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Abstract

The human gut microbiome is a collection of bacteria, protozoa, fungi, and viruses that coexist in 

our bodies and are essential in protective, metabolic, and physiologic functions of human health. 

Gut dysbiosis has traditionally been linked to increased risk of infection, but imbalances within the 

intestinal microbial community structure that correlate with untoward inflammatory responses are 

increasingly recognized as being involved in disease processes that affect many organ systems in 

the body. Furthermore, it is becoming more apparent that the connection between gut dysbiosis 

and age-related diseases may lie in how the gut microbiome communicates with both the intestinal 

mucosa and the systemic immune system, given that these networks have a common 

interconnection to frailty. We therefore discuss recent advances in our understanding of the 

important role the microbiome plays in aging and how this knowledge opens the door for potential 

novel therapeutics aimed at shaping a less dysbiotic microbiome to prevent or treat age-related 

diseases.
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Microbiome Changes Occurring With Aging

Health care systems in the United States are experiencing increased and unsustainable 

burdens due to their aging populations. Improving elder health is essential, as the proportion 

of people older than 65 years is increasing in many countries. In fact, at the current rate of 

increase, it is projected that by 2030 more 1 in 5 Americans will be older than 65.1 Gut 

microbes occupy the interface between the external environment and the host, and 
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interactions between the gut microbiota and humans occur at each stage of life; largely 

beginning soon after birth and continuing through old age (Figure 1). This sophisticated 

intestinal microbial ecosystem plays a pivotal role in an array of physiologic activities that 

are critical to human development and support health.2 This ecosystem is also finely tuned 

because when the cooperation between our own cells and the gut microbes falter, the 

microbial community within the gut can become a source of infection, and at times can lead 

to life-threating diseases.

Healthy individuals have many different types of microbes, whereas individuals with poor 

health, or older people (elders), will often have a less diverse and a higher proportion of 

disease-causing microbes. Therefore, as we age, our “aging microbiome” can undergo a 

number of compositional changes that can adversely affect digestive health and absorption,
3,4 as well as immune function.5 Dysbiosis is a term describing a microbial imbalance or 

maladaptation on or inside the body and can be defined as either the loss or gain of bacteria 

that promote health or disease.6,7 A healthy non-dysbiotic microbiome works in a symbiotic 

fashion with its host to facilitate health by imparting critical protective functions (ie, 

pathogen displacement, nutrient competition, production of antimicrobials), structural 

functions (ie, barrier fortification, induction of immunoglobulin A, immune system 

development), and metabolic functions (ie, synthesis of biotin and folate, fermentation of 

nondigestible dietary products, energy salvation, ion adsorption, and control of intestinal 

epithelial cell differentiation and proliferation). Conversely, a dysbiotic, or maladaptive, 

microbiome has been associated with disease not only within the intestine8–10 but also 

several other organ systems with a few examples including but not limited to the 

cardiovascular,11,12 immune,13,14 neurological,15,16 and respiratory systems.17,18

Given the potential for the microbiome to influence a variety of dynamic disease processes, 

there is great interest to determine the composition of the gut microbiota of elders and to 

also characterize its variation as possible determinants of health.19–23 This is particularly 

germane to the elderly and aging individuals because increasing age is aligned with age-

related morbidities that affect the quality and quantity of life (eg, heart disease, stroke, 

hypertension, cognitive impairment, and cancer). However, the changes that occur within the 

intestinal microbiome as we age are not completely understood.

