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Abstract

Background: Heart failure with preserved ejection fraction (HFpEF) constitutes half of all HF 

yet lacks effective therapy. Understanding its myocardial biology remains limited due to a paucity 

of heart tissue molecular analysis.

Methods: We performed RNA sequencing on right ventricular septal endomyocardial biopsies 

prospectively obtained from patients with consensus criteria for HFpEF (n=41) and contrasted to 

RV-septal tissue from HF with reduced EF (HFrEF, n=30) and donor controls (CON, n=24). 

Principal component analysis (PCA) and hierarchical clustering tested for transcriptomic 

distinctiveness between groups and impact of co-morbidities, and differential gene expression with 

pathway enrichment contrasted HF groups to CON. Within HFpEF, non-negative matrix 
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factorization (NMF) and weighted gene co-expression analysis (WGCNA) identified molecular 

subgroups and the resulting clusters were correlated with hemodynamic and clinical data.

Results: HFpEF patients were more often women (59%), African American (68%), obese 

(median BMI 41), and hypertensive (98%), with clinical HF characterized by 65% NYHA III-IV, 

nearly all on a loop diuretic, and 70% with a HF hospitalization in the prior year. PCA separated 

HFpEF from HFrEF and CON with minimal overlap and this persisted after adjusting for primary 

co-morbidities: BMI, sex, age, diabetes, and renal function. Hierarchical clustering confirmed 

group separation. Nearly half the significantly altered genes in HFpEF versus CON (1882 up, 

2593 down) changed in the same direction in HFrEF; however, 5745 genes were uniquely altered 

between HF groups. Compared to CON, uniquely upregulated genes in HFpEF were enriched in 

mitochondrial ATP synthesis/electron transport, pathways downregulated in HFrEF. HFpEF-

specific down-regulated genes engaged endoplasmic reticulum stress, autophagy, and 

angiogenesis. BMI differences largely accounted for HFpEF upregulated genes whereas neither 

this nor broader co-morbidity adjustment altered pathways enriched in downregulated genes. NMF 

identified three HFpEF transcriptomic subgroups with distinctive pathways and clinical correlates, 

including a group closest to HFrEF with higher mortality, and a mostly female group with smaller 

hearts and pro-inflammatory signaling. These groupings remained after sex adjustment. WGCNA 

analysis yielded analogous gene-clusters and clinical groupings.

Conclusions: HFpEF exhibits distinctive broad transcriptomic signatures and molecular 

subgroupings with particular clinical features and outcomes. The data reveal new signaling targets 

to consider for precision therapeutics.
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Introduction

Heart failure with preserved ejection fraction (HFpEF) affects about half of all heart failure 

patients, impacting over 13 million adults worldwide1. Patients develop symptoms similar to 

HF with reduced ejection fraction (HFrEF), having high hospitalization rates, morbidity, and 

mortality2, 3. Unlike HFrEF, effective therapies for HFpEF remain lacking. Importantly, the 

past two decades have witnessed a transformation of HFpEF phenotypes from mostly 

hypertensive-cardiac hypertrophy with diastolic dysfunction4, 5 to a syndrome marked by 

severe obesity and associated comorbidities6–8. The heterogeneity of HFpEF - from its 

clinical presentation to comorbidities - is inculpated in the disappointing efforts to uncover 

successful treatment9. Little remains understood about the underlying biology of HFpEF, 

and while animal models can be helpful, they struggle to capture the multi-dimensionality of 

this syndrome.

One likely reason human HFpEF remains a clinical and therapeutic conundrum is that so 

little is known about its underlying molecular biology given the paucity of tissue harvesting. 

Existing heart data stems from small cohorts of mostly hypertensive patients with left 

ventricular (LV) hypertrophy, some with diffuse coronary disease, but with minimal 
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obesity10–13. Tissue biopsies revealed a stiff myocardium from fibrosis and titin 

modifications5, 10, increased inflammatory markers11, and reduced protein kinase G 

activity12. Gene expression profiling has not been reported to date in a prospectively defined 

HFpEF cohort, thus whether there is a distinctive HFpEF signature despite clinical 

heterogeneity, if and how it is altered by obesity and other co-morbidities, and whether a 

molecular phenotype can identify clinical HFpEF subgroups, are all unknown.

Accordingly, the current study assessed gene expression profiles in HFpEF patients in 

comparison to HFrEF patients and donor controls, to test the hypotheses that 1) despite 

clinical heterogeneity, HFpEF subjects do exhibit a distinctive gene transcriptome that 

contrasts to HFrEF and controls; 2) these differences involve enriched pathways with strong 

association as well as independence from major co-morbidities such as obesity; and 3) 

molecular phenotyping can identify HFpEF sub-groups that exhibit distinct clinical features 

and prognosis. Our ultimate goal was to identify a transcriptomic signature of subsets of 

HFpEF patients that may ultimately lead to improved personalized therapeutics.

Methods

Data Sources:

Database files with a) raw mapped reads for each patient for all identified genes in each 

patient group; b) normalized read counts for these genes based on DESeq analysis; c) the 

primary data set we use in our analysis that has median reads and between group statistical 

analysis for genes that pass our noise-level filter (see below) for each patient group; d) data 

in a similar format but pertaining to HFpEF subgroups; and e) metadata with patient ID# to 

reference with the gene databases, tissue source (e.g. right versus left heart, and site), and 

disease group – are all posted in an online data repository14.

HFpEF Study Population

The HFpEF patient group consisted of those referred to the Johns Hopkins University 

HFpEF Clinic from 1/2016–4/2018 who provided informed consent for an endomyocardial 

biopsy research protocol as approved by the Johns Hopkins Institutional Review Board 

(IRB). All patients underwent clinical assessment, echocardiography, and invasive 

hemodynamic testing. HFpEF diagnostic criteria were based on current guideline definitions 

of HFpEF15–17 to include the following: signs and symptoms of clinical HF using 

Framingham criteria for HF18, left ventricular ejection fraction (LVEF) ≥ 50% by 

echocardiography within the prior 12 months, and at least two of the following: 1) structural 

heart disease (increased left ventricular [LV] wall thickness or left atrial [LA] diameter) or 

diastolic dysfunction on echocardiography19; 2) N-terminal pro–B-type natriuretic peptide 

(NTproBNP) ≥ 125 pg/mL; or 3) hemodynamic evidence of elevated left sided filling 

pressures (pulmonary artery wedge pressure [PAWP] ≥ 15 mmHg at baseline; or ≥ 25 mmHg 

with exercise). Exclusion criteria included prior history of LVEF < 40%, HF with mid-range 

EF (40–50%), greater than moderate valvular disease, infiltrative cardiomyopathy (including 

cardiac amyloidosis), restrictive cardiomyopathy, congenital heart disease, constrictive 

pericarditis, isolated pulmonary arterial hypertension, hypertrophic cardiomyopathy (known 
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genetic variant, severe unexplained LVH, or presence of myocyte disarray on histology), or 

prior heart transplantation. Data are generally reported as median (25th, 75th percentiles).

Myocardial Tissue Procurement and Processing

HFpEF patients (n=63) underwent right heart catheterization with endomyocardial biopsy 

(Jawz Bioptome, Argon Medical, Frisco, TX) in the supine position via internal jugular 

venous access and echocardiographic guidance, which we have previously described. A total 

of 7–9 right ventricular (RV) septal biopsies were obtained, 3–4 for clinical histology, and 

the remaining rapidly frozen in liquid nitrogen for analysis. Clinical histology for myocyte 

hypertrophy and fibrosis was assessed by a cardiovascular pathologist. Quantitative analysis 

of myocardial fibrosis and CD68+ cell count was performed as previously described.20 

Briefly, fibrosis (Masson’s trichrome) and myocyte hypertrophy (hematoxylin and eosin) 

were qualitatively graded by a cardiovascular pathologist and provided in the clinical report. 

