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Abstract

Personalized medicine is among the most exciting innovations in recent clinical research, offering 

the opportunity for tailored screening and management at the individual level. Biomarker-enriched 

clinical trials have shown increased efficiency and informativeness in cancer research due to the 

selective exclusion of patients unlikely to benefit.

In acute stress situations, clinically significant decisions are often made in time-sensitive manners 

and providers may be pressed to make decisions based on abbreviated clinical assessments. Up to 

30% of trauma survivors admitted to the Emergency Department (ED) will develop long-lasting 

posttraumatic stress psychopathologies. The long-term impact of those survivors with 

posttraumatic stress sequelae are significant, impacting both long-term psychological and 

physiological recovery. An accurate prognostic model of who will develop posttraumatic stress 

symptoms does not exist yet. Additionally, no scalable and cost-effective method that can be easily 

integrated into routine care exists, even though especially the acute care setting provides a critical 

window of opportunity for prevention in the so-called golden hours when preventive measures are 

most effective. In this review, we aim to discuss emerging machine learning (ML) applications that 

are promising for precisely risk stratification and targeted treatments in the acute care setting.

The aim of this review is to present examples of digital health innovations and to discuss the 

potential of these new approaches for treatment selection and prevention of posttraumatic sequelae 

in the acute care setting. The application of artificial intelligence-based solutions have already had 

great success in other areas and are rapidly approaching the field of psychological care as well. 

New ways of algorithm-based risk predicting, and the use of digital phenotypes provide a high 

potential for predicting future risk of PTSD in acute care settings and to go new steps in precision 

psychiatry.
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Introduction

The Emergency Department (ED) is the frontline of the health care system, and often the 

earliest point of entry in the health system for patients treated for diverse and potentially 

life-threatening acute traumatic events. ED clinicians are tasked with delivering high-quality 

care while working in demanding clinical environments that may be crowded and highly 

stressful (Asplin et al., 2003). There are approximately 40 million ED visits annually in the 

U.S. after potential trauma exposure (McLean et al., 2019) leading to not just significant 

physical morbidity but also adverse mental health effects as 30% of ED patients exposed to 

trauma report moderate-to-high symptom severity of post-traumatic stress disorder (PTSD) 

one year after discharge (Lowe et al., 2020). The psychological sequelae of life-threatening 

events are not limited to the traumatic domain. Patient populations surviving acute medical 

emergencies are also at risk for long-term adverse psychological outcomes including 

patients with cardiovascular events. Acute coronary syndrome (ACS) describes a spectrum 

of cardiovascular diseases including acute myocardial infarction or unstable angina 

(Fanaroff et al., 2015). As shown in a meta-analysis of 2,383 patients they found that 1 out 

of 8 patients with suspected ACS develop PTSD (Edmondson et al., 2012). The development 

of PTSD after an ACS or stroke is associated with negative health outcomes, for instance, 

higher rates of recurrence of cardiovascular diseases (Musey Jr et al., 2020; Schultebraucks 

et al., 2020c).

It is well-known that PTSD is a particularly complex disorder with up to 636,120 different 

possible manifestations (Galatzer-Levy and Bryant, 2013). Numerous biological factors 

contribute to recent theory development of PTSD (Heim et al., 2018). Several studies have 

identified diverse risk factors early after the traumatic event (Galatzer-Levy et al., 2013; 

Galatzer-Levy et al., 2014; Galatzer-Levy et al., 2017; Karstoft et al., 2015; Papini et al., 

2018; Segman et al., 2005; Shalev et al., 1998; Yehuda et al., 1998), such as biological 

factors (Heim et al., 2018; Hinrichs et al., 2019; Mellon et al., 2018; Michopoulos et al., 

2019; Morris et al., 2016; Ressler, 2018), e.g., stress response and threat perception (Heim et 

al., 2018; Mellon et al., 2018; Morris et al., 2016; Ressler, 2018; Schultebraucks et al., 2019; 

Van Zuiden et al., 2012), psychophysiological arousal (Hinrichs et al., 2019; Shalev et al., 

1998), inflammation, and immune response (Mellon et al., 2018; Michopoulos et al., 2019; 

Michopoulos et al., 2017), and psychosocial risk factors (Shalev et al., 2017) for PTSD. 

