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Abstract

Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and a leading 

cause of cancer-related deaths worldwide. The stepwise accumulation of epigenetic alterations in 

the normal colorectal epithelium has been reported to act as a driving force for the initiation and 

promotion of tumorigenesis in CRC. From a mechanistic standpoint, emerging evidence indicates 

that within the colonic epithelium, the diverse gut microbiota can interact with host cells to 

regulate multiple physiological processes. In fact, recent studies have found that the gut microbiota 

represents a potential cause of carcinogenesis, invasion, and metastasis via DNA methylation, 

histone modifications, and non-coding RNAs - providing an epigenetic perspective for the 

connection between the gut microbiota and CRC. Herein, we comprehensively review the recent 

research that provides a comprehensive yet succinct evidence connecting the gut microbiota to 

CRC at an epigenetic level, including carcinogenic mechanisms of cancer-related microbiota, and 

the potential for utilizing the gut microbiota as CRC biomarkers. These scientific findings 

highlight a promising future for manipulating the gut microbiota to improve clinical outcomes in 

patients suffering from CRC.
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1. INTRODUCTION

Colorectal cancer (CRC) remains the third leading cause of cancer-related deaths among 

men and women in the United States, with an estimated 147,950 new cases and 53,200 

deaths projected in 2020 [1]. Even with advances in CRC screenings and therapeutic 

strategies, CRC still remains one of the most devastating malignancies. Patients with 

metastatic CRC have a median overall survival of only ~30 months [2]. Comprehensive 

studies on disease pathogenesis at the molecular level have provided a unique perspective for 

its detection, surveillance, and therapeutic approaches for improving outcomes and survival 

in CRC patients [3]. The driving force for CRC tumorigenesis is a combination of multiple 

factors, with various host and environmental factors involved in tumor formation and growth 

[4]. To some extent, CRC has been described as a hereditary susceptibility syndrome [5], in 

which genetic predisposition or familial influences, such as Lynch Syndrome [6], familial 

adenomatous polyposis [7], and Peutz–Jeghers syndrome [8], influence the overall risk of 

developing CRC. However, it is estimated that only a minority of CRC cases develop 

through germline transmission of genetic alterations; while the majority of cases are 

believed to result from host-environmental interactions [9]. Environmental factors thought to 

act as either carcinogens or tumor-promoting agents can manifest in the accumulation of 

epigenetic variations in host cells, among which the gut microbiota as emerged as an 

important player for its pathogenic role in various cancers, including CRC [10, 11]. 

Therefore, a better understanding of the epigenetic connection between the gut microbiota 

and CRC pathogenesis will likely yield novel insights into the impact of environmental 

exposure in CRC. In this review article, using comprehensive search terms related to the gut 

microbiota, CRC and epigenetics, we conducted a literature search through the database 

searches in PubMed, Embase, and Web of Science to search for all relevant articles and 

abstracts up until Novermber 2020, including both clinical trials and basic research. We 

highlight the carcinogenic mechanisms of CRC-related microbiota and discuss the potential 

for utilizing the gut microbiota as biomarkers in this malignancy. Such a knowledge will 

provide a theoretical basis for the potential use of gut microbiota as biomarkers for cancer 

screening, diagnosis and risk prediction.

2. THE GUT MICROBIOTA AND CRC

For human beings, from birth, microbiota colonizes the skin, digestive tract, respiratory 

tract, reproductive tract, and other parts in contact with the external environment, among 

which the colon and rectum represent ideal habitats for containing the largest number and 

variety of microbiota [12]. With the most expansive mucosal surface area in contact with the 

outside environment, the human colorectal epithelium comprises of a considerable gut 

microbiota ecosystem, comprising of more than 1014 microorganisms, that primarily include 

Bacteroidetes, Proteobacteria, Actinobacteria, Firmicutes, and Fusobacteria [13]. In this 

context, the intestinal environment, dietary regulation, and drug metabolism have a rapid and 

major impact on the communal characteristics of the gut microbiota [14, 15]. The gut 

microbiota, in turn, plays a fundamental role in overall human health, by assisting in host 

digestion and absorption, regulating the development and function of the mucosal barrier, 

promoting the maturation of immune tissues, and affecting tolerance to gastrointestinal 

antigens [16, 17]. However, at the same time, metabolites of the gut microbiota that have 
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toxic effects on the human body, including but not limited to phenol, p-cresol and indole are 

recognized to be involved in the occurrence and development of CRC [18]. In general, the 

gut microbiota likely acts as a common denominator during cancer pathogenesis by acting as 

bridge for various tumor stages, from environmental effects and inflammation of the 

gastrointestinal mucosa to colorectal mucosal cancerization.

