. In MCF-7 xenograft tumors, ALDH1A1 (an isoform of ALDH1)
promotes tumor angiogenesis by upregulating the retinoic acid/HIF-1a/VEGF signaling
pathway, thereby affecting breast cancer progression®L. In ALDH1* BCSCs, the Wnt/p-
catenin signaling pathway, known to regulate stem cell niche during development, is
dysregulated; downregulation of Wnt expression inhibits the CSC phenotype and suppresses
breast cancer metastasis32. In ductal carcinoma in situ (DCIS), expression of ALDH1 along
with enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), a marker
implicated in stem cell maintenance and renewal, is associated with tumor recurrence and
progression to invasive breast cancer33.

Studies of invasive breast carcinomas and breast cancer cell lines have shown basal-like
tumors to be enriched with CD44+/CD24~ and ALDH1* phenotypes34. Quiescent
mesenchymal-like BCSCs are CD44*/CD24~ and localize to the tumor periphery, whereas
proliferative epithelial-like BCSCs are ALDH1* and localize in the center3®. Table 1
summarizes the BCSC markers, their functions, target genes and relation to tumorigenesis.

In addition to cell surface markers, various functional assays are employed in the study of
BCSCs; these include the mammary organoid 3D culture model, mammosphere forming
assay in serum free medium, and the /n7 vivo injection of FACS-sorted cells in limiting
dilutions into immunocompromised mice, with consequent initiation of tumor growth36.
Despite the multiplicity of BCSC markers and assays available, universal putative markers
have yet to be resolved that can identify specific subpopulations having the most
tumorigenic potential in each breast cancer case. Identification of those subpopulations is
essential for the development of CSC-targeted therapy and overcoming resistance to chemo-
and radio-therapeutic treatments.
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1.2.2 Characteristics of BCSCs

CSCs are similar to normal stem or progenitor cells in their ability to self-renew and
recapitulate heterogeneity!3. Self-renewal is a hallmark of stem cells, in which a stem cell
produces two daughter cells with stem cell properties (symmetric division) or one daughter
cell with stem cell properties and a second that undergoes differentiation (asymmetric
division)3”. CSCs express transcription factors (OCT4, NANOG homeobox [NANOG], and
SRY-box transcription factor 2 [SOX2]) that are found in early embryonic stem cells. The
core stem cell factors regulate pluripotency and self-renewal, and their overexpression is
associated with signaling pathways related to malignant transformation, tumorigenicity,
tumor progression, relapse, and inhibition of apoptosis38. OCT4, NANOG and SOX2
markers are induced in many cancer types, including breast, prostate, lung, colorectal, and
gastrointestinal cancers3®. Likewise, normal stem cells and CSCs share common self-
renewal signaling pathways including the Notch, Hedgehog, STAT3, and Wnt/p-catenin
pathways; all of these are documented as being important signaling cascades in embryonic
development and have been shown to contribute to tumorigenesis in multiple types of
tumors?0, The plausibility of the CSC theory in breast cancer, which hypothesizes that
BCSCs are derived from normal progenitor/stem cells, is supported by phenotypic features
similar to their lineage-specific normal stem cell counterparts®L.

CSCs arise from deregulation of the self-renewal program in stem cells, giving rise to their
malignant transformation, or from the dedifferentiation of committed mature cells to acquire
CSC-like properties*2. In addition to self-renewal, CSCs also display quiescence in response
to environmental cues. Thus, while anti-mitotic chemotherapeutic agents have been
developed to target proliferating tumor cells, the resident, generally quiescent CSCs remain
resistant to chemo- and radio-therapies even at high doses and so are the major cause of
relapse—the living evidence of CSC plasticity and the supreme challenge faced by current
therapies®3.

Ultimately, numerous intrinsic and extrinsic factors regulate CSC traits, including
developmental pathways, epigenetics, stem cell transcription factors, epithelial mesenchymal
transition (EMT) factors, cell cycle regulation mechanisms, apoptosis pathways, and the
tumor microenvironment. All of these factors interact constantly and dynamically regulate
CSC survival, proliferation, and metastasis*. As a consequence, CSCs exhibit a spectrum of
functional and phenotypic heterogeneity, confirmed by /n vitro clonogenic and anchorage-
independent growth assays (tumor sphere assays) as well as /n vivo limiting dilution
xenotransplantation assays*®. CSCs constitute only a small proportion (0.01-2%) of the
tumor cells in a tumor mass, and isolating and identifying a pure CSC population remains
challenging*®.

1.3 Major self-renewal pathways in BCSCs

CSC populations are maintained by their self-renewal capacity. The current notion of CSCs
states that the self-renewal signaling and transcription factors which regulate growth and
maintenance in normal stem cells are dysregulated in BCSCs*’. The following section will
discuss the major self-renewal pathways in BCSCs.
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1.3.1 Notch signaling pathway

Notch is a family of four transmembrane receptors (NOTCH 1-4) that interacts with five
ligands: the jagged proteins (JAG1 and JAG2) and the delta-like ligands (DLL1, DLL3, and
DLL4)*8, While canonical Notch signaling is involved in multiple cellular processes,
including embryonic development, stem cell fate determination, apoptosis, cell cycle
progression, self-renewal and lineage specific differentiation, non-canonical Notch signaling
is associated with immune activation and breast tumorigenesis#®. Oncogenic RAS activates
NOTCH1 and upregulates the Notch ligand DLL1 along with presenilin-1 through a p38-
mediated pathway. There is a correlation between Ras overexpression and upregulation of
NOTCH1 in breast carcinomas®C. In clinical breast cancer samples, Notch signaling is found
to promote BCSCs by inducing expression of sirtuin 2 (SIRT2), leading to deacetylation and
activation of ALDH1A151, Notch1 and Notch4 signaling are higher in ESA*/CD44%/
CD24!W enriched BCSCs. NOTCH1 overexpression in MCF-7 and MCF10A breast cancer
cells increased the abundance of the BCSC CD44*/CD24!°% subpopulation, along with
increasing tumor cell invasion and migration. Increased NOTCH1 expression also promotes
the EMT phenotype and tumor growth 77 vivo through crosstalk with STAT3 signaling®2.