Other discussed risk factors for PTSD involve the acute care environment in which patients 

are treated. Recent work has found that factors of the ED environment, such as hourly ED 

occupancy rates have been shown to increase PTSD risk after ACS (Edmondson et al., 2014; 

Edmondson et al., 2013). Given the rich diversity and heterogeneity of risk factors, typically, 

these factors are difficult to integrate into a unified quantitative regression model due to 

high-dimensionality and potential multicollinearity of candidate predictors (Huys et al., 

2016).
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A reliable and precise predictive model is a facilitator for evidence-based treatment 

allocation as it will allow the timely targeted intervention (Roberts et al., 2010; Shalev and 

Barbano, 2019) within the “golden hours” (Carmi et al., 2016; Vermetten et al., 2014; Zohar 

et al., 2011) early after the traumatic events, such as an early exposure intervention in the 

ED hours after the traumatic event took place (Rothbaum et al., 2012; Rothbaum et al., 

2014), early internet-based intervention (Mouthaan et al., 2013) and pharmacological 

interventions (Carmi et al., 2016; Vermetten et al., 2014; Yehuda et al., 2015). In this early 

phase, several critical pathogenic processes take place such as the neuroendocrine stress 

sensitization and manifold neurobiological alterations (Heim et al., 2018) that can become 

targets for early preventive interventions before the biological responses have become more 

permanent changes (Shalev and Barbano, 2019). In consequence, the ED provides an 

important window to proactively plan risk-based follow-up care for trauma survivors at an 

early stage, where patients are still in contact with the healthcare system.

Despite the evidence for the presence of significant psychological and physical morbidity 

and mortality associated with posttraumatic stress symptoms following acute medical/

traumatic events, screening is currently limited in the ED setting. Several longitudinal cohort 

studies identified risk factors in the ED acute care setting by using clinical screening (Lowe 

et al., 2020; McLean et al., 2019; van der Mei et al., 2020) only 7% of EDs nationwide 

regularly screen for symptoms of PTSD (Love and Zatzick, 2014). The acute care setting in 

the ED is characterized by a high pace and acute care demand therefore time-consuming 

screenings are often not feasible. Therefore, automatable computational methods that 

provide precise risk prediction at scale are indicated for informing prevention PTSD after 

traumatic events in the acute care setting. The review aims to discuss recent advancements in 

algorithm-based risk stratification and digital phenotyping and their benefits for precision 

psychiatry in the acute care setting.

Automatable methods integrated into clinical care

Machine learning (ML) approaches for data-driven exploratory analysis offers unique 

opportunities for knowledge discovery and predictive modeling (Schultebraucks and 

Galatzer‐Levy, 2019). In past years, a large number of early factors immediately after 

trauma have been examined as candidate predictors for PTSD susceptibility and multiple 

independent studies have shown that early factors comprise significant predictive signals to 

discriminate clinically meaningful trajectories of symptom development or long-term risk 

(Galatzer-Levy et al., 2013; Galatzer-Levy et al., 2014; Galatzer-Levy et al., 2017; Karstoft 

et al., 2015; Papini et al., 2018; Segman et al., 2005; Shalev et al., 1998; Yehuda et al., 

1998).

However, no clinical prediction model is yet available to be used directly in the acute care 

setting without additional clinical screening or diagnostic interviews in an already clinical 

and resource stretched setting (van der Mei et al., 2020). This lack significantly impedes the 

feasibility of clinical risk prediction models under conditions of ED overcrowding, large-

scale emergency events, disasters, and epidemic outbreaks. The SARS-CoV-2 pandemic and 

future similar situations are a paradigm case illustrating the critical need to support highly 
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charged EDs through computational methods to identify the possible risks of long-term 

mental health care needs.