2.1 ADVANCED APPROACHES FOR IDENTIFICATION OF GUT MICROBIOTA

Polymerase chain reaction (PCR), which can identify the presence and abundance of specific 

bacterial strains among the complex community of microbiota through specific primer 

design, has been considered to be the most attractive approach for studying the gut 

microbiota profiles. However, PCR testing is limited to detecting a particular strain using 

specifically designed primers, and thus cannot fully provide a comprehensive description of 

the gut microbiome [19]. The emergence of next-generation sequencing (NGS) technologies 

have enabled large-scale studies of the gut microbiota to identify previously unknown 

bacterial species and strains, and has revealed high variability in microbiome composition 

between individuals and between different body sites within the same person [20, 21]. To 

date, several types of large-scale analyses based on NGS techniques have been used to 

assess the gut microbiota, including 16S amplicon sequencing, which is based on 

sequencing hypervariable regions of the 16S ribosomal RNA (rRNA) [22], and shotgun 

analysis, which is based on direct sequencing of the total DNA (metagenome) and/or total 

RNA (metatranscriptome) [23]. Such techniques have greatly expanded our knowledge of 

the diversity and multi-functionality of the gut microbiota (Figure 1).

In this context, 16S amplicon sequencing is a relatively simple, low-cost method to obtain a 

broad overview of microbiome composition [24], in which specific regions common to all 

microbiota genomes are first amplified and sequenced. Sequencing reads are clustered into 

operational taxonomic units (OTUs) based on sequence homology against known 16S rRNA 

gene databases, which is a commonly used measure of microbial diversity. Population 

abundance is quantified and the diversity of the microbiome is identified by the resulting 

OTUs in various specimens [25]. However, data generated by 16S amplicon sequencing is 

limited in several aspects, due to the lack of information on microbiota function and limited 

“taxonomic resolution.” For instance, in most cases, microbiota cannot be identified 

precisely at the species level [26]. To overcome these limitations, metagenomic shotgun 

sequencing—sequencing all genes presented in the microbiome rather than just a single 

taxonomic marker gene—can provide information about the abundances of genes at all 

taxonomic levels by mapping reference genomes/genes. Metagenomic shotgun sequencing 

can also identify gene content and infer its functional potential of proteins encoding in the 

microbiome using functional annotated databases [27]. Both 16S amplicon sequencing and 

metagenomic shotgun sequencing are based on genomic DNA sequences from microbiota 

samples. RNA-expressing genes express their functional activity better than DNA because 

many genes are only conditionally expressed. RNA transcripts from the microbiome provide 

a more comprehensive description of gene expression of the microbiota. Therefore, 

metatranscriptomic sequencing allows the identification of expressed transcripts, providing 

different insights from DNA‐based microbiome sequencing methods. Transcriptome 

abundance can also be used to compare gene expression profiles between various 
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microbiota. However, it is more expensive to obtain comparable profiles of the microbiota 

using metagenomic and metatranscriptomic sequencing compared to using 16S amplicon 

sequencing [25]. In addition, data generated from metagenomic and metatranscriptomic 

sequencing has been challenging to analyze, owing to its substantial complexity compared to 

data generated by 16S amplicon sequencing.

2.2 COMPOSITION OF GUT MICROBIOTA IN HEALTHY PEOPLE

The structure and physiological activity of the gut microbiota are closely related to the 

health of an organism [28]. Gut microbiota are combined in a certain proportion; wherein, 

each strain is interdependent and competes to maintain a critical ecological balance [29]. In 

the normal human gastrointestinal tract, the relationship between the host and the gut 

microbiota is mutually beneficial and symbiotic: the digestive tract provides an environment 

for the colonization and survival of specific microbiota, and the microbiota in turn plays 

unique functions in maintaining intestinal health, such as nutrient metabolism and intestinal 

protection [29]. In addition, the gut microbiota participates in catabolism and synthesis of 

substances in the intestinal tract and decomposes macromolecular compounds that cannot be 

otherwise digested by the host into final metabolic products, providing energy for the host as 

well as nutrition for its own growth and reproduction [30]. For example, gram-positive 

microbiota, such as Lactobacillus spp., Streptococcus spp., and Faecalibacterium spp. can 

synthesize B vitamins, vitamin K, niacin, and a variety of amino acids with anti-

inflammatory, anti-tumor and anti-bacterial effects [31–33]. Furthermore, epithelial cells, 

mucosal layers, and intestinal microbiota secretions can form an effective intestinal barrier 

to prevent the invasion of harmful bacteria and other pathogens [34].

The rapid development of NGS technologies is deepening our understanding of the origin of 

the gut microbiota and the landscape of its evolution. Due to differences in oxygen content, 

pH values, antimicrobial peptide levels and intestinal motility at different anatomical sites 

within the gut, the overall composition of the gut microbiota varies greatly [35, 36]. The gut 

microbiota colonizes the entire length of the intestine tract, and the load of microbiota 

generally increases from the duodenum to the distal colon, ranging from 103 to 104 mL−1 

content in the stomach, duodenum, and jejunum, to 108 mL−1 in the ileum, and up to 1011 

mL−1 in the colon [35, 36]. Gut-commensal microbiota can be anatomically defined as: (i) 

lumen-commensal, (ii) mucus‐resident, (iii) epithelium‐resident, and (iv) lymphoid tissue-

resident populations (summarized in Table 1). The translocation and ecological imbalance of 

gut commensal microbiota are closely related to carcinogenesis and development of CRC.