Notch signaling and expression of its target genes are also elevated in mammosphere-
derived stem-like cells. Inhibition of Notch signaling by a y-secretase inhibitor significantly
reduces sphere formation, proliferation and colony formation, and also induces apoptosis®2.
Likewise, pharmacologic and genetic inhibition reduce stem cell activity in /in vitroand
tumor formation /in vivo®®. In CD44%/CD24~ mammospheres, the breast tumor suppressor
signal peptide, CUB domain and EGF like domain containing 2 (SCUBEZ2) is overexpressed,
with concomitant overexpression of SOX2, OCT4, and NANOG in TNBC. Ectopic
expression of SCUBE?2 in adherent cells promotes EMT and metastasis by activating Notch
signaling and its components®®.

Notch4 expression is high in TNBC and is negatively correlated with overall survival®®.
Notch4* BCSCs are characterized by increased expression of stemness factors (OCT4,
SOX2, NANOG), mammaosphere formation /n vitro, and tumorigenicity in a serial dilution
tumor transplantation xenograft model®’. Treating TNBC cells with mTOR inhibitors leads
to increased stemness features and greater /77 vivo tumor initiating capacity. The intrinsic
resistance of these cells from TORC1/2 inhibition is driven by their activated Notch1 and
FGF1 pathways in association with increased mitochondrial metabolism and FGFR1
signaling. Notably, abrogation of the FGFR-mitochondrial metabolism-Notchl axis
overcomes resistance to TORC1/2 inhibitors by eliminating drug-resistant CSCs®8.
Meanwhile, JAG1-NOTCH4 receptor activation increases BCSC activity and induces
tamoxifen resistance in both patient-derived tumors and xenograft models. Targeting Notch4
reverses the increase in Notch, reducing BCSC activity and improving the tamoxifen
resistance®®. Thus, in combination with other modalities, targeting the Notch pathway could
be a promising strategy for enhancing the effectiveness and sensitivity of breast cancer
treatment while simultaneously eradicating BCSCs.
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1.3.2 Wnt signaling in BCSCs

The Wnt/Frizzled/B-catenin pathway is an evolutionarily conserved signaling pathway that
plays significant roles in embryonic development and tissue homeostasis®C. There are 19
Whnt glycoproteins that serve as ligands for the receptors Frizzled (FZD) and LDL receptor
related protein 5/6 (LRP5/6)%. Aberrant Wnt signaling is implicated in breast cancers52.
Whnt signaling is constitutively activated in basal breast cancer cells, affecting their self-
renewal and differentiation83. Regulators of the Wnt signaling pathway, such as lymphoid
enhancer-binding factor 1 (LEF1), cyclin D1, pB-catenin, and TCF-4 are upregulated in
ALDH* BCSCs. Treating 4T1 BCSCs with Wnt3a ligand induced Wnt/B-catenin signaling
and transcriptional activity, while Wnt1 silencing decreased tumor sphere formation and the
CD44%/CD24~ population /n vitro, along with decreasing tumorigenesis and metastasis in
xenografts32. Thyroid hormone receptor interactor 6 (TRIP6), an adapter protein involved in
regulating the functions of CSCs, enhances stemness in breast cancer cells through
activation of the Wnt/B-catenin pathway®4. On the converse side, -catenin silencing has
been shown to reduce tumorigenesis 7 vivo and to suppress cancer stemness /i1 vitro by
decreasing the abundance of ALDH" breast cancer cells and the expression of stemness-
related genes, including B lymphoma Mo-MLYV insertion region 1 homolog (BMI-1) and
MY C proto-oncogene, bHLH transcription factor (c-Myc). In TNBC cells, such silencing
also impaired formation of anchorage-independent colonies in soft agar assay and improved
chemoresistance5®. Treatment of TNBC cells with WNT-targeting pharmacological agents
modulates the expression of PD-L1, a ligand for the inhibitory immune checkpoint receptor
PD-1, which is highly expressed in the stem cell compartment (ALDH* or CD44v6-positive)
alongside WNT signaling-related genes. This indicates a role of Wnt signaling in TNBC-
related immune escape®8. The pleiotropic effects of Wnt signaling and its components in
breast cancer initiation, progression, and the maintenance of different cancer subtypes
remain to be elucidated, and deeper understanding of them is essential for developing
BCSC-targeted therapies.

1.3.3 Hedgehog signaling

The Hedgehog (Hh) signaling pathway is involved in animal development and tissue
homeostasis and is associated with many solid tumors including pancreatic cancer, lung
cancer, breast cancer, basal cell carcinoma, and hematological malignancies. Hh family
members include Sonic hedgehog (SHH), Indian hedgehog (IHH), and Desert hedgehog
(DHH)87. In cancer, this pathway plays roles in malignant transformation, proliferation, drug
resistance, metastasis, and the expansion of cancer stem cells®. Hh signaling is known to
drive oncogenesis, specifically resulting from mutations in components of Hh pathway, over-
expression of ligands of the Hh pathway, and maintenance of CSC phenotype through
regulation of stemness-related genes®®. The pathway is significantly upregulated in luminal
B and TNBC breast cancer subtypes’?. An earlier study in mice showed that overexpression
of Glil under the MMTYV promoter is sufficient to promote development of breast tumors
expressing progenitor cell markers’®.