In response to this fact, a vital public mental health funding objective of the NIMH is to 

enable “practical, scalable, and sustainable mental health screening and triage, and providing 

interventions at scale“ (Gordon and Borja, 2020). The National Institute of Mental Health 

(NIMH) has funded a large multi-site consortium to collect data to build generalized models 

of posttraumatic stress courses (McLean et al., 2019; NIMH, 2016). Similarly, military 

agencies are engaged in large initiatives to identify and predict risk for PTSD in soldiers 

deployed to warzones (Dean et al., 2019; Schultebraucks et al., 2020a; van der Wal et al., 

2019). The use of ML-algorithms for the improvement of prognosis directly implemented 

into the ED is a new and emerging field aiming to prevent trauma-related stress pathology at 

first contact with the health system. Schultebraucks et al. (2020b) demonstrated that readily 

available data such as vital signs and lab tests abstracted from electronic medical records 

yield probabilistic information to discriminate patients with high non-remitting PTSD 

symptoms vs. patients with low symptoms (resilience). The authors recruited participants in 

two Level-1 Emergency Trauma Centers in the U.S. The model development sample was 

collected at Grady Memorial Hospital, Atlanta, Georgia (N=377), and the external validation 

sample was collected at Bellevue Hospital Center, New York, New York (N=221). The 

predictive model achieved high accuracy to discriminate PTSD trajectories of non-remitting 

symptoms vs. resilience using data from electronic medical records including biological 

markers from blood sampling along with four items from a validated stress questionnaire 

(discovery dataset, N=377, f1-score=0.85, AUC=0.85), and equivalent accuracy on the 

independent test set (Validation dataset, N=211, f1-score=0.86, AUC=0.86) (Schultebraucks 

et al., 2020b). These findings support the feasibility to develop and validate clinical 

prediction models using readily available data collected directly in the ED and show that 

important predictors of adverse mental health effects after trauma exposure can be used by 

utilizing routinely collectible data (Schultebraucks et al., 2020b). Since this algorithm is 

based on psychometric data of a four-item stress questionnaire it is not yet fully automated. 

However, it is very promising to further explore whether routinely collected data from 

electronic medical records alone is sufficient to predict PTSD risk with high discriminatory 

accuracy and there is a large-scale project funded by the National Institute of Health that 

promises to provide further evidence to test the potential of this research avenue (McLean et 

al., 2019).

This builds on a larger vision of how computational psychiatry can lead to new directions to 

prognosticate who is at risk at the early onset directly after the traumatic event took place 

when the patients are still in contact with the health care systems and follow-up care can be 

planned (Fig. 1). Eventually, this may open new ways for precision psychiatry at scale and 

directly implemented into the electronic medical system of the acute care setting. These 

initially promising findings will need to be extended to the broad clinical population of ED 

patients from routine practice and to other types of acute emergencies such as ACS or stroke 

to demonstrate the full potential as an automated clinical readout of posttraumatic risk.

In general, large hospital systems are currently actively working to identify novel 

automatable methods that can be integrated into the standard of care to improve patient 
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outcomes and to decrease the long-term costs to the hospital system (Horwitz et al., 2019). It 

is important for future research to leverage such big data in the hundreds of thousands or 

millions of patients who are routinely cared for in the ED so that the predictive models can 

develop their full potential.

Digital health

In addition to algorithm-based prediction models directly integrated directly into health 

systems such as large hospital EDs, new and flexible modalities to use artificial intelligence 

(AI) and ML offer novel opportunities to collect behavioral data and to of maladaptive stress 

responses. By using deep learning to integrate multi-model information from digital devices 

such as smartphones or smartwatches, new horizons emerged to identify transdiagnostic 

markers to remotely identify and monitor individuals at risk (Carmi et al., 2020). Digital 

phenotyping refers to new computerized methods for objectively measuring behavior and 

emotions via human-computer interaction or by passively extracting predictive features of 

facial expression, voice, and speech content using computerized processing of audio and 

video data in situ from wearables, smartphones, and other personal digital devices (Insel, 

2017a; Onnela and Rauch, 2016). Digital phenotyping capitalizes on innovations in 

computational psychiatry to unlock the diagnostic and prognostic potential of digitally 

captured biomarkers (Fig.2). The clinical value of digital biomarkers is to enable self-

monitoring of psychopathology signs and enables low threshold remote diagnostic screening 

that may reduce barriers to successful intervention. This facilitates efficient allocation of 

prevention measures and is of high relevance in circumstances of crisis such as infectious 

disease, pandemics, or other natural catastrophes.