2.3 COMPOSITION OF GUT MICROBIOTA IN PATIENTS WITH CRC

The microbial diversity and balance are the key characteristic features of a healthy gut, as a 

rich gastrointestinal ecosystem can cope with the challenges of various factors that promote 

disease occurrence [37]. By comparing the gut microbiota of younger individuals (20–39 

years old) vs. elderly (>60 years old), the results have revealed that younger individuals tend 

to gain more microbial taxa, while elderly individuals tend to lose microbiota diversity in a 

healthy gut[38]. Although CRC incidence and mortality trends have declined overall, these 

trends in early-onset CRC (EOCRC; in patients <50 years old) are actually on a rise, 

worldwide[39]. By analyzing healthcare claims data from all geographic areas of the United 
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States, it is confirmed that the increased risk of EOCRC is associated with metabolic 

dysregulation, which is often accompanied by the presence of the gut microbiota dysbiosis 

[40]. Nowadays, due to various risk factors such as antibiotic use, diet, obesity and stress, 

the gut microbiota dysbiosis often occurs in younger generations, which may in part explain 

the increasing risk of EOCRC[41]. Even in the individuals with genetic predisposition to 

CRC, the gut microbiota still contributes to CRC risk substantially. For example, a 

significant increase of Bacteroidetes and Proteobacteria as well as a reduction of Firmicutes 

were observed in Lynch syndrome fecal samples [42]. Leveraging stool meta-

transcriptomes, another study showed that the progression toward carcinogenesis of lynch 

syndrome can be predicted in modest power by gut microbial transcription[43]. 

Accumulated studies to detect gut microbiota in experimental animal models and in patients 

have indicated that various stages of CRC disease progression are often associated with 

significant ecological disorders in CRC tissues and with microorganisms in the adjacent 

mucosa [44]. [42, 43]Key characteristics of major changes in the gut microbiota associated 

with CRC are summarized in Table 2. For example, in patients with adenomas, the 

abundance of Bilophilia, Desulfovibrio, Corynebacterium and Phascolarctobacterium in the 

fecal matter was significantly higher, whereas in patients with serrated polyps, 

Erysipelotrichia and Fusobacteria were predominantly more, compared with their relatively 

abundance in healthy people [45]. Both adenomas and serrated polyps may develop into 

CRC. As adenomas and serrated polyps develop into CRC, toxins produced by pathogenic 

microbiota present an increasing trend in intestinal mucosal tissues, such as cytotoxic 

necrosis factor and cycle suppressor produced by Fusobacterium nucleatum and 

Bacteroidetes fragilis. In addition, as illustrated in Figure 2, the abundance of some of the 

invasive microbiota also illustrates a similar upward trend, which includes enteroinvasive 

Escherichia coli (EIEC) [46].

F. nucleatum—F. nucleatum, a gram-negative anaerobic bacterium commonly found in the 

mouth, which was first found to be associated with CRC incidence in 2012 [47, 48]. 

Fluorescence quantitative PCR (qPCR), fluorescence in situ hybridization [49], and droplet 

digital PCR [50] were used to demonstrate that F. nucleatum was highly enriched in CRC 

tissues. The qPCR results revealed that the average total abundance of F. nucleatum was 415 

times higher in 99 CRC tissue specimens compared to the corresponding normal mucosal 

tissues [49]. Subsequent studies have used metatranscriptomic sequencing and metagenomic 

analysis to confirm the increased abundance of F. nucleatum in CRC tissues vis-à-vis 

healthy tissues [51–53]. Furthermore, the matched F. nucleatum strain was detected in both 

saliva specimens and CRC tissues in 75% of the CRC-positive patients, suggesting that this 

bacterium in CRC tissues likely originates in the oral cavity, and digestive tract transmission 

may be one mechanisms underlying its diffusion [54]. The correlation between F. nucleatum 
and CRC has been widely confirmed; while the potential mechanisms for its mechanistic 

role in cancer pathogenesis remain unclear but are an area of active investigation.

One mechanism connecting F. nucleatum and CRC may be epithelial-to-mesenchymal 

transition (EMT). Microscopic approaches were used to observe epithelial cells incubated 

with F. nucleatum transdifferentiating into mesenchymal-like cells, showing an enhanced 

ability to invade [55]. However, western blot analysis of total E-cadherin protein revealed an 
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equal expression of this epithelial cell adhesion protein before and after incubation with F. 
nucleatum. Accumulating evidence suggests that the potential toxicity of F. nucleatum and 

its ability to destroy intestinal epithelial cells are primarily due to F. nucleatum adhesin A 

(FadA), a virulence factor that regulates bacterial adhesion and invasion [56, 57]. The FadA 

gene expression was significantly higher in CRC specimens than in adjacent normal tissues 

[58]. In another study, F. nucleatum emerged as a high-risk factor for CRC metastasis and 

was found to be bound to E-cadherin-expressing cells via FadA [59]. This is of biological 

importance, as E-cadherin activates the β-catenin pathway, which promotes CRC cell 

growth. Recently, fadA was shown to up-regulate the expression of the Wnt/β-catenin 

modulator Annexin A1 through E-cadherin [60]. Dysregulation of the E-cadherin/β-catenin 

complex leads to CRC cell metastasis. Combined with the regulatory effect of F. nucleatum 
on E-cadherin/β-catenin, this strain may promote occurrence and progression of CRC by 

reducing E-cadherin-dependent cell–cell adhesion. Additionally, F. nucleatum can promote 

the secretion of the matrix metalloproteinases MMP-9 and MMP-13 by activating the 

mitogen-activated protein kinase p38, increasing the proliferation and survival of infected 

epithelial cells [61]. Furthermore, recent studies reported that the microRNA (miRNA) 

miR-21 plays a key regulatory role in the direct correlation between F. nucleatum and 

proliferation, invasive activity, and xenograft tumor formation in mice [62, 63].