In mammospheres, PTCH, SMO, GLI1 and GLI2 are highly expressed, becoming down-
regulated upon differentiation. Activation of Hh signaling increases mammosphere forming
efficiency (MFE) and size, effects mediated by the polycomb gene BMI-1. Hh signaling is
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also hyperactivated in the CD44%/CD24~/Lin~ BCSC population’2. In mammospheres of
estrogen receptor-positive MCF-7 breast cancer cells, components of the Hh pathway
(PTCH, SMO, GLI1 and GLI2) are highly expressed relative to monolayer cells; treatment
with salinomycin, which targets CSCs, induced apoptosis and downregulated target genes of
the Hh pathway (c-Myc, Bcl-2, and Snail) /n7 vitro and reduced the tumor growth and
expression of PTCH, SMO, GLI1 and GLI2 in xenograft tumors’3. In basal-like breast
cancer, increased expression of forkhead box C1 (FOXC1), an EMT-associated transcription
factor, acts via activation of SMO-independent Hh signaling mediated by GLI2 to enrich
CSC properties of the cancer, including ALDH™ cell populations and mammosphere growth.
Furthermore, expression of FOXC1 in TNBC cells confers resistance to anti-Hh drugs’4.
LncRNAs were demonstrated to regulate EMT-associated BCSC stemness through the
growth arrest specific 1 (GAS1)-activated IncRNA-Hh pathway. The upregulated Hh
signaling increased GLI1, SOX2, and OCT4 expression and MFE /n vitroand
tumorigenicity /in vivo. Silencing IncRNA-Hh reversed these findings’®. Hh signaling is also
associated with chemoresistance in TNBC. Chemotherapy-induced drug resistance is
mediated by GLI1 via upregulation of multidrug resistance protein 1 (MDR1) and breast
cancer resistance protein (BCRP)78. Ultimately, activation of the Hh signaling pathway is
well-documented as a poor prognostic indicator in both hormone receptor-positive breast
cancer and TNBC. However, there are limited Hh-targeted therapies available. Selective
inhibition of GLI and other targets might represent an effective strategy for impeding breast
cancer development and the activity of cancer stem cells.

1.3.4 TGF-p signaling

The transforming growth factor g (TGF-B) superfamily consists of 42 ligands including
TGF-B, activins, Nodal, inhibins, bone morphogenic proteins (BMPs), and growth
differentiation factors (GDFs)’’. In cancer, TGF-B displays context-dependent dichotomous
behaviors, being a tumor suppressor that inhibits cell cycle progression and promotes
apoptosis or a tumor promoter that induces EMT and invasion’’. Consistent with its tumor
suppressor role, constitutive expression of TGF-B1 in mammary epithelial cells of
xenografts increased latency of tumor growth and decreased mammary cancer risk’8.
Similarly, TGF- reduces the BCSC population and induces luminal differentiation’®. Loss
of TGF-p-mediated tumor suppression in breast cancer is associated with downregulation of
luminal markers and upregulation of basal markers’®. In another example, transgenic
expression of MMTV-driven dominant-negative TBR2 (DNIIR) in female mice decreased
tumor latency and induced spontaneous tumor formation and invasion®. In contrast,
mammary epithelial cell-specific expression of TGF-f ligands or TRRs in xenograft tumors
promotes lung metastasis, while attenuation of TGF-B signaling decreases metastasis®?.
These findings suggest a paradoxical role of TGF-B signaling in inhibiting tumor initiation
while promoting metastasis.

In immortalized human mammary epithelial cells (HMLE cells), TGF-B1-induced EMT
generates stem cell-like cells that express EMT markers and have increased ability to form
mammospheres, colonies in soft agar, and xenograft tumors82. Meanwhile, CD44*/CD24~
BCSCs generated by TGF-pl-induced EMT are more resistant to radiation compared to
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their parental cells, mediated by upregulating antioxidant-related genes and reducing
activation of death receptor pathways®3.

Accumulating evidence has implicated the epigenetic regulation of TGF-p signaling in
breast cancer progression®4. In TNBC, TGF-B1 inhibits miR-196a-3p and activates its
downstream target gene neuropilin-2 to promote metastasis®®. Meanwhile, miR-133b and
miR-190 have been shown to inhibit TGF-B-induced EMT and metastasis by targeting
SMAD?2, indicating their roles as tumor suppressors and potential diagnostic biomarkers of
breast cancer®8. In mouse epithelial NMuMG cells, INcRNA-HIT mediates TGF-B-induced
EMT and invasion by targeting E-cadherin; this long noncoding RNA is conserved in
humans and elevated in invasive breast cancer. Attenuation of INCRNA-HIT resulted in
decreased invasion, migration, and tumor growth8”. Overall, due to the complexity of
functional switches in TGF- signaling, specific drugs targeting downstream signaling
would be preferable as therapeutics, as they can be utilized without compromising other
physiological functions of TGF-p.

1.3.5 STAT3 signaling

The transcription factor signal transducer and activator of transcription (STAT) family
consists of seven highly conserved members, STAT1, STAT2, STAT3, STAT4, STAT5a,
STATS5b and STATS; all share structural and functional similarities®8. STAT3 is known to
contribute to tumor cell proliferation, progression, metastasis, immune suppression, and
stem cell self-renewal and maintenance8. STAT3 overexpression is found in more than 40%
of breast cancers, mainly in the TNBC subtype. Aberrant activation of STAT3 promotes
breast cancer development by deregulating genes implicated in proliferation, angiogenesis,
and EMT. In TNBC, hypoxia induces an increase in the CD44Ngh/cD24low BCSC
population and in chemoresistance by activating STAT3 signaling. Genetic knockdown of
STAT3 reverses the acquisition of stem-like features, which suggests a significant role of
STAT3 in promoting the induction of cancer stemness by hypoxia®Z.

Cytokines are known risk factors that induce inflammation and promote breast cancer
progression. Oncostatin M (OSM), a member of the gp130 family of cytokines, has been
implicated in inflammatory functions driving tumor aggressiveness and in increased STAT3
phosphorylation and STAT3-dependent IL-6 production, which promotes breast cancer
progression. High expression of OSM correlates with poor breast cancer patient survival®2.
High levels of another cytokine, 1L-35, are associated with poor prognosis in patients. Breast
cancer cell-derived 1L-35 inhibits conventional T (Tconv) cell proliferation and induces the
cells to transform into IL-35-producing induced regulatory T (iTr35) cells by activating
STAT1/STAT3, thereby promoting breast cancer progression93.