Quantitative analysis of fibrosis (Masson’s trichrome) and CD68+ cell number 

(immunohistochemistry) was performed using HALO (Area Quantification FL algorithm, 

Indica Lab, Albuquerque, New Mexico). Biopsies positive for cardiac amyloidosis based on 

Congo Red staining (n=7) were excluded. RNA was isolated from 48 of the remaining 

samples with sufficient tissue, with RNA suitable for sequencing obtained in 41.

HFpEF biopsies were compared to RV mid-septal myocardium obtained from brain-dead 

organ donors (CON, n=24) and from HFrEF explanted hearts (n=30) in patients undergoing 

transplantation. HFrEF and CON tissues were provided from the University of Pennsylvania 

under an IRB-approved protocol. LV septal tissue from the same hearts were also obtained. 

The de-identified clinical/demographic data from these subjects were determined close to 

time-of-death (CON) or cardiac transplantation.

RNA isolation and preparation

Samples were crushed using a disposable pellet pestle (Kimble Chase, Vineland, NJ, USA) 

in 150 μL of Qiagen RLT buffer with 1% BME (Qiagen, Germantown, MD, USA) then 

homogenized in a Magna Lyser (Roche Diagnostics, Indianapolis, Indiana, USA) for 30 

seconds at 6500 rpm. After homogenization, 298 μL of RNAase-free water and 2 μL of a 50 

mg/mL proteinase K solution were added to each tube and mixed well. Samples were 

incubated at 55°C for 10 minutes, centrifuged, and the supernatant was collected into a new 

1.5ml RNase-free microcentrifuge tube. RNA extraction was performed by using the 

RNeasy Micro Kit (Qiagen) with on-column DNase treatment (Qiagen) according to the 

manufacturer’s instructions. RNA concentration and integrity were assessed using a 

nanoDrop 8000 (Thermo Fisher, Waltham, MA, USA) and a Bioanalyzer (Agilent, Santa 

Clara, CA, USA). Samples with ≥100 ng total RNA and RNA integrity numbers (RIN) ≥7 

were used for sequencing.

Analysis of Differential Gene Expression

The human genome was obtained in FASTA format (GRCh38) from Ensembl version 92 and 

gene set annotation in gtf format. The hisat2 indices were built from the genome index using 

hisat2-build21 from Hisat2 version 2.1.0. Raw RNAseq paired-end reads were aligned to the 

genome using hisat2 (default flags). The total reads per sample ranged from 30–50 million 
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and all sample alignment mapping rates were above 97%. HTSeq was used to count reads 

mapping to individual genes by processing the sorted bam files with accepted read quality.22

DESeq223 was used to estimate differential gene expression between HFpEF, HFrEF and 

CON sample tissue starting with counts generated by HTSeq-count. Genes with a median 

read count <50 in each sample group, or those with a high correlation (>0.5) to beta-globin 

component of hemoglobin (from blood contamination in HFpEF biopsies) were excluded. 

Extreme expression outliers were detected and replaced based on the default Cook’s distance 

cutoff (99% quantile of the F(p,m-p) distribution with p the number of parameters including 

the intercept and m number of samples). Gene expression was normalized using the DESeq2 

median of ratios normalization. Differentially expressed genes were defined using the 5% 

FDR (False Discovery Rate, Benjamini-Hochberg method) threshold for significance. 

Adjustment for covariates was performed using generalized linear models within DESeq2. 

The full set of processed detected genes were first examined using principal component 

analysis (PCA) and unsupervised hierarchical cluster analysis (UHCA). In clustering 

analysis, the variance stabilizing transform of the raw reads was used along with hierarchical 

clustering based on Pearson correlation. PCA was performed in R, using DEseq2 function 

plotPCA from the variance stabilizing transformation of the read counts. Gene pathway 

enrichment (KEGG and gene ontology (GO)) was determined with clusterProfiler using R. 

Differential gene expression in specific pathways used KEGG or BIO-RAD® lists, 

calculating z-scores ([observed-mean]/standard deviation) for each gene in the pathway 

comparing CON to either HFpEF or HFrEF.

Weighted Correlation Network Analysis of HFpEF Samples

Weighted correlation network analysis, WGCNA, was used to construct gene modules, 

based on correlation in expression levels in the HFpEF sample cohort.24 The modules 

consist of functionally related genes and thus different modules tend to be involved in 

individual functions. Three patients (7709, 7715, 7546) were excluded from this analysis 

based on low correlation with other HFpEF samples, from sample-sample correlation 

analysis (Figure I in the Supplement). Using the HFpEF expression data (13,265 genes after 

the previously described low count and blood contamination filtering steps), a correlation 

matrix was created which was transformed into a Topological Overlap Matrix (TOM) using 

a signed network in the blockwiseModules function (using parameters: power=16 (selected 

from pickSoftThreshold cutoff of 0.95), minModuleSize = 30, mergeCutHeight = 0.25). 8 

gene modules were identified, consisting of between 62 and 477 genes. Next, clinical traits 

were associated with each of the modules from their Pearson correlation with the module 

eigengenes (first principal component) calculated using the function moduleEigengenes. 

Lastly, a pathway analysis was conducted as described above for each set of module genes.

Non-Negative Matrix Factorization to Identify Gene-Expression Based HFpEF Clusters

Non-negative matrix factorization, NMF, was used to determine if there were transcriptional 

subgroups within the HFpEF patient samples25. NMF uses an iterative algorithm to detect a 

subset of features/genes to split the data into k groups. The same patient outliers from the 

WGCNA were excluded from this analysis (samples 7709, 7715, 7546). Using the remaining 

38 samples, the NMF Brunet algorithm detected 3 clusters (based on running NMF 40 times 
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for each k =2,..,5, with a fixed initial seed and using cophenetic coefficient, a measure of 

robustness to select the optimum number of clusters).26 The analysis was then repeated 250 

times with k=3 with different initial conditions for model fitting. As per the NMF algorithm, 

metagenes for each of the 3 clusters were identified using consensus clustering. Differential 

gene expression was performed between controls and each HFpEF NMF subgroup 

individually. Clinical characteristics were compared between the 3 clusters of HFpEF 

patients.

We performed Kaplan-Meier time-to-event analysis using both HF hospitalizations and 

deaths during 12months of follow-up. Log-rank test was used to assess statistical 

significance between the curves of the three HFpEF groups (determined by NMF). Three 

patients were excluded due to very short follow-up (2 weeks to 2 months).

Statistical Analysis

Continuous data are generally reported as median (25th, 75th percentiles). Categorical data 

are generally reported as number, %. Significance threshold was determined by the 5% FDR 

adjusted for multiple comparisons by the Benjamini-Hochberg method. Adjustment for 

covariates was performed using generalized linear models within DESeq2. Agnostic 

clustering was performed on variance stabilizing transform of the raw reads using principal 

component analysis and unsupervised hierarchical clustering. Gene pathway enrichment was 

performed using a Fisher’s exact test of differentially expressed genes within the pathway of 

interest was used to determine pathway enrichment. Targeted pathway analysis compared z-

scores for each gene in the pathway using Wilcoxon rank-sum test. WGCNA was performed 

excluding 3 outliers based on the sample-sample correlation analysis. Pearson correlation 

was used to determine clinical characteristics associated with each gene cluster. NMF was 

used to subgroup HFpEF. Kaplan-Meier time-to-event analysis with log-rank test was 

performed using the three transcriptomic subgroups determined by NMF. Events included 

HF hospitalizations and deaths. Kruskal-Wallis and Wilcoxon rank-sum tests were used for 

continuous variables, and Fisher’s exact was used for categorical variables to compare 

clinical characteristics between groups.