Animal model systems have clearly demonstrated that the presence of certain gut-associated 

microbes have an influence over cellular aging; an excellent model being the fruit fly 

Drosophila melanogaster.24 Alterations in fruit fly microbiota composition have been linked 

to age-related intestinal barrier dysfunction, which also was found to lead to systemic 

immune activation, and eventually death.25 In addition, elimination of certain microbes, 

without causing detrimental side effects, has been shown to increase the fly’s life span.26 

More recently, Smith et al27 used the short-lived African turquoise kill fish as another model 

to manipulate gut microbes in the study of longevity. Quite strikingly, this group found that 

when middle-aged fish were colonized with microbes transferred from younger fish, they 

lived longer and were significantly more active later in life than their control counterparts. It 

was also observed that middle-aged fish engrafted with the younger fish microbes retained a 

more diverse microbial community throughout their adulthood and shared key microbes with 

young fish; an observation inferred to also be associated with the improved health. Results 
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from this study therefore suggest that the ability to control the composition of gut microbes 

can improve health and increase life span. Moreover, this model could be an important 

resource in providing new insights into how microbes can affect aging and to also delay the 

onset of age-related diseases (ARDs). Consistent with these findings, aging studies 

performed in other animal models and model organisms, such as in Caenorhabditis elegans8 

and mice29,30 lend further support to the idea that microbiome modulation can lead to 

changes in the aging timeline with increasing evidence that such alterations can augment 

longevity. Collectively, these studies all point to the gut microbiome as playing a central role 

in the aging of the host.

Evidence of age-related changes in the gut microbiome are beginning to be described in 

different human aging populations. Such studies, however, have been limited by the paucity 

of elders as a research group on top of challenges that involve elders with dementia as a 

research group or elders who live in nursing home (NH) settings. Nevertheless, age-related 

microbiome changes are being uncovered that show a decline in bacterial diversity, shifts in 

dominant species, and changes in beneficial microorganisms and metabolic pathways.31–33 

These changes are better resolved from a higher taxonomy approach where the major phyla 

of Bacteroidetes and Firmicutes switch in pre-dominance with older adults having higher 

abundances of Bacteroidetes as compared with higher Firmicutes abundances observed in 

younger counterparts.34 However, these observed shifts in composition do not stop at the 

phylum level; the species whose abundances are most prominently reduced in elders are the 

anaerobes,31,35 specifically with lower levels of Clostridium cluster XIVa, Faecalibacterium 
prausnitzii, and Actinobacteria (mainly among the bifido-bacterial genus).32,34–39 Other key 

metabolic species shown to decrease with increasing age include Akkermansia muciniphila,
40 a mucin-degrading bacterium, Ruminococcus bromii,41 a keystone species in degradation 

of starch, as well as a prevalent gut commensal, Ruminococcus gnavus.32,33 Although these 

changes speak to an age-related dysbiotic microbiome, the variability in species abundance 

reported with age is likely due to external factors related to nationality, such as diet, 

environment, and life style.42

Apart from differences in nationality-based influences, elders living under different 

conditions also have been observed to differ in their microbiome structure. For instance, 

clear separations in microbiome signatures are noted between elders living in the community 

from those living in the NH setting.43,44 In fact, there is a distinct time-dependent manner in 

which the microbiome changes after an elder moves into a new NH environment with 

community structural changes taking approximately 1 year to occur.34 Although NHs in the 

United States provide services for elders that can be for custodial or skilled nursing in 

nature, these care settings also present an environment with frequent medication exposures, 

including antimicrobials, poorer diets, and increased pathogen prevalence, all which 

adversely affect the microbiome.36,45–48 Microbiota differences between NH and 

community-dwelling elders, in general, include higher proportions of Bacteroidetes and 

lower proportions of various other bacteria at the family and genus levels.36 Such changes in 

the bacterial populations among NH elders also represent loss of species that are associated 

with either a healthy or “youthful” microbiome.20 Curiously, and contrary to initial 

impressions, the elder gut microbiome exhibits temporal stability, outside of changes in 

medications, antimicrobial exposures, or major changes in health status.34,41 Each individual 
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NH environment (such as floor/wing of residence) also plays a substantial role in shaping 

the microbiome,49 which may help to inform decisions and impart important consideration 

when grouping frail elders together to live.