B. fragilis—B. fragilis, a common gram-negative obligate anaerobe, is more abundant in 

fecal samples from patients with CRC compared to controls [64]. Another study used 

pyrosequencing analysis to confirm that although the absolute abundance of bacteria per 

gram of feces was similar between patients with CRC and healthy people, B. fragilis 
abundance was significantly higher in patients with CRC than in healthy people [65]. 

However, it has also been shown that B. fragilis is less abundant in CRC tissues than in 

adjacent non-cancer tissues [66, 67]. These differences may be due to the distinct species of 

B. fragilis existing in the gastrointestinal tracts of patients with CRC. Two main classes of B. 
fragilis that colonize most humans have been described: enterotoxigenic B. fragilis (ETBF), 

which secrete B. fragilis toxin (BFT), causing diarrhea, peritonitis, and intra-abdominal 

abscesses in humans; and non-toxigenic B. fragilis (NTBF), which do not secrete BFT [68].

Some investigations have suggested that ETBF may operate as a pathogenic bacteria, 

triggering an immediate and robust inflammatory response, causing an ecological imbalance 

in the intestinal microbial community [64, 69]. The key factor for ETBF virulence in CRC is 

attributed to BFT, a secreted 20-kDa zinc-dependent metalloprotease toxin [70]. Expression 

of the BFT gene is more common in the intestinal mucosa of patients with CRC compared to 

healthy individuals, especially in patients with advanced CRC [64]. BFT expression induces 

cleavage of the extracellular domain of E-cadherin in colonic epithelial cells, leading to 

increased epithelial cell permeability. E-cadherin stimulates cellular signaling through the β-

catenin/Wnt pathway, which is active in certain CRC cases [71]. Another study showed that 

after BFT treatment of CRC cells, loss of membrane-associated E-cadherin activated the 

nuclear localization of ß-catenin and induced c-Myc translation, leading to continuous cell 

proliferation [7]. An additional study revealed that BFT can stimulate the production of 

spermine oxidase (SPO) in intestinal epithelial cell lines, suggesting that enterotoxin has a 
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direct effect on the production of abundant reactive oxygen species (ROS) and thereby 

causing DNA damage [72].

Escherichia coli—E. coli, a member of the Enterobacteriaceae family, is the most 

common symbiotic, gram-negative anaerobe in the gastrointestinal tract, which causes 

diverse effects on gut health by different biological components [73]. For example, some 

strains are known for their probiotic properties, such as the Nissle 1917 strain of E. coli, 
which prevents invasion of human intestinal epithelial cells by various pathogens and has 

been used as a probiotic to treat gastrointestinal disorders for more than a century [74]. In 

contrast, some E. coli strains show genotoxic activity, which has deleterious effects on host 

DNA and might ultimately cause colon cancer. Numerous studies have reported elevated 

colonization levels of colonic mucosa-associated E. coli in patients with CRC compared to 

healthy individuals. For instance, mucosal specimens from patients with CRC contain more 

than 70% microbiota, generally E. coli [75]. One study reported that mucosa-associated or 

internalized E. coli increased significantly in CRC tissues compared to corresponding non-

tumor normal tissues [76]. Another study reported that E. coli was detected in and accounts 

for 62% and 77% of patients presenting with adenomas and carcinomas, respectively [77]. 

In addition, the levels of pathogenic E. coli strains that produce the toxin cyclomodulin were 

more prevalent in stage III and IV CRC tissues than in stage I cancers, indicating that the 

abundance of pathogenic E. coli may be related to CRC stage and prognosis [76].

Various studies have demonstrated a clear link between mucosa-adherent E. coli and CRC. 

Importantly, E. coli promotes colon tumorigenesis in CRC mouse models after microbiota 

transplantation in various CRC mouse models, including ApcMin/+ mice [78], azoxymethane 

(AOM)-treated IL10−/−mice [79], AOM/dextran sodium sulfate (DSS)-treated mice [80], and 

ApcMin/+ /IL10−/− mice [81]. The biological roles for E. coli in CRC etiology have also been 

demonstrated. In particular, colibactin, a bacterial toxin synthesized by E. coli carrying the 

polyketide synthase (pks) gene, can cause DNA damage and genomic alterations and 

instability, involved in colorectal carcinogenesis [82]. This conclusion was supported by 

another study, in which mammalian epithelial cells exposed to pks-positive E. coli exhibited 

transient DNA damage, dysfunctional DNA repair, and an increased frequency of gene 

mutations [83]. Moreover, pks-positive E. coli induce autophagy and DNA damage repair in 

intestinal epithelial cells; inhibition of this protective process increases the inflammatory and 

carcinogenic effects of E. coli in susceptible mice [78].