Results

Baseline Characteristics of Study Patients

Given the heterogeneity of HFpEF patients, we provide a comprehensive characterization of 

clinical, echocardiographic and invasive hemodynamic data of the present study group 

(Table 1 and Supplemental Table 1). Their median age was 62 years, 59% were female, and 

68% African American, with a high burden of co-morbidities including hypertension (98%), 

diabetes (63%), and atrial fibrillation (24%). Median BMI was 40.8 kg/m2 (36–46). Clinical 

HF was evident with 70% having been hospitalized in the prior 1 year, 95% on loop diuretic 

therapy, and a median NT-proBNP of 169 pg/mL (94–614) in this obese cohort. 

Echocardiography confirmed preserved EF, increased LV wall thickness, and diastolic 

dysfunction. Invasive hemodynamics revealed elevated right atrial and pulmonary artery 

pressures and a PAWP median of 20mmHg (15–24 mmHg). Elevated PA pressures were 

most often due to left sided heart disease with only 12% having criteria for pre-capillary 
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pulmonary hypertension (PVR ≥ 3 Wood units). The group displayed substantial 

heterogeneity as seen in clinical practice with respect to systolic blood pressure, BMI, LV 

mass index, serum NTproBNP, mean PA pressure, and renal function (Figure II in the 

Supplement).

Table 1 provides additional data for CON and HFrEF cohorts. These subjects were younger, 

more often Caucasian, had less diabetes, better renal function, and a lower median BMI. 

Eighty percent of HFrEF patients had non-ischemic cardiomyopathy.

HFpEF, HFrEF, and CON have Distinct mRNA-Expression Profiles

The filtered RNAseq read-set identified ~13,000 genes. Principal component analysis 

utilizing all RV septum expressed genes separated these into three distinct groups, with only 

a few overlapping patients in HFpEF and HFrEF (Figure 1A). PCA was also performed after 

first adjusting for sex only and sex plus the 4 other major covariates that differed between 

HFpEF and HFrEF: age, diabetes, BMI, and renal function (eGFR). The results show 

rotation of the vectors with a bit more overlap, but there is still clear separation of the groups 

(Figure 1B, Figure III in the Supplement). Unsupervised hierarchical cluster analysis 

(UHCA, Figure 1C) also identified three distinct groupings, with 88% of HFpEF, 97% of 

HFrEF, and 100% CON subjects clustering within their category. Despite HFpEF clinical 

heterogeneity, the vast majority of genes exhibited a coefficient of variation among patients 

of <30% (23% [85%−36%]), similar to HFrEF and CON (Figure IV in the Supplement). As 

we had sampled the RV in all cases to match with HFpEF biopsy site, we also tested if RV 

and LV septal transcripts correlate. This has been found in normal hearts27; here we 

examined HFrEF where tissue from both septal sides was obtained. We found an extremely 

high correlation of gene expression independent of presence or absence of pulmonary 

hypertension (Figure V in the Supplement). PCA and UHCA of RV and LV data from 

HFrEF and CON groups also found both to intermix within their group while remaining 

segregated from the other groups (Figure V in the Supplement).

In total, 8793 genes were differentially expressed between HFpEF and CON and 6802 genes 

between HFrEF and CON, using a 5% FDR threshold. For each directional change, nearly 

half were shared, while ~5% went in opposite directions (Figure 1D). Up or downregulated 

genes in each HF group were subjected to gene ontology and KEGG pathway enrichment 

analysis (Figure VI in the Supplement). This identified inflammatory and immune response 

pathways enriched in both, but uniquely upregulated pathways in HFpEF to be 

mitochondrial ATP synthesis and oxidative phosphorylation, that were downregulated in 

HFrEF. Uniquely downregulated HFpEF genes were epigenetic modulators, membrane 

morphogenesis/organization, organonitrogen signaling, and receptor-coupled kinase 

signaling, several being upregulated in HFrEF.

HFpEF is proposed to have enhanced oxidative stress, fibrotic, hypertrophic, and 

inflammatory signaling, and depressed nitric oxide and endoplasmic reticular signaling28. 

We therefore examined differential expression between each HF group and CON in these 

and other selective pathways. Figure 2 plots Z-scores for genes in each pathway. HFpEF had 

enhanced expression of oxidative phosphorylation but lower expression of endoplasmic 

reticular, cGMP-related, autophagy, fibrosis and hypertrophy related genes compared to their 
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alterations in HFrEF. By contrast, oxidant stress, inflammatory, and NO-signaling pathway 

genes were similarly impacted.

Influence of HFpEF Covariates on HFpEF Gene Expression Changes

To test the potential influence of major HFpEF morbidities, we repeated pathway analysis of 

differentially expressed genes obtained after adjusting for clinical covariates within DESeq2, 

including sex or BMI alone or combined with age, diabetes, and eGFR. Downregulated 

gene-enriched pathways were unchanged despite co-morbidity adjustment (Figure 3A). By 

contrast, upregulated gene pathways were no longer significant after adjusting for all 5 

comorbidities and were mostly accounted for by adjusting for BMI alone (Figure 3B). Sex 

adjustment did not affect pathway enrichment. Thus, the upregulated HFpEF transcriptomic 

signature is largely associated with obesity but the downregulated one is independent of 

BMI and other major covariates.

Association of Gene Expression Clusters with HFpEF Clinical Subgroups

Heterogeneity among HFpEF raised the hypothesis that subgroups could be identified solely 

from their transcriptome that in turn would map to distinctive clinical phenotypes. We tested 

this using two methods. The first was non-negative matrix factorization (NMF) which 

identified three HFpEF subgroups based on maximal between patient expression 

correlations. Groups 1 (n=11) and 2 (n=10) were the most internally correlated, whereas 

Group 3 (n=18) was more heterogeneous (Figure 4A). PCA (using all genes) found Group 1 

closest to HFrEF (Figure 4B, Figure VII in the Supplement), and the gene pathways 

enriched in Group 1 were shared with HFrEF patients (Figure 4C). Immune pathways 

dominated Group 2, while inflammatory and extracellular matrix processes characterized 

Group 3 (Figure 4C, Figure VIII in the Supplement). Table 2 and Table II in the Supplement 

provide clinical features of the 3 groups. Group 1 was predominantly male, nearly all 

diabetic, had relatively lower BMI, and higher NT-proBNP, LV dimensions, and pulmonary 

vascular load. Group 2 was all female, had the highest BMI, smallest LV size, lowest NT-

proBNP, but higher CD68+ inflammatory cells. Time-to-first-event Kaplan-Meier analysis 

for the first 12 months showed Group 1 with the highest risk of death or HF hospitalization 

(p=0.025, Figure 4D).

The finding that Group 2 contained only females raised the question of whether sex-related 

differences dominated the transcriptome clustering. We tested this in two ways. First NMF 

analysis was repeated after removing all genes differentially expressed between HFpEF-men 

and HFpEF-women. There were only 96 such genes including 26 on the X-chromosome and 

removing them yielded essentially the same NMF result (Figure IX-A in the Supplement). 