There are in general two broader types of applications: (1) digital phenotyping technologies 

to measure behavior by using AI technology to identify and predict psychological 

functioning and (2) digital technology for communication and provision of clinical care, 

such as telehealth applications for remote patient evaluations by clinicians and clinical 

monitoring or automated passive clinical monitoring and intelligent algorithm-based 

“chatbots” (Carmi et al., 2020; Marzano et al., 2015; Vaidyam et al., 2020).

AI-based digital phenotyping is using real-world data that is rapidly evolving in volume, 

velocity, and veracity as sensors of wearables have become more precise and very 

widespread. In the area of digital phenotyping, there are in particular two types of different 

data sources, active (Smart Active Monitoring – SAM) and passive data sources (Continuous 

Passive Monitoring – CPM). Passive data include behavioral patterns that are identified 

through the usage of the mobile device. Examples are the use of GPS, Glonass or Galileo 

data to monitor behavioral activation and avoidance (Glenn and Monteith, 2014; Torous et 

al., 2015), to use smartphones or wearables to monitor sleep and physiological states 

(Onnela et al., 2018) but also to use keystroke activity, taps and swipes to passively assess 

cognitive functions via smartphone apps (Dagum, 2018). Active data sources include 

information such as facial, speech, and voice data (Insel, 2017b). Facial expressions convey 

important information about the emotional and mental states of a person with decades of 

neuropsychological research showing that emotional expression and valence contain 

probabilistic information of diverse forms of psychopathology (Gaebel et al., 1992; Gehricke 
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and Shapiro, 2000; Renneberg et al., 2005). Speech and voice are additional channels 

conveying probabilistic information about mental health (Cannizzaro et al., 2004; Cohn et 

al., 2009; France et al., 2000; Leff and Abberton, 1981). Further, digital approaches can also 

be used to collect detailed information by monitoring patients in their daily lives repeatedly 

over time, i.e., Ambulatory Assessment and Ecological Momentary Assessment (Doherty et 

al., 2014; Stone and Shiffman, 1994) for assessing behavioral and cognitive processes in 

their natural settings by using smartphone diaries or measuring physiological function, and 

physical behavior via accelerometers, or GPS trackers (Reichert et al., 2020; Trull and 

Ebner-Priemer, 2013).

Digital communication also offers the opportunity to administer clinical intervention via 

telehealth applications. These approaches are using AI and natural language processing to 

perform assessments as well as clinical interventions (Carmi et al., 2020). However, even 

when telehealth promises to allow broader and faster mobilization of clinical resources, it is 

difficult to perform complex and deep conversions. COVID-19 in particular has shown that 

new ways of not only risk stratification but also remote patient care must take place. 

However, digital health procedures such as remote cognitive behavioral therapy or 

“chatbots” (Marzano et al., 2015) still require broader evidence-based validation, e.g., 

through the use of randomized controlled trials or at least pragmatic clinical trials (Chang et 

al., 2020).

Digital phenotyping and digital communication might have crucial relevance for monitoring, 

diagnostic, and identification of behavioral patterns to allow low-threshold and timely 

targeted prevention strategies and optimized allocation of relevant resources and 

interventions (Insel, 2017a). These uprising trends are promising especially for PTSD 

research to identify reliable and ecologically valid signatures of stress pathology and 

prognostic markers of clinical functioning and to develop novel patient-oriented outcomes 

that complement the traditional quality of life measures by digital augmentation. Powerful 

open-source methodologies for face detection and speech recognition have made pre-trained 

neural nets available for academic research. A recent study by Schultebraucks et al. (2020e) 

used digital phenotypes to classify PTSD and depression in trauma survivors who were 

admitted to the ED after a traumatic event. A brief video-recorded semi-structured interview 

was used to objectively capture voice, speech, head movement, gaze, pupil dilation, and 

facial landmark features of emotion in trauma-survivors who were admitted to a Level 1 

trauma center. The video-recording was decomposed into different modalities using separate 

neural nets to extract predictive information from independent verbal and non-verbal 

information channels. Facial recognition software was applied to identify emotional 

expressions and combined with deep learning-based analysis of voice prosody and speech 

content. Subsequently, the candidate predictive features were combined to systematically 