MiR-124, a tumor suppressor that modulates breast cancer cell proliferation and invasion, is
downregulated in breast cancer cells. Overexpression of miR-124 in TNBC decreased
STAT3 and suppressed cell proliferation and invasion. Restoration of STAT3 expression
reversed miR-124-mediated tumor cell invasion®4. Similarly, miR-7 was demonstrated to act
as a tumor suppressor by inhibiting breast cancer cell invasion and metastasis, decreasing
BCSC populations, and reversing EMT in MCF-7 and MDA-MB-231 cell lines. These
miR-7-mediated effects occurred through targeting the oncogene SETDB1, which led to
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suppression of the downstream target STAT3 as SETDBL binds to its promoter and regulates
its expression®®. All told, STAT3 signaling is not simply limited to a role in tumorigenesis
but is also important in invoking the immune cell response. STAT3 will be a promising target
for breast cancer prevention and therapy.

1.3.6 Other signaling in the regulation of BCSCs

Breast tumorigenesis is driven by aberrant regulation of cell signal transduction pathways
owing to the accumulation of genetic and epigenetic changes over time. Apart from the
aforementioned pathways, other significant signaling involved in BCSC enrichment and
maintenance includes the Hippo, PISK/Akt/mTOR and BMI-1 pathways®. Dysregulation of
any of these individual pathways or of the interplay between them poses a risk of developing
breast cancer. In addition, the receptor tyrosine kinase (RTK) class of specialized cell
surface receptors respond to environmental cues by relaying appropriate signals in the tumor
cell; these include epidermal growth factor receptor (EGFR), platelet derived growth factor
receptor (PDGFR), and AXL receptor tyrosine kinase (AXL). RTKs play a multifaceted role
in breast cancer development, sharing common downstream pathways such as MAPK, NF-
kB, PI3K/Akt, and JAK/STAT signaling; the crosstalk with other key signaling pathways
relevant to the regulation of angiogenesis, metastasis, and maintenance of BCSCs. Mutation
in or overexpression of RTKSs has been observed in different stages of breast cancer to lead
to constitutive activation of various signal transductions that promote BCSCs and
chemoresistance9.

1.4 Signature of cancer stem cell transcription factors in breast cancer

Pluripotency in embryonic stem cells (ESCs) is regulated by a well-characterized core
transcriptional network. The circuitry of this network constitutes major transcription factors
of pluripotency, signal transduction machinery, and epigenetic regulators. In human
embryonic stem cells, OCT4, NANOG, and SOX2 function as master regulators of
pluripotency and self-renewal properties while inhibiting differentiation to control cell
fate%’. Pluripotency can be induced in adult somatic cells, as evidenced by reprogramming
of adult fibroblast cells into pluripotent stem cells with characteristic features of ESCs using
the OSKM transcription factors (OCT3/4, SOX2, c-Myc, and Kruppel-like factor 4
[KLF4])%8. Astrocytes transduced with the H-ras oncogene or with OSKM factors undergo
reprogramming into progenitor cells, resulting in tumorsphere formation. When these
tumorspheres are transplanted as xenografts, they form heterogeneous tumors, suggesting an
interplay between tumorigenicity and pluripotency#2. It can be assumed that CSCs share
characteristics with ESCs. The pluripotency transcription factors OCT4, NANOG, and
SOX2 are upregulated in human cancers, including breast cancer, glioma, melanoma, and
prostate cancer, and their overexpression in tumors is associated with poor differentiation,
stem-like phenotype, and inhibition of apoptosis38.

141 OCT4

OCT4, a homeodomain transcription factor of the Pit-Oct-Unc family, is one of the most
important transcription factors governing pluripotency®®. The human OCT4 gene has three
transcript variants (OCT4A, OCT4B, and OCT4B1) and four protein isoforms (OCT4,
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OCT4B-190, OCT4B-265, and OCT4B-164). Each alternative transcript variant and isoform
demonstrates diverse expression patterns and functions'90. Distinctive expression patterns of
OCT4 variants have been identified in different types of breast cancer: OCT4A and OCT4B
are highly expressed in low-grade ductal tumors, whereas OCT4B is overexpressed in
lobular type breast cancer. Expression of OCT4 variants is also associated with the
expression of ER, PR, HER2 and p53191, Among them, OCT4A is responsible for
maintenance of stemness in pluripotent embryonic stem cells1%0. Ectopic expression of Oct4
in 4T1 mouse breast cancer cells increased tumorsphere formation, expression of stem cell
markers such as CD133, CD34, Sca-1, and ALDH1 /n vitro, and tumorigenic potential /n
vivot92, OCT4 controls the expression of target genes by recognizing and binding to DNA
regulatory regions through an octamer motif (AGTCAAAT) or by recruiting other
transcription factors to regulate a specific set of genes193,

Phenotypically, resistance to chemo- or radiotherapy is among the hallmarks of CSCs. The
function of OCT4 in the stemness-mediated resistance of BCSCs to chemotherapy and
irradiation is of particular interest in breast cancer. In hormone receptor-positive breast
cancer, OCT4 can be used a prognosis indicator for poor clinical outcome and tamoxifen
resistancel94. Doxorubicin resistant-TNBCs showed increased CSC phenotype along with
high expression of signal transducer and activator of transcription 3 (STAT3), OCT4, and c-
Myc. Treatment with the STAT3 inhibitor WP1066 decreased phosphorylation of STAT3 and
the expression of OCT4 and ¢-MYC, leading to a reduction in CD44* BCSC population and
restoration of doxorubicin sensitivityl9. OCT4 also confers resistance to irradiation by
increasing clonogenic survival following irradiation and upregulating interleukin 24 (1L-24)
production through STAT3 and NF-xB signaling06.