The second method adjusted for sex in the gene primary reads prior to NMF processing 

(Figure IX-B in the Supplement). This also yielded 3 groups each fully balanced by sex, but 

their characteristics remained similar to the un-adjusted groups (Table III in the 

Supplement).

While NMF identified groups based on optimized gene clusters, we could post hoc take each 

group and examine their differentially expressed genes versus CON, focusing on those that 

are not shared by all three groups. The results (Figure X, XI in the Supplement) show 
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oxidative phosphorylation and metabolic processes were similarly upregulated in Groups 2 

and 3 but not Group 1. Immune response pathways were notably downregulated in Group 1 

but neither other group, while autophagy, unfolded protein response, cell growth, and 

multiple RNA-processing pathways were downregulated in Groups 2 and 3 but not Group 1. 

Thus, while the total HFpEF group exhibited all three combined behaviors, this analysis 

identifies the subsets where these primarily reside.

Lastly, we employed WGCNA as an alternative method to match transcriptomic groupings 

with clinical correlates (Figure 5A). These clusters also exhibited morphisms with those 

identified by NMF (Figure 5B, 5C, Table IV in the Supplement). NMF Group 1 shared many 

genes with the WGCNA blue cluster that enriched for sarcomere organization and stress-

activated kinase signaling pathways and correlated with LV hypertrophy, serum NT-proBNP 

and RV afterload. NMF Group 2 shared genes in both yellow and red WGCNA clusters in 

oxidative phosphorylation, immune-inflammatory signaling, and ER stress, and patients had 

the opposite clinical features compared to Group 1. Finally, NMF Group 3 matched the 

brown cluster prominently enriched for extracellular matrix and angiogenesis pathways in 

patients with smaller, less hypertrophied hearts, less DM, but worse HF symptoms.

Discussion

In this first broad analysis of gene expression in myocardium from prospectively identified 

human HFpEF patients, we reveal several important findings. First, HFpEF has a distinct 

transcriptome versus controls and exhibits many unique pathway modifications compared to 

HFrEF. Second, altered gene expression in pathways often postulated as central to HFpEF 

pathogenesis including fibrosis, hypertrophy, oxidant stress and inflammation29 are similar 

or less augmented compared to HFrEF; whereas more unique pathways in HFpEF relate to 

protein hemostasis, ER stress, and angiogenesis. Third, HFpEF can be sub-grouped based 

solely on transcriptomics, yielding: 1) a hemodynamic-driven phenotype that shares 

similarities to HFrEF and has worse clinical outcomes; 2) a cohort with smaller hearts and 

inflammatory and matrix signatures; and 3) a heterogeneous phenotype with worse HF 

symptoms but lower NT-proBNP and smaller hearts as well. This remains distinctive from 

HFrEF. These relations between underlying transcriptomic signatures and their clinical 

correlates suggests a path forward for more personalized and biologically based 

therapeutics.

HFpEF displays broad transcriptomic changes despite clinical heterogeneity

Initial reports of HFpEF in the 1980’s (termed diastolic heart failure at the time) described 

mostly elderly, hypertensive, and predominantly female patients with hypertrophied 

ventricles without obvious coronary disease4. This remained a primary phenotype over the 

ensuing 20 years, with hypertension, hypertrophy, fibrosis, and resulting diastolic 

impairment considered the primary disease pathophysiology. However, the phenotype has 

changed over the past two decades to involve a younger, mixed-sex population, characterized 

by severe obesity and metabolic comorbidities.6, 8 This evolution has shifted the mechanistic 

perspective to a multi-organ disease9 that includes pulmonary hypertension, obesity and 

metabolic disease, vascular stiffening, chronotropic incompetence, skeletal muscle disease, 
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and renal insufficiency30. In this context, the role of the heart has become more ambiguous, 

and while suspicions persist that the myocardium is not normal, just how is less certain. This 

heterogeneity has been blamed for clinical failures of therapeutic trials31.

In this context, a coherent HFpEF transcriptomic profile despite clinical hetero-geneity is 

intriguing and reveals shared myocardial signaling distinctive from CON or HFrEF. The 

variance in individual gene expression among HFpEF patients was relatively modest and 

similar to that in HFrEF and CON, even as the latter are often considered less clinically 

heterogeneous. Given the larger size of our HFpEF cohort, we were able for the first time to 

further dissect out myocardial molecular subgroups. We know of only one prior report of 

myocardial transcriptomics from 16 patients undergoing coronary bypass surgery, 5 of 

which having HFpEF-features32. None of the five were prospectively identified with clinical 

HF and only one was treated with a diuretic (none a loop diuretic) limiting interpretability of 

the data. By contrast, the current results are derived from a well-characterized cohort of 

symptomatic HFpEF patients under active medical management.

HFpEF transcriptomic signatures and the role of co-morbidities

Prior studies have proposed various pathophysiological components thought to underlie 

HFpEF, including myocyte hypertrophy, interstitial fibrosis, oxidative stress, and abnormal 

NO signaling29. While we found these pathways more engaged in HFpEF compared to 

controls, similar if not greater changes were found in HFrEF, and are thus not unique to 

HFpEF. By contrast, several pathways dysregulated in HFpEF versus CON differed from 

those observed in late-stage HFrEF. The upregulation of genes in oxidative 

phosphorylation/ATP synthesis pathways is intriguing given that they are downregulated in 

HFrEF and this pathway enrichment is linked with differences in BMI between HFpEF and 

CON. Obesity engages a complex pathophysiology involving adipokines, vascular 

dysfunction, inflammatory signaling, metabolic fuel utilization defects, and many other 

features that contribute to cardiometabolic syndromes33, 34. It is certainly possible that 

upregulated energy-related genes in more obese HFpEF patients relate to this pathobiology, 

but it could also reflect higher energy requirements to perfuse more tissue (fat) than the heart 

was designed for and to handle the increased workload due to higher inertance to movement. 

This may need to be dissected using cardiometabolic pre-clinical models as myocardial 

tissue from non-failing obese patients will be difficult to obtain.

Equally interesting is the set of genes uniquely downregulated in HFpEF that could not be 

accounted for by BMI or other major co-morbidities. These genes involve protein 

homeostasis, trafficking, angiogenesis, ER processing and stress, and protein recycling. 

They were consistently identified using different bio-informatics methods, including GO, 

KEGG, NMF, and WGCNA. The presence of depressed ER processing genes is notable in 

light of data from a carefully phenotyped mouse HFpEF model combining hemodynamic 

and metabolic stress that found the pathway is depressed and biologically relevant35. 

Confirmation of its functional relevance in larger mammals and particular humans with 

HFpEF awaits future studies. It is important to recognize that gene expression does not 

imply functional effects or necessarily correlate with protein levels, but it puts a spotlight on 
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pathways likely to be engaged. Further studies are needed to test various candidates as 

therapeutic targets.