3. EFFECTS OF GUT MICROBIOTA AND THEIR METABOLITES ON 

EPIGENETIC REGULATION OF CRC

Most CRC cases begin with the growth of polyps in the inner lining of the colon and rectum, 

which subsequently develop into dysplastic adenomas, and eventually cancer. In addition to 

multiple genetic mutations, epigenetic modifications also contribute to the pathogenesis of 

this disease during its initiation and progression, through processes such as tissue invasion 

and metastasis [84]. Epigenetic modifications broadly refer to phenotypic changes secondary 

to changes in gene expression that do not involve permanent changes in the DNA sequence. 

Accumulating data indicate that the gut microbiota can regulate epigenetic modifications in 
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the host, thus enabling manipulation of the host’s chromatin configuration and functionality. 

And these modifications can last from one cell division to the next, and hence can be 

inherited even if the gene sequence is not altered [85]. Therefore, in some sense, epigenetic 

modifications provide a potentially important interface linking the dynamic interactions 

between the microbiota and the host genome.

The link between epigenetic modifications and the gut microbiota has been known to be 

involved in the crosstalk of microbiota-derived metabolites [86]. Microbiota-derived 

metabolites have received widespread attention for beneficial effects on both cellular energy 

metabolism and intestinal homeostasis [58]. Short-chain fatty acids (SCFAs) are the most 

important metabolites of the gut microbiota, as they act as a direct energy source for host 

cells, stimulate the production of hormones in the body, and play a role in regulating food 

intake in the brain [87]. Other microbial metabolites, such as bile acids, branched-chain 

amino acids, indole propionic acid, and endocannabinoids, affect the body’s energy 

expenditure by influencing thermogenesis and adipose tissue browning [88]. In addition to 

these direct metabolic effects, it is becoming increasingly apparent that microbiota-derived 

metabolites can be important but indirect regulators of the epigenetic mechanisms. The 

epigenetic mechanisms that have a role in cancer development include DNA methylation, 

histone modifications and non-coding RNAs. Subsequently, from these perspectives, we will 

discuss the impact of the gut microbiota and their metabolites on epigenetic modifications 

during colorectal carcinogenesis. Studies about gut microbiota involved in CRC epigenomic 

modifications are summarized in Table 3.

3.1 DNA METHYLATION

DNA methylation is an epigenetic biological process that predominantly occurs through 

covalent addition of a methyl group (CH3) to the 5-carbon of a cytosine residue, resulting in 

5-methylcytosine (5-mC), which subsequently affects the function and inhibits the 

transcription of the target gene [89]. Numerous reports have shown that the gut microbiota 

can modify the methylation pattern of cancer-related genes, thus providing insight into new 

directions for identifying relationships among the gut microbiota, the epigenetic landscape 

of host cells, and the occurrence and development of CRC. For example, in a study 

comparing the methylation profiles of ETBF-induced and spontaneous tumors in the distal 

colon of ApcMin/+ mice, greater hypermethylation and reduced hypomethylation of 

differentially methylated regions were observed in ETBF-induced tumors than in 

spontaneous tumors [90]. Ecological dysbiosis of the gut microbiota can induce host gene 

methylation, but to date, studies on specific bacteria regulating CRC methylation and its 

regulatory mechanisms are very limited. A population-based study reported that a high load 

of F. nucleatum in CRC tissues was associated with high microsatellite instability and a CpG 

island methylator phenotype [91]. In another study, F. nucleatum was correlated with wild-

type tumor suppressor TP53, methylation of the mismatch repair gene hMLH1, genomic 

hypermutation, and mutation of the chromatin remodelers CHD7/8 [92]. Similarly, 

comparison of gastric biopsy results between patients infected with Helicobacter pylori and 

healthy individuals revealed that chronic gastritis was associated with hypermethylation of 

the promoter region of E-cadherin (CDH1), the DNA methyltransferase (DNMT) MGMT, 

the Wnt inhibitor WIF1, and the MLH1 gene [93]. Furthermore, fecal bacterial species, 
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including several Parvimonas species, were recently identified in individuals with a higher 

cumulative methylation index in the blood [94]. During DNA methylation, S-adenosyl 

methionine (SAM) acts as a methyl donor to enable DNMTs to form 5-mC [95]. Microbial 

metabolites such as folate are potentially involved in the synthesis of 5-

methyltetrahydrofolate, which is itself a methyl group donor for SAM [96]. Indeed, in 

human colonic cells, global DNA and p53 region-specific hypomethylation were induced by 

folate depletion, and the common microbial genera bifidobacteria and lactobacillus produce 

folate [97]. Another intriguing study highlighted that volunteers given bifidobacteria 
exhibited high concentrations of folate in the feces [98], which suggests that this probiotic 

may affect DNA methylation patterns via folate production.