PD-L1, a T-cell inhibitory molecule with immunomodulatory function, regulates breast
cancer stemness by modulating OCT4 and NANOG. In breast cancer, its expression is
associated with EMT, chemoresistance, and maintenance of stemness. PD-L1 knockdown
inhibits AKT phosphorylation and mTOR activity, with downstream reduction of OCT4
phosphorylation at T235 and therefore of OCT4 activityl07. Another regulator of OCT4 is
the E3 ubiquitin ligase carboxy terminus of HSP70-interacting protein (CHIP), which was
demonstrated to mediate its proteasomal ubiquitination at lysine 284 through microarray
analysis of mammospheres derived from MDA-MB-231 and MCF-7 cells. CHIP
overexpression decreased OCT4 stability and BCSC populations, while CHIP depletion
promoted breast tumor and lung metastasis in xenografts. This finding suggests that CHIP-
induced post-translational modification of OCT4 is important in maintenance of BCSCs108,

Although OCT4 is well studied in the context of stemness maintenance, its role in metastasis
remains controversial. Overexpression of OCT4 in MDA-MB-231 and 4T1 breast cancer
cell lines induced E-cadherin while suppressing cell migration and invasion /in vitro and lung
metastasis /7 vivol%9. The inhibitory effect of OCT4 on metastasis is mediated through
downregulation of Rho family GTPase 1 (RND1) by binding to its promoter regionl. In
contrast, a previous study from the same group showed downregulation of OCT4 in MCF-7
cells to promote cell migration and invasion by inducing EMT (decreased E-cadherin
expression and increased alpha-smooth muscle actin expression)10. Given the multiple
regulatory effects of OCT4 on stemness, resistance and metastasis in breast cancer, a better
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understanding of OCT4 for its interaction and interconnection with other markers and
effectors of CSC function is essential.

SOX2 is a member of the Sox (SRY-related HMG box) family member of transcription
factors with a single high-mobility group DNA-binding domain. It is recognized as a key
player in the regulation of early embryonic development, maintenance of undifferentiated
ESCs, and cell fate determination, and its expression is dysregulated in several cancer types,
including breast, prostate, brain, and lung cancers. SOX2 is additionally involved in
tumorigenesis, drug resistance, poor prognosis, and metastasis, indicating a major role in
cancer and positioning it as an attractive therapeutic target!11. Overexpression of SOX2 in
breast cancer cells increased mammosphere formation, while its knockdown suppressed
mammosphere formation and delayed tumor formation in xenograft tumor initiation models.
Mechanistically, SOX2 overexpression was induced through the activation of a distal
enhancer of SOX2 promoter, the same element that natively regulates SOX2 transcription in
pluripotent stem cells!12. In ER-positive breast cancer patients, SOX2 expression is
associated with poor prognosis and endocrine treatment failure, and SOX2 promotes
tamoxifen resistance via activation of Wnt signaling®13. It also targets SOX9 to regulate
luminal progenitor cells and Wnt signaling activity14. In TNBC cases, SOX2 is implicated
in BCSC chemoresistance through modulation of TWIST1. Silencing SOX2 increased
paclitaxel sensitivity and diminished stemness and TWIST1 expression. This illustrates the
significance of SOX2 as a connector between pluripotency, chemoresistance, and the EMT
axis 1o, Likewise, SOX2 knockdown in MCF-7 cells decreased mammosphere formation,
CD44%/CD24~ subpopulation, ALDH* population, viability /n vitro, and tumorigenicity /in
vivot13,

1.4.3 NANOG

NANOG is a homeodomain protein found in undifferentiated mammalian ESCs and
pluripotent cells. Endogenous Nanog drives ESC self-renewal by maintaining the level of
OCT4, which is integral to ESC function. Although Nanog is absent in differentiated cells,
its abnormal expression is reported in human cancers including prostate cancer,
hepatocellular carcinoma, glioblastoma, colon cancer, and breast cancer. Expression of
Nanog is associated with stemness, self-renewal, and tumorigenesis1®. When coexpressed
with Wnt-1 in the mouse mammary gland, Nanog promotes mammary tumorigenesis and
metastasis. Ectopic expression of Nanog in MCF-7 cells enhances colony formation,
migration, and invasion /7 vitro and tumor growth Jin vivoll’. Meanwhile, silencing Nanog
reduces colony formation, cell proliferation, and invasion; it furthermore downregulates the
cell cycle regulators cyclin D1 and c-Myc, leading to cell cycle arrest at GO/G1118, In
BCSCs, Nanog and OCT4 modulate TGF-B-mediated EMT; their induction promoted
invasion while knockdown of both inhibited CSC migration /7 vitro*19. In addition, Nanog
confers drug resistance in MCF-7 breast cancer cells through STAT3-mediated activation of
MDR1120, and in breast ductal carcinoma, its expression has statistically significant
relationship with tumor grade, lymph node metastasis, and disease stagingt2L. Tissue
microarray analysis revealed that breast cancer patients with strong Nanog expression have
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significantly lower disease-free survival and overall survival rates than those with weak
expressionl22,