Identifying HFpEF subgroups by the transcriptome

Many recent studies have employed a broad array of clinical data including serum 

biomarkers to phenotype HFpEF subgroups by artificial intelligence/machine learning and 

cluster-mapping approaches31, 36, 37. These find HFpEF patients at highest risk generally 

have right heart dysfunction, hemodynamic overload, higher NT-proBNP, and often renal 

dysfunction31, 36, 37. Whether or how these groups map to molecular signatures was 

previously unknown, but the new data suggest they are. A limiting factor is that HFpEF 

patients often present with many overlapping features, making it difficult to assign them to 

pre-designated clinical subgroups. Here, we took the opposite approach, using only the 

transcriptome to develop sub-group clusters, then mapping the clusters back to clinical 

features and biological pathways. Despite the inherent mathematical differences in NMF and 

WGCNA analyses, we found remarkable concordance between NMF-Group 1, an 

agnostically identified high-risk subgroup that shares features of the high-risk cohorts in 

prior clinical-phenomapping studies31, 36, 37, and the WGCNA blue module, suggesting 

biological relevance. Interestingly, the transcriptome of this subgroup is also closest to 

HFrEF, suggesting therapies for the latter may benefit this HFpEF subgroup. By contrast, 

therapies targeting protein-processing, metabolism, inflammation, or matrix remodeling may 

more benefit NMF Groups 2 or 3; obesity-reduction would likely help all groups.

Limitations

Our study has several limitations. The results do not test a specific mechanism for HFpEF, 

but rather provide a framework for biological exploration of the syndrome. We used whole 

myocardial rather than single cell RNAseq, as the latter has yet to be established from heart 

biopsies; thus, cell-specific expression remains to be clarified. The HFrEF patients had late-

stage disease and were being transplanted, and while this may reflect more severe disease 

than the HFpEF cohort, the latter group had well documented hemodynamics, functional 

class, HF hospitalization rates, and disability representing a high morbidity clinical 

phenotype. Furthermore, the vast majority of molecular and cellular data for human HF 

derives from tissue procured in advanced HFrEF in the same manner. The CON tissue from 

brain-dead organ donors may be impacted by the conditions surrounding death; however, the 

within-group transcriptomes were very consistent. We were limited to the unused donor and 

HFrEF explant tissue available and were not able to match patients based on demographics 

and comorbidities. Finally, the myocardial tissue in HFpEF is from the RV septum, the 

standard sampling location for endomyocardial biopsy, and while we cannot be certain gene 

expression is identical in the LV in HFpEF, we found very strong transcriptomic agreement 

between tissue from the LV and RV in HFrEF patients that was unaltered by RV load from 

pulmonary hypertension.

Conclusion

HFpEF myocardium displays characteristic transcriptional signatures, distinct from CON 

and HFrEF. Some of these transcriptome signatures are closely linked to obesity and other 

co-morbidities, while others are not. Lastly, we find molecular subgroups within HFpEF 
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have corresponding distinctive clinical profiles. Together, these results provide new 

biological insights into HFpEF, and help forge a framework to better develop precision-

guided therapeutics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Non-standard Abbreviations and Acronyms

HFpEF Heart Failure with Preserved Ejection Fraction

HF Heart Failure

RNA Ribonucleic acid

RV Right ventricle

EF Ejection fraction

HFrEF Heart Failure with Reduced Ejection Fraction

CON Control

PCA Principal Component Analysis

NMF Non-negative matrix factorization

WGNCA Weighted gene co-expression analysis

BMI Body Mass Index

NYHA New York Heart Association

ATP Adenosine triphosphate

LV Left ventricle

IRB Institutional Review Board

LVEF Left ventricular ejection fraction

LA Left atrium

NTproBNP N-terminal pro–B-type natriuretic peptide

PAWP Pulmonary artery wedge pressure
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LVH Left ventricular hypertrophy

CD68 Cluster of Differentiation 68

FDR False discovery rate

UHCA Unsupervised hierarchical clustering analysis

KEGG Kyoto Encyclopedia of Genes and Genomes

GO Gene Ontology

PA Pulmonary artery

PVR Pulmonary vascular resistance

eGFR Estimated glomerular filtration rate

cGMP Cyclic guanine monophosphate

NO Nitric oxide

ER endoplasmic reticulum

DM Diabetes mellitus

References

1. Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, 
Cushman M, Delling FN, Deo R, et al. Heart Disease and Stroke Statistics-2018 Update: A Report 
From the American Heart Association. Circulation. 2018;137:e67–e492. doi: 10.1161/
CIR.0000000000000558 [PubMed: 29386200] 

2. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL and Redfield MM. Trends in prevalence 
and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–259. 
doi: 10.1056/NEJMoa052256 [PubMed: 16855265] 

3. Sharma K, Hill T, Grams M, Daya NR, Hays AG, Fine D, Thiemann DR, Weiss RG, Tedford RJ, 
Kass DA, et al. Outcomes and Worsening Renal Function in Patients Hospitalized With Heart 
Failure With Preserved Ejection Fraction. Am J Cardiol. 2015;116:1534–1540. doi: 10.1016/
j.amjcard.2015.08.019 [PubMed: 26410603] 

4. Topol EJ, Traill TA and Fortuin NJ. Hypertensive hypertrophic cardiomyopathy of the elderly. N 
Engl J Med. 1985;312:277–283. doi: 10.1056/NEJM198501313120504 [PubMed: 2857050] 

5. Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJ and Paulus WJ. 
Cardiomyocyte stiffness in diastolic heart failure. Circulation. 2005;111:774–781. doi: 
10.1161/01.CIR.0000155257.33485.6D [PubMed: 15699264] 

6. Kitzman DW and Shah SJ. The HFpEF Obesity Phenotype: The Elephant in the Room. J Am Coll 
Cardiol. 2016;68:200–203. doi: 10.1016/j.jacc.2016.05.019 [PubMed: 27386774] 

7. Kitzman DW and Nicklas BJ. Pivotal Role of Excess Intra-Abdominal Adipose in the Pathogenesis 
of Metabolic/Obese HFpEF. JACC Heart Fail. 2018;6:1008–1010. doi: 10.1016/j.jchf.2018.08.007 
[PubMed: 30316933] 

8. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V and Borlaug BA. Evidence Supporting the 
Existence of a Distinct Obese Phenotype of Heart Failure With Preserved Ejection Fraction. 
Circulation. 2017;136:6–19. doi: 10.1161/circulationaha.116.026807 [PubMed: 28381470] 

9. Sharma K and Kass DA. Heart failure with preserved ejection fraction: mechanisms, clinical 
features, and therapies. Circ Res. 2014;115:79–96. doi: 10.1161/CIRCRESAHA.115.302922 
[PubMed: 24951759] 

Hahn et al. Page 13

Circulation. Author manuscript; available in PMC 2022 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, Slater R, Palmer BM, 
Van Buren P, Meyer M, et al. Myocardial stiffness in patients with heart failure and a preserved 
ejection fraction: contributions of collagen and titin. Circulation. 2015;131:1247–1259. doi: 
10.1161/CIRCULATIONAHA.114.013215 [PubMed: 25637629] 

11. Westermann D, Lindner D, Kasner M, Zietsch C, Savvatis K, Escher F, von Schlippenbach J, Skurk 
C, Steendijk P, Riad A, et al. Cardiac inflammation contributes to changes in the extracellular 
matrix in patients with heart failure and normal ejection fraction. Circ Heart Fail. 2011;4:44–52. 
doi: 10.1161/CIRCHEARTFAILURE.109.931451 [PubMed: 21075869] 

12. van Heerebeek L, Hamdani N, Falcao-Pires I, Leite-Moreira AF, Begieneman MP, Bronzwaer JG, 
van der Velden J, Stienen GJ, Laarman GJ, Somsen A, et al. Low myocardial protein kinase G 
activity in heart failure with preserved ejection fraction. Circulation. 2012;126:830–839. doi: 
10.1161/CIRCULATIONAHA.111.076075 [PubMed: 22806632] 