discover predictive signatures across multiple modalities spanning facial, voice, speech 

content along with head and eye movement. Similar to human beings that process emotional 

information in human interaction in an automated way using both verbal and non-verbal 

cues, the idea in this digital phenotyping approach is to combine multiple information 

channels. The aim was to define multi-model signatures extracted from free-speech video 

recordings that can be used as digital biomarkers in an lightweight and potentially 

automatble assessment. The benefit of deep learning is that a model trained on one dataset 
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can easily “transferred” to another dataset and the existing model can be further adapted 

using the information of the new data. This is called “transfer learning” (Pratt, 1993) and the 

key drive of the great success of deep learning for tasks such as voice or speech recognition. 

This form of transfer learning can overcome some of the limitations of deep learning in 

clinical research such as the traditional “small” sample size of high-quality clinical research 

data. For example, while face recognition requires large amounts of independent samples to 

train a deep neural net from scratch, this task can be successfully performed on publicly 

available data outside of the clinical research context. Once the neural net has been 

successfully trained to detect faces and facial expressions in a non-clinical context, it can 

then be transferred to a clinical sample and adapted to perform specialized tasks such as the 

discrimination of clinically informative signatures in facial expression.

The potential of digital phenotyping based on deep learning has been explored by using face, 

voice and speech content to classify PTSD and depression (Schultebraucks et al., 2020e). 

The same approach has also been used to explain variance in predicting cognitive 

functioning (Schultebraucks et al., 2020d). A big advantage of this approach is its flexibility 

by making use of transfer learning and the possibility to adapt existing pre-trained neural 

nets to specific clinical tasks.

These results show that digital phenotyping might be an alternative to clinician-administered 

interviews or subjective self-reports — with high potential to develop an objective, flexible, 

economical, and ecologically valid digital biomarker.

To identify digital biomarkers of affect and arousal that are digital proxies for depression, 

PTSD, or cognitive functioning is of timely relevance. The recent events of the COVID-19 

pandemic have only underlined the pressing need to rethink traditional approaches and to 

offer new opportunities for remote diagnosis and monitoring of psychiatric disorders. A 

digital biomarker approach has the potential to deliver a sensitive and objective measure and 

therefore low-threshold prevention. In consequence, time-to-treatment may be reduced, and 

interventions can be targeted more precisely to individual needs. The field of psychiatry has 

not yet benefitted from the new methods of digital phenotyping in the same way as fields 

such as cancer research where it is successfully used to detect differential recovery trends 

after surgery (Panda et al., 2020). Early application to schizophrenia (Henson et al., 2020), 

bipolar disorder, substance abuse, and risk of suicide (Huckvale et al., 2019) are very 

promising and show that the best of precision psychiatry is yet to come as researchers will 

continue to leverage digital methods to unlock clinical actionable targets for prevention 

methods in other fields of psychiatry as well.

Challenges of the application of ML

One reason why the field of psychiatry has not yet benefitted from the new methods of 

digital phenotyping may be suspected in the relative complexity of clinical phenotypes in 

psychiatry. Advances in psychiatric classification for research are promising for digital 

phenotyping in psychiatry (Insel et al., 2010; Insel, 2017a). Yet, the complexity of clinical 

phenotypes in psychiatry, often spanning multiple levels of explanations including individual 

factors (e.g. genetic and biological factors, or personality traits), social factors (e.g. 
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environmental and cultural influences) and complex interactions thereof, comes at cost of 

leading to complex models that can be very demanding to interpret and comprehend.

As with all methodology used in clinical research, ML has to ensure that the results are 

robust and reproducible, the design is rigorously planned and the analytical approach is 

transparent (Nosek et al., 2018). While the flexibility of ML is a big advantage to identify 

novel diagnostic and prognostic information and to develop accurate and robust digital 

biomarkers, the associated algorithmic complexity is a significant challenge for the field. 