KLF4 is a member of the highly conserved Kruppel-like zinc finger transcription factor
family, and is one of the four major transcription factors of pluripotency. It plays diverse
roles in physiology and disease, with functions in cell cycle regulation, proliferation,
apoptosis, differentiation, somatic cell reprogramming, and pluripotency23, KLF4 is
differentially expressed in human cancers, and furthermore is bifunctional; it can act as
either tumor suppressor or oncogene depending on the tissue, tumor type, and staging?23. In
breast cancer tissues, its protein expression is correlated with pathological type, histological
grade, and lymph node involvement; low-level expression is found in normal breast
epithelium, while increased expression is detected in neoplastic cells and prior to
invasion124, In estrogen-dependent breast cancer, KLF4 acts as a tumor suppressor by
regulating the transcriptional activity of ERa specifically binding to its DNA-binding region
and preventing it from binding to estrogen response elements in promoter regions!2. It is
also self-regulating, in that the isoform KLF4a antagonizes the function of KLF4 and
stimulates breast cancer cell proliferation by binding and retaining KLF4 in the cytoplasm,
opposing its regulatory activities in the nucleus'26. KLF4 is highly expressed in BCSCs
from primary mammary tumor and breast cancer cell lines. In the MCF-7 and MDA-
MB-231 cell lines, KLF4 knockdown decreased the population of ALDH1* progenitor cells;
it furthermore suppressed cell migration, invasion, and mammosphere formation /n vitro and
tumorigenesis in vivot2’. In BCSCs, KLF4 and the androgen receptor have been
demonstrated to mediate stem cell phenotype; this effect is negatively regulated by dual
specificity tyrosine phosphorylation regulated kinase 2 (DYRK2), a protein kinase that
controls EMT via Snail degradation. Downregulation of DYRK2 promotes KLF4 expression
and cancer stem-like properties!28,

MYC is a dimeric transcription factor of the basic helix-loop-helix (bHLH) DNA-binding
protein superfamily that regulates a broad range of biological processes such as cell
proliferation, differentiation, growth, and apoptosis; it is also implicated in embryonic stem
cell self-renewal and pluripotency29. The MYC promoter is a downstream effector target of
self-renewal pathways such as the Notch, Wnt, NF-xB and TGF-B signaling pathways30,
Of the three MYC family members I-MYC, c-MYC, and n-MYC, the latter two play crucial
roles in the maintenance of pluripotency. Co-deletion of both transcription factors in ESCs
and in induced pluripotent stem cells (iPSCs) led to destabilization of pluripotency and
spontaneous differentiation into primitive endoderm131,

As an important transcription regulator in ESCs, MYC also displays similar regulatory role
in CSCs132, In fact, MY C was first recognized as one of the most potent oncogenes,
inducing neoplastic transformation of target cells and a wide variety of tumors133, Transient
overexpression of MY C in Ratl1A cells evoked genomic instability and increased
tumorigenicity!34. In breast cancer, MYC amplification is associated with disease
progression; additionally, its expression is higher in TNBC than in other subtypes. MYC
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overexpression in the BRCA1-deficient TNBC subtype is associated with poor prognosis3®.
Meanwhile, targeting MYC in TNBC with triptolide (C1572), a small-molecule natural
product, depletes cancer-stem like cells via a proteasome-dependent mechanism136, In
combination with MCL1 apoptosis regulator, BCL2 family member (MCL1), MYC
promotes chemoresistance of CSCs in TNBC by increasing mitochondrial oxidative
phosphorylation and the generation of reactive oxygen species!3’. Additionally, c-MYC is
the effector target of the tumor suppressor gene p53 in mammary stem cells; loss of p53
function is implicated in the development of cancers. In breast tumors, p53 mutation
activates c-MYC, leading to maintenance of cancer stemness features and expression of a
mitotic gene signature, which correlates with breast cancer aggressiveness and poor
prognosis!38. Transducing MYC in HMLE cells induces luminal epithelial morphology
changes, spheroid formation, and dedifferentiation into progenitor-like states. MY C-driven
epigenetic changes are mediated through suppression of lineage-specific transcription
factors and activation of de novo enhancers, determined by hyperactivation of the Wnt
pathway, which further drives transcriptional activation of oncogenic pathways3°,

1.5 BCSCs and therapeutic resistance

Tumor relapse in breast cancer has been attributed to drug-resistant CSCs, and the
persistence of CSCs after chemotherapy pinpoints this population as an ‘ultimate target’ that
must be eliminated to eradicate cancer. BCSCs share many features of normal stem cells and
modulate a multitude of drug resistance mechanisms, including overexpression of drug
efflux pumps (e.g. ATP-binding cassette family members ABCG2, P-gp, ABCC1, ABCBS,
etc.)140, enhanced DNA repair activity41, increased scavenging of reactive oxygen
species?#2, activation of anti-apoptotic proteinsl43, and induction of dormancy144 145,
BCSCs exhibit DNA damage repair mechanisms that render them chemo- and radiation-
resistant, thus targeting DNA repair pathways is a plausible approach for BCSC-directed
therapyl41. BCSCs trigger increased expression of free radical scavenging systems at lower
ROS levels than do other cells, protecting them from anti-cancer agents. Doxorubicin-
dependent CD44*/CD24~ BCSCs in MCF-7 cells demonstrate upregulated levels of nuclear
factor, erythroid 2 like 2 (NRF2), a key transcription factor that regulates cellular responses
to oxidative damage. Specifically, CD44 regulates NRF2 level through p62 expression, and
NRF2 activation endows the BCSCs with aggressive phenotype and chemoresistancel42.

CSCs activate anti-apoptotic proteins that can withstand cytotoxic agents. Inhibiting these
anti-apoptotic proteins (such as Bcl-2) can be a potential therapeutic avenue against chemo-
resistance in BCSCs143. Recently, evidence has accumulated for a role of the pro-survival
autophagic pathway in BCSC survival and maintenance. Autophagy flux is high in the
ALDH* BCSC population and is essential for tumorigenicityl46. This population of BCSCs
shows chemoresistance that is enhanced by hypoxia, but the inhibition of autophagy in
TNBC can overcome chemoresistancel4’. Dormant cancer cells can survive an unfavorable
microenvironment and undergo reversible growth arrest; furthermore, while in a dormant
state, committed tumor cells de-differentiate to become stem-like cells48. Tumor dormancy
is characterized by upregulation of autophagic signaling (which maintains the metabolic
homeostasis of dormant cancer cells), epigenetic features, stress-lenient signaling, and
microenvironmental cues4®. In BCSCs, autophagy maintains low-level expression of the
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glycolysis mediator 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) to
sustain cellular dormancy. Inactivation of autophagy signaling components re-establishes
normal-level PFKFB3 expression, culminating in the reactivation of BCSC self-renewal,
tumor aggressiveness, and metastatic outgrowth4°. Despite their indirect role in tumor
growth, eradicating dormant tumor cells as the source of BCSCs and chemoresistance will
offer promising therapeutic implications.