13. Runte KE, Bell SP, Selby DE, Haussler TN, Ashikaga T, LeWinter MM, Palmer BM and Meyer M. 
Relaxation and the Role of Calcium in Isolated Contracting Myocardium From Patients With 
Hypertensive Heart Disease and Heart Failure With Preserved Ejection Fraction. Circ Heart Fail. 
2017;10:e004311. doi: 10.1161/CIRCHEARTFAILURE.117.004311 [PubMed: 28784688] 

14. Hahn VS, Knutsdottir H, Luo X, Bedi KC Jr., Margulies KB, Haldar SM, Stolina M, Yin J, Khakoo 
AY, Vaishnav J, et al. Myocardial gene expression signatures in human heart failure with preserved 
ejection fraction. Zenodo Data Repository. 2020. doi: DOI: 10.5281/zenodo.4114617

15. Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, 
Lam CSP, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF 
diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of 
the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22:391–412. doi: 10.1002/
ejhf.1741 [PubMed: 32133741] 

16. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-
Juanatey JR, Harjola VP, Jankowska EA, et al. 2016 ESC Guidelines for the diagnosis and 
treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of 
acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the 
special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 
2016;37:2129–2200. doi: 10.1093/eurheartj/ehw128 [PubMed: 27206819] 

17. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr., Drazner MH, Fonarow GC, Geraci SA, 
Horwich T, Januzzi JL, et al. 2013 ACCF/AHA guideline for the management of heart failure: 
executive summary: a report of the American College of Cardiology Foundation/American Heart 
Association Task Force on practice guidelines. Circulation. 2013;128:1810–1852. doi: 10.1161/
CIR.0b013e31829e8807 [PubMed: 23741057] 

18. McKee PA, Castelli WP, McNamara PM and Kannel WB. The natural history of congestive heart 
failure: the Framingham study. N Engl J Med. 1971;285:1441–1446. doi: 10.1056/
NEJM197112232852601 [PubMed: 5122894] 

19. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, 
Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by 
echocardiography in adults: an update from the American Society of Echocardiography and the 
European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39 e14. doi: 
10.1016/j.echo.2014.10.003 [PubMed: 25559473] 

20. Hahn VS, Yanek LR, Vaishnav J, Ying W, Vaidya D, Lee YZJ, Riley SJ, Subramanya V, Brown 
EE, Hopkins CD, et al. Endomyocardial Biopsy Characterization of Heart Failure With Preserved 
Ejection Fraction and Prevalence of Cardiac Amyloidosis. JACC Heart Fail. 2020;8:712–724. doi: 
10.1016/j.jchf.2020.04.007 [PubMed: 32653448] 

21. Kim D, Langmead B and Salzberg SL. HISAT: a fast spliced aligner with low memory 
requirements. Nat Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317 [PubMed: 25751142] 

22. Anders S, Pyl PT and Huber W. HTSeq--a Python framework to work with high-throughput 
sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638 [PubMed: 
25260700] 

23. Love MI, Huber W and Anders S. Moderated estimation of fold change and dispersion for RNA-
seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8 [PubMed: 
25516281] 

Hahn et al. Page 14

Circulation. Author manuscript; available in PMC 2022 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



24. Langfelder P and Horvath S. WGCNA: an R package for weighted correlation network analysis. 
BMC Bioinformatics. 2008;9:559. doi: 10.1186/1471-2105-9-559 [PubMed: 19114008] 

25. Gaujoux R and Seoighe C. A flexible R package for nonnegative matrix factorization. BMC 
Bioinformatics. 2010;11:367. doi: 10.1186/1471-2105-11-367 [PubMed: 20598126] 

26. Brunet JP, Tamayo P, Golub TR and Mesirov JP. Metagenes and molecular pattern discovery using 
matrix factorization. Proc Natl Acad Sci U S A. 2004;101:4164–4169. doi: 10.1073/
pnas.0308531101 [PubMed: 15016911] 

27. Johnson EK, Matkovich SJ and Nerbonne JM. Regional Differences in mRNA and lncRNA 
Expression Profiles in Non-Failing Human Atria and Ventricles. Sci Rep. 2018;8:13919. doi: 
10.1038/s41598-018-32154-2 [PubMed: 30224797] 

28. Paulus WJ. Unfolding Discoveries in Heart Failure. N Engl J Med. 2020;382:679–682. doi: 
10.1056/NEJMcibr1913825 [PubMed: 32053308] 

29. Paulus WJ and Tschope C. A novel paradigm for heart failure with preserved ejection fraction: 
comorbidities drive myocardial dysfunction and remodeling through coronary microvascular 
endothelial inflammation. J Am Coll Cardiol. 2013;62:263–271. doi: 10.1016/j.jacc.2013.02.092 
[PubMed: 23684677] 

30. Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R, Chirinos JA, Collins 
S, Deo RC, Gladwin MT, et al. Research Priorities for Heart Failure With Preserved Ejection 
Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation. 
2020;141:1001–1026. doi: 10.1161/CIRCULATIONAHA.119.041886 [PubMed: 32202936] 

31. Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow RO, Huang CC and 
Deo RC. Phenomapping for novel classification of heart failure with preserved ejection fraction. 
Circulation. 2015;131:269–279. doi: 10.1161/circulationaha.114.010637 [PubMed: 25398313] 

32. Das S, Frisk C, Eriksson MJ, Walentinsson A, Corbascio M, Hage C, Kumar C, Asp M, Lundeberg 
J, Maret E, et al. Transcriptomics of cardiac biopsies reveals differences in patients with or without 
diagnostic parameters for heart failure with preserved ejection fraction. Sci Rep. 2019;9:3179. doi: 
10.1038/s41598-019-39445-2 [PubMed: 30816197] 

33. Collins S A heart-adipose tissue connection in the regulation of energy metabolism. Nat Rev 
Endocrinol. 2014;10:157–163. doi: 10.1038/nrendo.2013.234 [PubMed: 24296515] 

34. Koliaki C, Liatis S and Kokkinos A. Obesity and cardiovascular disease: revisiting an old 
relationship. Metabolism. 2019;92:98–107. doi: 10.1016/j.metabol.2018.10.011 [PubMed: 
30399375] 

35. Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo X, Jiang N, May 
HI, Wang ZV, et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature. 
2019;568:351–356. doi: 10.1038/s41586-019-1100-z [PubMed: 30971818] 

36. Cohen JB, Schrauben SJ, Zhao L, Basso MD, Cvijic ME, Li Z, Yarde M, Wang Z, Bhattacharya 
PT, Chirinos DA, et al. Clinical Phenogroups in Heart Failure With Preserved Ejection Fraction: 
Detailed Phenotypes, Prognosis, and Response to Spironolactone. JACC Heart Fail. 2020;8:172–
184. doi: 10.1016/j.jchf.2019.09.009 [PubMed: 31926856] 

37. Segar MW, Patel KV, Ayers C, Basit M, Tang WHW, Willett D, Berry J, Grodin JL and Pandey A. 
Phenomapping of patients with heart failure with preserved ejection fraction using machine 
learning-based unsupervised cluster analysis. Eur J Heart Fail. 2020;22:148–158. doi: 10.1002/
ejhf.1621 [PubMed: 31637815] 

Hahn et al. Page 15

Circulation. Author manuscript; available in PMC 2022 January 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Clinical Perspective

What is new?

• We performed myocardial transcriptomic analysis in heart failure with 

preserved ejection fraction (HFpEF), HF with reduced EF (HFrEF), and 

controls.