3.2 HISTONE MODIFICATIONS

The acetylation of histone lysine residues is involved in transcription, translation, and DNA 

repair, and is regulated by histone acetyltransferases (HATs) and histone deacetylases 

(HDACs). HATs catalyze the transfer of acetyl groups from acetyl coenzyme A (Ac-CoA) to 

amino-terminal lysine residues on histones, whereas HDACs reverse this process. 

Consequently, HATs and HDACs collaboratively maintain the balance of histone acetylation 

in vivo to achieve homeostasis [99]. In addition to stabilization of acetylated histones, 

HDACs can also regulate CRC cell proliferation and apoptosis by modulating the acetylation 

status of p53 and tubulin protein [100]. In turn, gut microbiota can regulate the activity of 

HDACs by producing epigenetic metabolites such as SCFAs [86], as illustrated in Figure 3. 

Many studies surrounding the gut microbiota, CRC, and histone modifications have focused 

on the roles of SCFAs as HDAC inhibitors. Several different mechanisms by which SCFAs 

enter colonic intestinal cells have been proposed, including passive diffusion, counter-

transport with bicarbonate, transporter monocarboxylic acid transporter 1, and sodium-

coupled monocarboxylic acid transporter 1 [101]. The most important SCFA-producing 

bacteria are Firmicute, Bacteroidetes, Proteobacteria, and Actinobacteria [102]. How SCFAs 

regulate tumor formation and histone deacetylation remains unclear and is an active area of 

investigation. Chromatin maps of colorectal epithelial cells isolated from conventional and 

germ-free (GF) mice showed a decrease in diacetylated lysine on the histone subunit H3 in 

GF mice [102]. Supplementation with several SCFAs (acetate, propionate, and butyrate) 

resulted in a histone profile closer to that of conventional mice, suggesting that these 

metabolic by-products have the potential to induce histone modifications [103].

3.3 NON-CODING RNAs (NcRNAs)

NcRNAs are important regulators of epigenetic status, and have functional significance in 

modulating gene expression during CRC tumorigenesis [104]. Whether the gut microbiota 

modulates ncRNA expression in the host to impact CRC is under investigation. Most studies 

have used GF and conventional mice to detect differences in long noncoding RNAs 

(lncRNAs) and miRNA expression in the presence of gut microbiota. Exon microarrays 

were used to compare lncRNA expression profiles between GF and conventional mice, and 

distinct changes in lncRNA signatures were observed after GF mice were reconstituted with 

normal mouse microbiota or with E. coli alone [105]. Reduced expression of three miRNAs 

known to be expressed in intestinal epithelial cells (let-7b, miR-141, and miR-200a) was 

observed in the feces of GF mice compared to the conventional mice. Following a 6-week 
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treatment with antibiotics to deplete the gut microbiota in rats, miRNA expression was also 

reduced [106]. Other studies have shown that gut microbiota can alter the expression of 

CRC-related miRNAs; for example, commensal bacteria induce the expression of miR-21–

5p in intestinal epithelial cells [107]. To demonstrate the functional impact of microbially 

mediated miRNA changes on CRC development, global miRNA expression profiling was 

used to identify several differentially expressed miRNAs between F. nucleatum-rich samples 

from patients with recurrent CRC and low amount of F. nucleatum samples from non-

recurrent patients. Among the downregulated miRNAs, F. nucleatum targeted miR-18a and 

miR-4802 to alter CRC chemotherapeutic response by activating the autophagy pathway 

[108].

4. THE VIABILITY OF THE GUT MICROBIOTA AS A BIOMARKER FOR CRC

The progression from normal colonic mucosa to adenoma and eventually to CRC 

orchestrates in several stages, over at least 10 years, and appropriate measures can be taken 

to avoid the occurrence of CRC at any stage during this period [109]. Even if cancer is 

diagnosed, the 5-year survival of patients treated during the early stages of CRC is 

encouraging, ranging from 72% to 93% [110]. Therefore, early detection of precancerous 

lesions and CRC is the key to improving the chance of a cure.

Non-invasive screening strategies for early CRC involve either checking the presence of 

minute quantities of blood in the stool, such as with a fecal immunohistochemistry test (FIT) 

or a guaiac-based fecal occult blood test, or performing multi-target molecular detection of 

DNA, RNA, and protein markers of neoplasia in the feces [111, 112]. Single-sample FIT 

tests are approximately 20%–30% sensitive for advanced neoplasia detection and 

approximately 80% sensitive for CRC detection [113]. Multi-target molecular detection for 

high-grade precancerous lesions is approximately 46% sensitive [114]. Therefore, it is 

necessary to explore novel non-invasive screening methods. Due to differences in the gut 

microbiota between patients with colon adenoma or CRC and healthy people, characteristic 

changes in fecal microbiota and metabolites are promising biomarkers for early CRC 

screening. The possibility of using gut microbiota evaluation as a CRC screening tool via 

Bayesian statistics was first proposed in 2014 [115]. Targeted detection of CRC-related 

dysbiosis and microbiota species in fecal samples may represent a promising non-invasive 

screening method to overcome the limitations and the poor performance of current CRC 

early diagnosis tools.