1.6 Potential compounds regulating cancer stem cells and differentiation

Loss of differentiation coupled with uncontrolled proliferation is a hallmark of malignant
neoplasms. Differentiation therapy is a therapeutic strategy that re-instates endogenous
differentiation programs to induce maturation in tumor cells. Upon differentiation, tumor
cells revert back to a non-malignant phenotype, culminating in reduction of proliferation and
metastatic potential and upregulation of differentiating markers!®0. Since chemotherapies
target only rapidly-proliferating tumor cells and spare the slowly-dividing population of
CSCs, relapse is common. The presence of dedifferentiated CSCs in solid tumors gives rise
to their heterogeneous nature with regard to proliferation, metastasis, and relapse after radio-
or chemotherapy. A prospective alternative CSC-targeted therapy is to use differentiation-
inducing agents to target CSCs and self-renewal signaling, influence the functional hierarchy
between tumor cells, and thereby reduce their chemo- and radio-resistancel®l. A literature
search on PubMed in December 2020 yielded 4436 articles on “breast cancer stem cells”,
7758 articles on “breast cancer and differentiation” and 3450 articles on “differentiation
inducing agents and cancer” for the past 5 years. From this literature search, Table 2
summarizes differentiation-promoting natural products and synthetic chemicals that have
been indicated to target breast cancer stemness signaling. Some potential differentiation-
inducing agents for breast cancer including all-#rans retinoic acid (ATRA), vitamin D, and
histone deacetylase inhibitors (HDACI) are discussed here.

An early success story of differentiation therapy was the use of ATRA as a clinical
therapeutic agent. ATRA, an active metabolite of vitamin A, has anti-proliferative, cyto-
differentiating and secondary apoptosis-inducing properties and is increasingly used in
various tumors such as acute promyelocytic leukemia (APML), breast cancer, bladder cancer
and ovarian carcinomal®2, In a TNBC xenograft model, combined treatment of ATRA with
the epigenetic and chemotherapeutic agents, entinostat and doxorubicin, targets CSCs and
induces differentiation by activating ETS transcription factor 1153, ATRA induced
differentiation in BCSCs by decreasing the populations of CD44*/CD24~, NANOG-positive
and OCT3/4-positive MCF-7 breast cancer cells. ATRA treatment inhibited cell invasion and
enhanced the sensitivity of MCF cells to radiation treatment®4, In HER2-positive SK-BR-3
and UACCB812 cancer cells with co-amplification of ERBB2 and RARA genes, ATRA
induces RARa-dependent epithelial differentiation by reorganizing cytoskeletal elements
and exerts anti-migratory action by down-regulating EMT-modulator NOTCH1155, ATRA
directs the recruitment of RARB-TET2 complex to epigenetically activate miR-200c that
further inhibits PKCC, a cell polarity protein that dictates asymmetric division of
mammalian stem cells, resulting in symmetric division and downregulation of stem cell pool
in breast CSCs. ChlP-sequencing analysis showed ATRA enhanced RARB-TET2 complex
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co-occupancy in promoters of genes implicated in cell differentiation such as RUNX1,
BMP6, IKZF1 and CAV11%6,

Vitamin D belongs to a group of fat-soluble secosteroids produced as a result of skin
exposure to UV light or obtained from dietary sources such as plants and fish1>7. Prior
studies have demonstrated that the active vitamin D metabolite (1,25D3) and its analogs
inhibit breast tumorigenesis /n vivo and trigger apoptotic and autophagic cell death /n
vitrot58-160_1n addition to its effect on primary breast tumors, vitamin D compounds has
demonstrated inhibitory effects on metastasis, achieved through inhibiting EMT162, In
MDA-MB-231 breast tumor cells, 1,25D3 induced epithelial marker E-cadherin by CDH1-
promoter demethylation, culminating in epithelial differentiation and reduction in tumor
progression1®2, In MCF10DCIS.com xenograft tumors, the Gemini vitamin D analog
BXL0124 has been shown to inhibit ductal carcinoma in situ (DCIS) progression to invasive
ductal carcinoma (IDC) by maintaining the myoepithelial cell layer and basement
membranel63. BXL0124 repressed the expression of CSC marker CD44 at both mRNA and
protein levels in MCF10DCIS.com cells via vitamin D receptor (VDR)-dependent
mechanism and suppressed the mammary tumor growth in xenografts.164. 1,25D3 and
BXL0124 inhibit BCSCs by reducing the CD44*/CD24~/1°W subpopulation and
mammosphere forming efficiency. Treatment of mammaospheres with vitamin D compounds
targets stem cell phenotype markers (including CD44, CD49f, pNFxB, and c-Notch1) and
pluripotency markers (such as OCT4 and KLF4)165, In SUM159 breast cancer cells, 1,25D3
and BXL0124 reduced the self-renewal of mammospheres and suppressed the genes related
to pluripotency and Notch signaling. Vitamin D also upregulated myoepithelial
differentiating markers including cytokeratin 14 and smooth muscle actin and down-
regulated luminal marker, cytokeratin 566,