• Upregulated genes in oxidative phosphorylation pathways in HFpEF were 

associated with obesity, whereas downregulated genes in endoplasmic 

reticulum stress, autophagy, and angiogenesis were independent of co-

morbidities.

• We identified a subgroup of HFpEF with a transcriptomic signature more 

similar to HFrEF. This group had larger hearts, worse pulmonary 

hypertension, higher NTproBNP, and worse clinical outcomes.

What are the clinical implications?

• Transcriptome-derived HFpEF subgroups including one more similar to 

HFrEF may benefit from proven HFrEF therapies and others that may benefit 

from targeted therapies addressing inflammation, proteostasis, and 

angiogenesis.
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Figure 1. Transcriptomic differences between HFpEF and HFrEF.
RNAseq was performed on CON (n=24), HFrEF (n=30), and HFpEF (n=41). A) Principal 

component (PC) analysis using all identified genes for CON (green), HFrEF (orange), and 

HFpEF (purple) reveals within group clusters with minimal overlap. B) Principal component 

analysis after adjustment for age, sex, diabetes, body mass index [BMI], and estimated 

glomerular filtration rate. C) Hierarchical clustering analysis using all identified genes, 

using Pearson correlation, shown as a heatmap of variance stabilizing transforms of the 

reads that also largely separates the groups. Only 5 HFpEF patients grouped into HFrEF; 1 

HFrEF patient grouped into HFpEF. D) Venn diagram of differentially expressed genes (5% 

FDR threshold) for the three groups, their directions versus CON, and relative portion 

unique or shared by each HF group.
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Figure 2. Gene expression differences between HFpEF and HFrEF within targeted pathways of 
interest.
Gene-expression changes in HFpEF vs CON (purple) and HFrEF vs CON (orange) in 10 

targeted pathways. Each plot is displayed as Z-scores for individual genes. Vertical 

placement is based highest-lowest HFpEF vs CON scores. Wilcoxon rank-sum P value 

displayed for differences in Z-scores between HF groups. OxPhos, oxidative 

phosphorylation; ER, protein processing in the endoplasmic reticulum; cGMP, cyclic 

guanosine monophosphate; OxStress, oxidative stress; IFNγ, Interferon gamma; NO, nitric 

oxide.
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Figure 3. Impact of co-morbidities and functional analysis of differentially expressed HFpEF 
genes.
A) Enrichment of Gene Ontology (GO)-Biological Processes based on genes downregulated 

in HFpEF vs CON using unadjusted differential gene expression analysis, adjustment for sex 

or body mass index [BMI] alone, or adjustment for five clinical covariates (age, sex, 

diabetes, BMI, estimated glomerular filtration rate). Circle size reflects gene ratio - 

proportion of differentially expressed genes in a pathway versus all differentially expressed 

genes; color coding reflects Fisher’s exact P value after Benjamini-Hochberg (BH) 

adjustment for multiple comparisons. B) Same analysis using genes upregulated in HFpEF. 

Circle size and color coding as described in Fig. 2A.
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Figure 4. Identification of HFpEF subgroups by agnostic clustering of gene expression.
A) Non-negative matrix factorization (NMF) identifies 3 HFpEF patient clusters (n=38). 

Two groups show high intra-group similarity, while the third is heterogeneous. B) Principal 

component (PC) analysis using HFpEF groups and HFrEF as comparator. C) Enrichment of 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the subset of differentially 

expressed genes within HFpEF subgroups. Symbol size and color are as defined in Fig. 2A. 

D) Kaplan-Meier analysis of 12-month probability of event-free survival, with event being a 

composite of death or heart failure hospitalization. Log-rank p-value displayed.
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Figure 5. Weighted gene correlation network analysis (WGCNA) in HFpEF.
A) WGCNA identified 8 gene clusters, represented as colors on the y-axis. Their correlation 

with clinical parameters is shown as red boxes indicating positive and blue boxes negative 

correlations. B) The top 300 metagenes inherent to NMF Group 1 HFpEF overlap 

significantly with the “blue” cluster from the WGCNA. Each line represents a gene in an 

NMF group that best defined that group and its match among the gene clusters identified by 

WGCNA. Genes from HFpEF Group 1 overlap most with the blue cluster, while genes from 

Group 2 mostly overlap with the yellow and red clusters, and Group 3 mostly overlaps with 

the brown cluster. C) Table identifies the clinical characteristics and gene ontology 

biological processes related to each group. Abbreviations: BP – blood pressure; BMI – body 

mass index, LVEDD, left ventricular end diastolic diameter; eGFR, estimated glomerular 
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filtration rate; PASP, pulmonary artery systolic pressure; RV, RV Ea, Right ventricle arterial 

elastance.
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Table 1.

Clinical characteristics of HFpEF, HFrEF, and Donor Control Groups

Control (24) HFpEF (41) HFrEF (30) P value

Age, years 57 (52, 63) 62 (53, 69)
††† 50 (45, 62) 0.003

Female Sex, n (%) 10 (42%) 24 (59%) 10 (33%) 0.1

Race/Ethnicity <0.001

 African-American, n (%) 1 (4%) 28 (68%)***,
††† 8 (27%)*

 Caucasian, n (%) 22 (92%) 11 (27%) 21 (70%)

 Hispanic, n (%) 1 (4%) 1 (2%) 0 (0%)

Medications

 ACEi or ARB, n (%) 6 (25%) 26 (63%)** 20 (67%)** 0.003

 Beta Blocker, n (%) 6 (25%) 22 (54%)*,
††† 28 (93%)*** <0.001

 Loop Diuretic, n (%) 0 (0%) 39 (95%)*** 30 (100%)*** <0.001

Past Medical History

 Hypertension, n (%) 11 (46%) 40 (98%)*** 30 (100%)*** <0.001

 Diabetes, n (%) 3 (12%) 26 (63%)***,
† 9 (30%) <0.001

 Coronary artery disease, n (%) 1 (4%) 4 (10%) 5 (17%) 0.36

 Atrial fibrillation or flutter, n (%) 3 (12%) 10 (24%)
†† 19 (63%)*** <0.001

Etiology of HFrEF

 Familial cardiomyopathy 6 (20%)

 Ischemic heart disease 6 (20%)

 Left ventricular non- compaction 2 (6.7%)

 Non-ischemic dilated cardiomyopathy 15 (50%)

 Sarcoidosis 1 (3.3%)

BMI, kg/m2 27 (22, 31) 41 (36, 46)***,
††† 26 (23, 29) <0.001

LVEF, % 61 (60, 65) 65 (60, 70)
††† 18 (11, 20)*** <0.001

LVEDD, cm 4.0 (3.9, 4.5) 4.6 (4.0, 5.0) *,
††† 6.8 (6.2, 7.3)*** <0.001

LV posterior wall, mm 9.5 (8.0, 11.0) 12.0 (9.7, 13.0)*,
††† 8.55 (8.0, 10.0) <0.001

Sex-adjusted LV mass/height1.7, g/m1.7 95 (86, 115) 107 (83, 131)
† 121 (113, 150)** 0.004

LVMI, g/m2 118 (97, 138) 95 (80, 119)**,
††† 146 (131, 158)*** <0.001

eGFR, mL/min/1.73m2 83 (56, 104) 48 (33, 70)**,
†† 70 (56, 82) 0.003

Invasive Hemodynamics

 RA, mmHg N/A 12 (8, 15)
†† 7 (5, 11) 0.012

 PASP, mmHg N/A 45 (33, 54) 48 (40, 56) 0.68

 PA mean, mmHg N/A 29 (23, 35) 29 (23, 34) 0.55
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Control (24) HFpEF (41) HFrEF (30) P value