The use of open-source software can facilitate the critical appraisal of the strength and 

weaknesses and is important to allow the independent assessment including the examination 

of hidden pitfalls and sources of algorithmic biases (Obermeyer et al., 2019). However, there 

remain limitations of model transparency that simply reflect the mathematical sophistication 

required for understanding deep learning. These methods often approximate non-linear 

associations of multiple variables using mathematical equations whose functional form is 

not pre-specified beforehand but empirically discovered in a data-driven way. Where well-

understood prior findings are available, e.g. empirical effect sizes of univariate linear 

relationships between a predictor and the outcome-of-interest, this information can be of 

high value to design ML models and to increase the transparency and credibility of the 

results, it is desirable, also for ML approaches, to make use of hypotheses that are based on 

clinical insights and prior knowledge. However, this is not always possible with high-

dimensional data and exploratory data analysis is therefore also of high importance (Tukey, 

1980). For ML, cross-validation, bootstrapping, and external validation sets must be used to 

ensure generalizability and replicability (Efron and Gong, 1983). Given these precautions to 

prevent overfitting the ML models to particularities in the data (Cawley and Talbot, 2010), 

the advantage of flexible ML methods can be used to study complex interactions of multiple 

factors that go well beyond testing univariate linear associations. Importantly, there are 

existing solutions aiming to better understand complex ML models, such as SHapley 

Additive exPlanation (Lundberg and Lee, 2017). These approaches can help to increase the 

confidence in ML models by approximating complex mathematical functions by simpler 

ones (i.e., better understandable proxy models) that are approximately correct but offer 

increased human interpretability. For instance, the influence of a particular variable on the 

predictions of a particular model can be studied post hoc by systematically changing the 

values of the variable and then observing the change in the model output. Using large 

computational power, these can be repeated for each variable and for all permutations of 

dropping variables from a complex model to better understand each variables unique 

contribution to the prediction. In clinical care, where human understanding is important for 

shared decision-making of patients and care providers, it will remain an important challenge 

for ML approaches to make use of such interpretable ML approaches (Roscher et al., 2020) 

so that patients can be informed on which clinical variables the predicted outcome is derived 

from.

Conclusion

Computational and informatics-driven approaches have previously yielded clinically 

actionable results in many health contexts, from improving the diagnosis of stroke (Petrone, 

2017), congenital disease recognition through facial recognition (Gurovich et al., 2018), and 
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the more precise allocation of preventive surgery in breast cancer (Bahl et al., 2017). In the 

context of psychiatric and behavioral pathology, new computational and AI-based 

approaches are starting to translate into the field of stress pathology. The unprecedented 

popularity of digital devices will allow the application of these new approaches to identify 

novel digital and biological markers for timely and precisely targeted psychological 

interventions, remote monitoring, and telehealth counseling.

Especially, the acute care setting provides an important opportunity and setting for 

automated risk stratification and individualized treatment allocation as part of precision 

psychiatry. The use of algorithm-based prediction models using routinely collectible data 

that can be automatically abstracted from electronic medical records will bear a high clinical 

potential for targeted and actionable clinical insight at the point of care. This approach to 

computational psychiatry and medicine might lower the threshold for the implementation of 

precision psychiatry at scale and to make the research available to clinicians at the time 

when prognostic information is most relevant for planning preventive measures using a risk-

based approach. Despite the pace of recent advancements, some challenges remain. In 

particular, secure data protection, data-sharing for research purposes under adequate privacy 

protection, and the fair use of available datasets need to be realized on a large scale. 

Clinically heterogeneous, population-based datasets need to become available more easily to 

continue the facilitation of research innovation in precision psychiatry. Ultimately, digital 

phenotyping approaches will greatly impact and improve the precision and cost of diagnostic 

and prognostic screening and will provide a risk-based approach to treatment selection and 

preventive care in psychiatry.
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Figure 1. 
Schematic depiction of the automated algorithm-based risk stratification in the ED for 

predicting high, moderate, and low risk patients.
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Figure 2. 
Shematic picture of the conceptual model for algorithm-based prediction and digital health. 

Integration of routinely collectible data provides informative data about diverse domains 

relevant to the acute care setting encompassing behavior and emotion through digital 

phenotyping, markers of stress biology obtained from diagnostic blood draws in the ED and 

contextual information about the index event as well as the ED environment. Togehter, the 

integration of multiple sources of information yields promise to unlock the potential of 

precision psychiatry for improving risk stratification and individualized treatment selection.
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