Notable advances in the development of non-invasive, early screening methods have been 

made through the identification of relevant and specific microbial characteristics in patients 

with CRC. Many studies have assessed the diagnostic accuracy of fecal F. nucleatum as a 

potential non-invasive biomarker for CRC. In a meta‐analysis included ten studies 

comprising 1450 patients with CRC and 1421 healthy individuals, fecal F. nucleatum 
performed well as a diagnostic biomarker for CRC, with 71% sensitivity and 76% specificity 

[116]. Indeed, in one study of 439 subjects (203 colorectal cancer and 236 healthy subjects), 

fecal F. nucleatum performed well as a diagnostic biomarker, with sensitivity better than FIT 

for the detection of CRC [117]. By using qPCR to analyze 103 patients with advanced 

adenoma, 104 patients with CRC, and 102 healthy controls, it is identified that the 
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combination of F. nucleatum and FIT has a high sensitivity (92.3%) and an area under the 

curve (AUC) of 0.95 in detecting CRC [118]. The expression levels of the FadA gene is 

significantly higher in the colon tissue of patients with adenoma and adenocarcinoma than in 

that of normal individuals; thus, this unique adhesin of F. nucleatum may be an ideal 

diagnostic marker to identify individuals with CRC risk [58]. After metagenomic profiling 

of fecal microbiota, a non-invasive microbial biomarker panel (F. nucleatum, 

Peptostreptococcus stomatis, Parvimonas micra, and Solobacterium moorei) for CRC was 

established and validated from ethnically different cohorts in China, Denmark, France, and 

Austria [119]. Another study also performed fecal metagenomic and metabolomic profiling 

on fecal samples from a large cohort of 616 participants, providing that the shifts of F. 
nucleatum and its metabolites (branched-chain amino acids, phenylalanine, and bile acids) 

occurred from the very early stages of CRC development, which is of significance for 

etiology and diagnosis [120]. Based on an analysis of metagenomic samples from a 526-case 

CRC cohort, a panel of seven CRC-enriched bacteria (B. fragilis, F. nucleatum, 
Porphyromonas asaccharolytica, P. micra, Prevotella intermedia, Alistipes finegoldii, and 

Thermanaerovibrio acidaminovorans) was identified with an AUC value of 0.80 [121]. 

Moreover, high abundance of F. nucleatum and B. fragilis has been identified as independent 

indicators of poor survival in patients with CRC [122]. Various studies (summarized in Table 

4) have used characteristic gut microbiota to construct CRC diagnostic models, which can be 

divided into the following four categories: (i) individual strains dominated by F. nucleatum; 

(ii) combinations of more than three kinds of microbiota as biomarkers; (iii) inclusion of 

viruses, fungi, or metabolites as biomarkers; and (iv) prediction models jointly constructed 

by combination of the above microbiota and FIT or other conventional tests.

In order to translate basic research findings for their clinic utility, clinical trials are currently 

being performed to determine the translational potential of the gut microbiota as biomarker 

of CRC. A clinical trial (NCT01778595) was recently conducted to identify a useful 

diagnostic biomarker Proteobacteria whose median relative abundance was 3-fold higher in 

colorectal adenoma patients than in healthy individuals. Another trial (NCT02845973) 

enrolled 1325 participants and identified that one or more gut bacterial species in feces may 

contribute to early diagnosis of CRC. The results showed that fecal Clostridium symbiosum, 

maybe a promising noninvasive biomarker for early diagnosis of CRC, with a higher 

diagnostic power than F. nucleatum, FIT and CEA. In addition to evaluating the gut 

microbiota as diagnostic biomarker for CRC, investigators have also studied bacterial 

diversity for its effectiveness as a prognostic predictor and recurrence monitor for CRC. A 

clinical trial (NCT04223102) is currently recruiting patients to evaluate the association 

between the gut microbiota and response to neoadjuvant therapy. Another trial 

(NCT03385213) is currently underway to discover whether there are differences in the gut 

microbiota between patients with recurrent CRC and those without. All these data suggest 

that exploration of the gut microbiota can be used not only for non-invasive and accurate 

diagnostic approaches for CRC but may also serve as prognostic tools for CRC treatment in 

the future.
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5. CONCLUSIONS AND PERSPECTIVE

Affected by various factors such as diet, age, and health status, there are natural differences 

in the composition of the gut microbiota among individuals, but the overall complexity of 

the human gut microbiota is still relatively conservative. Therefore, it is of universal 

significance to study the microbiota that play a major role in terms of quantity and function. 

Specific microbiota (e.g., B. fragilis, F. nucleatum, and E. coli) have been increasingly found 

to be carcinogenic in CRC. To conclude, CRC may be the result of enhanced interaction 

between pathogenic microbiota and a disordered host response at both the genomic and 

epigenomic level.