When it comes to development and stem cell differentiation, it is well-established that
epigenetic regulation plays a significant role. Aberrant epigenetic modifications (including
microRNAs and histone modifications) have been implicated in differentiation programs in
cancer1®7; of these, microRNAs provide an appealing target for differentiation therapy.
Petrelli et al. showed that miR-100 promotes differentiation in basal-like BCSCs,
transforming the basal-like phenotype to luminal type. In basal-like breast cancer, miR-100
inhibits maintenance of BCSCs by targeting the Wnt signaling pathway and polo like kinase
1 (PLKZ1); conversely, its inhibition induces a stem-like phenotypel®8. Also of interest in
breast cancer is the potential role of HDACi as avenues for differentiation therapy6°.
Histone acetylation is tightly controlled by histone acetyltransferases and histone
deacetylases (HDAC). HDAC:s are implicated in multiple stages of cancer development,
including the regulation of cell cycle regulation, autophagy, apoptosis and angiogenesis!’°.
Aberrant expression of HDAC:s is associated with solid and hematological malignancies.
HDACI can restore the abnormal acetylation status and reactivate the expression of tumor
suppressors in cancer cells, inducing differentiation and inhibit tumor progressionl’L. In
TNBC cells, a pan-HDACI, Panobinostat, induced E-cadherin and repressed EMT and
metastasis by inhibiting ZEB expression’2. A low dose of the HDACi abexinostat induces
BCSC differentiation in sensitive breast cancer cells, with treated cells exhibiting high
expression of luminal and epithelial markers and low expression of mesenchymal markers.
Furthermore, abexinostat reduces the BCSC population in patient-derived xenografts
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expressing low levels of the IncRNA Xist!73, HDACi have been evaluated in clinical trials
together with other antitumor agents such as primary chemotherapeutic agents, epigenetic-
targeted drugs and proteasome inhibitors to improve their efficacy and toxicity.

Other potential compounds of interest that can induce differentiation and target BCSC are
acetaminophen, efatutazone and flubendazole. Acetaminophen, an anti-inflammatory drug,
was evaluated for its effect on differentiation and tumorigenicity in breast cancer. Treatment
of MDA-MB-231 cells with acetaminophen induced morphological changes, decreased
CD44*/CD24~ and ALDH™ subpopulations, altered markers for differentiation and
stemness, and inhibited tumorigenicity. It also increased susceptibility to anti-tumor drugs
through suppressing the expression of multidrug efflux pumps. The differentiation-inducing
effect of acetaminophen is mediated through the Wnt/B-catenin signaling pathway174.
Acetaminophen modulates the expression of EMT-related genes including CK19, TIMP1,
MMP2 and TWIST, microRNAs including miR-143 and miR-146a and NOTCH signaling.
It reduces the protein levels of Twist and Vimentin, and increases the level of E-cadherin in
favor of differentiation. Breast cancer cells treated with acetaminophen showed a significant
decrease in /n vitro cell migration and an increase in chemo-sensitizationl,

PPAR-y agonists are agents that activate endogenous PPARy, a member of the nuclear
receptor family of ligand-activated transcription factors, with profound effects on cellular
differentiation, proliferation and inflammatory response in cancer tissues'’. Efatutazone, a
high-affinity PPARy agonist, inhibited MCF10DCIS mammosphere formation and down-
regulated Akt phosphorylation. Efatutazone-treated DCIS lesions in xenografts showed less
invasive feature with fewer CD44+/p63+ basal progenitor cells and exhibited fat deposition
along with mammary epithelial cell differentiation, suggesting that PPARy agonists can be
useful as potential differentiation inducing agent to delay invasive progression in breast
cancerl?’,

Flubendazole, a FDA-approved anthelmintic, is shown to inhibit breast cancer cell
proliferation. It exhibits BCSC-targeted effects by inhibiting mammosphere formation and
reducing the CD44*/CD24~ subpopulation in MDA-MB-231 cells. Flubendazole suppressed
the expression of self-renewal genes (OCT4, SOX2, NANOG, CYCLIN D1 and C-MYC)
and induced cell differentiation (increasing Oil Red O stain + cells, upregulating epithelial
marker Keratin-18 and down-regulating mesenchymal markers — N-cadherin, Vimentin and
B-catenin). It also enhanced the chemosensitivity of the breast cancer cells1’8. These
findings demonstrate the novel use of flubendazole as a BCSC-targeted agent with
differentiation inducing property.

In addition, knockdown of CD44, a BCSC marker involved in the differentiation, adhesion,
and metastasis of cancer cells, sensitized breast cancer cells to doxorubicin or radiation. Its
depletion induces BCSCs to differentiate into non-stem-like cells, targeting drug resistance,
metastasis, and stem cell-related genes, indicating BCSC marker targeted therapy can
modulate differentiation and inhibit breast tumorigenicity at the same timel7°. Collectively,
the above studies illustrate the promise of differentiation agents either as a stand-alone
therapy or as part of a combinatorial regimen targeting BCSCs (Fig. 1).
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1.7 Conclusion

While there are a fair number of cell surface markers, receptors and ligands, intracellular
signaling molecules and transcription factors that identify breast cancer stem cell
subpopulations and appear responsible for their stem-like behavior, therapeutic agents that
target BCSCs through these elements remain elusive. Likewise, while much /n vitroand in
vivo evidence indicates that induction of differentiation (or redifferentiation) of CSCs can
exert clinically beneficial effects in certain malignancies, this has not yet been achieved
effectively in breast cancers. Reducing the properties of stemness that make the CSC
compartment resistant to conventional therapy and providing the seeds for recurrence, and
inducing the return of those stem cells to their differentiated, somatic origins, could offer
improved efficacy in long-term control of the disease.
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Figure 1. Breast cancer stem cdll signaling, transcription factors and agentsthat target them.
Agents targeting the self-renewal program controlled by transcription factor mediators,

OCT4, SOX2, NANOG or KLF4, agents reducing stemness by targeting aberrantly activated
signaling pathways involving Notch, Wnt, Hh, STAT3 or TGF-B, and agents inducing
differentiation of breast cancer stem cells by reprogramming cells into more differentiated
tumor cells are to be exploited in treatment and prevention of breast cancer.
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