 PAWP, mmHg N/A 20 (15, 24) 20 (16, 24) 0.94

 CI, L/min/m2 N/A 2.52 (2.29, 3.09)
††† 2.05 (1.80, 2.30) <0.001

 PVR ≥ 3 WU, n (%) N/A 5 (12%) 9 (30%) 0.077

 RA/PAWP ratio N/A 0.57 (0.50, 0.62)
†† 0.39 (0.27, 0.56) 0.002

 PA Pulsatility Index N/A 2.0 (1.4, 2.7)
††† 3.8 (2.8, 6.0) <0.001

Data are n (%) or median (25th-75th percentile). P-value displayed for Fisher’s exact test used for categorical variables. Kruskal-Wallis test used 
for continuous variables. Post-hoc between group comparison statistics (Wilcoxon):

*
p<0.05 vs Control,

**
p≤0.01 vs Control,

***
p≤0.001 vs Control.

†
p<0.05 vs HFrEF,

††
p≤0.01 vs HFrEF,

†††
p≤0.001 vs HFrEF.

ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker. All other abbreviations as in Table 1. N/A, invasive 

hemodynamics not available for control patients. Sex-adjusted LV mass/height1.7 was calculated by multiplying by a constant of 1.28 for women.
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Table 2.

Clinical characteristics of three HFpEF groups derived by Non-negative Matrix Factorization

Group 1 (11) Group 2 (10) Group 3 (17) P value

Age, years 62 (53, 72) 64 (44, 68) 61 (56, 67) 0.77

Female, n (%) 4 (36%)** 10 (100%)
††† 7 (41%) 0.002

HF hospitalization past 12mos, n (%) 9 (82%) 6 (60%) 12 (71%) 0.53

NYHA Class 0.079

 II, n (%) 3 (27%) 1 (10%) 9 (53%)

 III, n (%) 8 (73%) 8 (80%) 8 (47%)

 IV, n (%) 0 (0%) 1 (10%) 0 (0%)

Past Medical History

 Hypertension, n (%) 11 (100%) 9 (90%) 17 (100%) 0.26

 Diabetes, n (%) 10 (91%)
† 6 (60%) 9 (53%) 0.1

 CAD, n (%) 0 (0%) 2 (20%) 2 (12%) 0.26

 Atrial Fib/Flutter, n (%) 4 (36%) 0 (0%) 6 (35%) 0.083

Systolic BP, mmHg 141 (138, 173) 136 (125, 161) 136 (124, 147) 0.31

Diastolic BP, mmHg 68 (65, 80) 74 (61, 82) 75 (66, 79) 0.97

BMI, kg/m2 37 (33, 46) 43 (41, 48) 41 (36, 46) 0.26

eGFR, mL/min/1.73m2 38 (30, 68) 51 (44, 96) 49 (33, 70) 0.32

BUN, mg/dL 38 (22, 52)* 18 (15, 24) 22 (17, 29) 0.043

Creatinine, mg/dL 1.90 (1.20, 2.15)* 1.25 (0.85, 1.30) 1.40 (1.10, 2.30) 0.09

NTproBNP, pg/mL 1505 (418, 3279)***,
†

48 (28, 92)
†† 169 (113, 591) <0.001

Echocardiography

LVEF, % 60 (55, 65) 65 (61, 69) 65 (65, 70) 0.19

LVEDD, cm 4.8 (4.2, 5.7)* 4.0 (3.7, 4.3)
†† 4.9 (4.2, 5.1) 0.005

LA Diameter, cm 4.4 (3.8, 5.0) 3.8 (3.3, 4.2)
† 4.3 (3.8, 4.7) 0.075

Sex-adjusted LV mass/height1.7, g/m1.7 114 (95, 151) 98 (69, 123) 98 (83, 116) 0.21

LV mass index, g/m2
121 (109, 134)**,

† 74 (55, 93) 93 (85, 113) 0.005

Invasive Hemodynamics

 RAP, mmHg 13 (8, 16) 11 (8, 15) 12 (9, 14) 0.91

 PASP, mmHg 54 (50, 67)*,
†† 41 (32, 49) 43 (33, 48) 0.006

 PAmean, mmHg 34 (29, 38)
† 29 (22, 35) 28 (23, 32) 0.074

 PAWP, mmHg 21 (16, 26) 19 (13, 24) 20 (16, 22) 0.73

 CI, L/min/m2 3.00 (2.20, 3.48) 2.51 (2.27, 3.02) 2.49 (2.40, 2.64) 0.75

 PVR, wu 2.73 (1.57, 3.45) 1.48 (1.25, 2.27) 1.58 (0.89, 2.09) 0.11

 PVR ≥ 3wu, n (%) 4 (36%) 0 (0%) 1 (5.9%) 0.031

 RVSWI, gm/m2/beat 9.7 (9.1, 11.9)* 7.6 (5.5, 8.9) 7.0 (5.7, 9.5) 0.043
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Group 1 (11) Group 2 (10) Group 3 (17) P value

 Trans-pulmonary gradient, mmHg 12.0 (11.5, 20.0)*,
† 8.0 (7.2, 11.0) 8.0 (7.0, 11.0) 0.023

 PA compliance, mL/mmHg 2.4 (1.8, 3.9)*,
† 3.9 (3.6, 4.4) 4.3 (3.0, 5.0) 0.048

Clinical Histology

 % Fibrosis 7.2 (5.7, 7.6) 5.0 (3.4, 10.1) 8.0 (7.1, 11.1) 0.29

 CD68 cells/mm2 40 (29, 55)* 80 (51, 99) 61 (38, 107) 0.094

Data presented as n (%) or median (25th-75th percentile). Fisher’s exact test used for categorical variables. Kruskal-Wallis test used for continuous 
variables.

*
p<0.05 vs Group 2,

**
p≤0.01 vs Group 2,

***
p≤0.001 vs Group 2.

†
p<0.05 vs Group 3,

††
p≤0.01 vs Group 3,

†††
p≤0.001 vs Group 3.

HF, heart failure; NYHA, New York Heart Association; ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin II receptor blocker; 
ALDO, aldosterone; CCB, calcium channel blocker; BUN, blood urea nitrogen; RVSWI, right ventricular stroke work index. All other 
abbreviations are as in Table 1.

Circulation. Author manuscript; available in PMC 2022 January 12.


	Abstract
	Introduction
	Methods
	Data Sources:
	HFpEF Study Population
	Myocardial Tissue Procurement and Processing
	RNA isolation and preparation
	Analysis of Differential Gene Expression
	Weighted Correlation Network Analysis of HFpEF Samples
	Non-Negative Matrix Factorization to Identify Gene-Expression Based HFpEF Clusters
	Statistical Analysis

	Results
	Baseline Characteristics of Study Patients
	HFpEF, HFrEF, and CON have Distinct mRNA-Expression Profiles
	Influence of HFpEF Covariates on HFpEF Gene Expression Changes
	Association of Gene Expression Clusters with HFpEF Clinical Subgroups

	Discussion
	HFpEF displays broad transcriptomic changes despite clinical heterogeneity
	HFpEF transcriptomic signatures and the role of co-morbidities
	Identifying HFpEF subgroups by the transcriptome
	Limitations
	Conclusion

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.
	Table 2.