Although great progress has been made in investigating the gut microbiota, there are still 

some unresolved issues. To date, annotations from metagenomic data of microbial taxa 

mostly reach the level of genus or species, which is not detailed enough to understand which 

specific strains participate in the pathogenesis of human CRC or the mechanisms by which 

they do so. Further research identifying microbial strains based on multi-omics and data 

mining algorithm is urgently needed. In addition, the current state of microbial research on 

CRC has potential limitations: because most CRC cohorts are cross-sectional, it is difficult 

to reveal the dynamic balance of gut microbiota and to infer the causal relationship between 

gut microbiota disorders and CRC. Thus, it is urgent that we integrate multi-omics data 

across populations for longitudinal microbial profiling to further understand the exact role of 

the gut microbiota in CRC tumorigenesis.

Along with the development of advanced techniques and the deepening of mechanism 

research, a more comprehensive and in-depth understanding of the gut microbiota in CRC 

will undoubtedly contribute to the emergence of novel and precise diagnostic strategies in 

the foreseeable future. Of note, fecal samples because of their easy availability, repeatable 

sampling, non-invasive and inexpensive nature, can be used as a suitable substitute to reflect 

the gut microbiota. However, if contamination occurs or the time interval between sample 

deposition and collection is too long, the fecal microbiota may become altered[123]. In 

addition, fecal collection kits, storage conditions, transportation conditions and DNA 

extraction methods all influence detection results, which makes it difficult to guide clinical 

diagnosis and treatment decisions [124]. Thus far, it has been challenging to get an accurate 

result from a somewhat improper specimen. The accuracy of samples has a significant 

influence on the value of research on the gut microbiota. The current gold standard for fecal 

sampling is instant freezing of fecal materials at −80°C and without preservatives to preserve 

microbial integrity[125]. However, in some cases, the ideal conditions for storage of fecal 

specimens at −80°C are not met, especially for large-scale population studies. Therefore, to 

ensure the reliability of research, more optimized and precise sampling methods are urgent 

needed. Overall, it is expected that wider range of standardized specimen collection and 

preservation, more standardized and rational clinical design, and more powerful database 

sharing and sequencing analysis techniques will make clinical application of the gut 

microbiota as a CRC biomarker possible.
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ROS reactive oxygen species

rRNA ribosomal RNA

SAM S-Adenosyl methionine

SCFAs short-chain fatty acids

SPO spermine oxidase
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Fig. 1. 
General pipeline of different sequencing and bioinformatic strategies for the gut microbiota 

analysis. Both methods starting from DNA and RNA extraction of the gut microbiota 

samples. The extracted DNA is either subjected to 16S rRNA gene profiling or sheared into 

small DNA fragments to perform shotgun metagenomics, and after rRNA removal, the 

extracted RNA is subjected to metatranscriptomic sequencing. rRNA, ribosomal RNA; OUT, 

operational taxonomic units; NGS, next-generation sequencing.
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Fig. 2. 
Mechanistic links involved in the gut microbiota promoting carcinogenesis of CRC. 

Interactions between the gut microbiota and host contribute to the alterations at the 

molecular level, such as the biosynthesis of toxins interfering with the regulation of cell 

proliferation and apoptosis by Wnt/β-Catenin and NF-κB/STAT3 signaling pathway, or 

damaging DNA by producing SPO, or regulating autophagy, that ultimately lead to the onset 

and progression of CRC. BFT, B. fragilis toxin; FadA, F. nucleatum adhesin A; MMP, 

matrix metalloproteinases; SPO, spermine oxidase; ROS, reactive oxygen species; TLR4, 

toll-like receptors 4; NF-κB, nuclear factor kappa B; STAT3, signal transducer and activator 

of transcription 3.
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Fig. 3. 
Epigenomic interactions between the gut microbiota and CRC via SCFAs. Gut bacteria in 

the colon or rectum produce a number of low molecular weight SCFAs, which can be 

absorbed by epithelial cells, and cause epigenetic modifications in DNA methylation and 

histone acetylation via activation or inhibition of certain enzymes such as DNMTs, HDACs. 

SCFAs, short-chain fatty acids; MCT1, monocarboxylate transporter 1; SMCT1, sodium-

dependent monocarboxylate transporter 1; HATs, histone acetyltransferases; HDACs, 

histone deacetylases; CoA, coenzyme A; Ac-CoA, acetyl coenzyme A.
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Table 1.

The Composition of Microbiota in Various Anatomical Regions of the Gut

Location Major microbiota REFs

Lumen-commensal 
microbiota

Bacteroides spp., Prevotella spp., Mucispirillum spp., Lactobacillus spp., Ruminococcus spp., 
Oscillospira spp., Sutterella.spp, Desulfovibrio spp., Fusobacterium spp.

[126]

Mucus‐resident microbiota Streptococcaceae, Actinomycinaeae, Corynebacteriaceae, Mucispirillum spp., Lachnospiraceae, 
Lactobacillus spp., Veillonella spp., Helicobacter spp.

[127, 128]

Epithelium‐resident 
microbiota

Adherent-invasive E. coli, segmented filamentous bacteria, B. fragilis, Clostridium spp. [76, 129]

Lymphoid tissue-resident 
microbiota

Achromobacter spp., Alcaligenes spp., Bordetella spp. and Ochrobactrum spp. [130]
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