In step with taxonomy differences, the metabolic potential of the microbiome also changes 

with age. Among elders (after accounting for nutrition and frailty) the metabolic dysbiosis 

associated with increasing age includes decreases in mucin and starch degradation, essential 

amino acid synthesis, and decreases in nitrogenous base and vitamin synthesis.41 Similarly, 

aging has been associated with a progressive loss of muscle mass (sarcopenia), which is 

linked to lower availability of essential amino acids.50,51 Moreover, among elder groups it 

has further been observed that intestinal microbiome alterations not only reveal a loss of 

genes for short-chain fatty acid production but also show an overall decrease in the 

saccharolytic potential, which correlates with the presence of opportunistic pathogens.52

Medications Influence Microbiome Composition

A key influencer of the aging microbiome structure is medications. Many medications 

commonly prescribed in elders (comprehensive of both NH and community settings) are 

well known to have specific effects on microbiota composition. The best example of this is 

with antibiotic exposures where there is a profound loss in diversity and shifts in microbial 

taxonomy abundances.48,53 Antibiotic exposures also lead to development of multidrug-

resistant organisms (MDROs). This is a growing and significant health care problem among 

the elderly, especially those living in the NH environment. To date, there are an estimated 

1.6 to 3.8 million infections per year in NHs 54,55 with as many as 400,000 resulting in 

death.56 Unfortunately, infections with MDROs continue to rise in NHs,56,57 and the 

mortality rate can be as high as 40% when an elder is hospitalized with an MDRO infection.
58

Moreover, NHs in the United States have become the major reservoir for introduction of 

MDROs into other health care settings due to their uniquely high colonization prevalence.
59–61 Because the microbiome plays a pivotal role that is central to human health,62 a 

healthy microbiome will, in turn, engage with the host immune system and contribute to 

pathogen resistance.63 Antibiotic therapies markedly decrease the intestinal microbiota 

diversity and richness. This creates a vulnerable immunodeficient environment that can be 

exploited by both antibiotic-resistant pathogenic and opportunistic bacteria that are 

frequently encountered nosocomially in the hospital as well as in the NH setting. The most 

clinically significant antibiotic-resistant intestinal pathogens include gram-positive C 
difficile and vancomycin-resistant Enterococcus faecium, along with gram-negative bacilli 

belonging to the Enterobacteriaceae family.64,65 Thus, the profound contributions made by 

commensal microbes toward resisting colonization and infection by pathogens are 

fundamental to host health and have long been observed. In spite of this, we are only now 

beginning to shed light on the molecular details underlying microbiome dysbiosis that 

occurs among elders and how this may be linked to pathogenic disease.9,41 Therefore, how 

we feed, treat, and group frail NH elders may offer new approaches to prevent MDRO 

spread.
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Nonantibiotic medications have also been associated with changes in microbiome 

composition, and approximately 24% of marked drugs approved by the Food and Drug 

Administration have been shown to inhibit at least one common intestinal microbiome 

bacterial strain.66 The relative abundances of many microbiome members and changes noted 

during disease processes is extensive (Table 1). Furthermore, the effects of some 

nonantibiotic medications such as proton pump inhibitors,47,67,68 statins,69–71 nonsteroidal 

anti-inflammatory drugs,72 and atypical antipsychotics73–76 on the intestinal microbiome 

have been described only in healthy younger adults. Common among the elderly are the use 

of medications belonging to these classes as well as the mixture of these drugs in an 

individual. The combination of medications especially in excess, known as polypharmacy, is 

widespread in elders and has its own adverse effect on the microbiome and elder health.77,78 

Indeed, polypharmacy is especially prevalent in the NH where more than half of the 

residents are on 5 or more daily medications.79

Role of Modulating the Microbiome to Improve Longevity

Taxonomy does inform and influence metabolic potential of the gut microbiome. Therefore, 

given that microbiome components change with age, it may offer an opportunity to intervene 

and slow or even reverse such age-related changes. In humans, centenarians have been used 

as a model for healthy aging studies because of their ability to delay, or even avoid, chronic 

diseases,80,81 and in addition their genetics have been extensively studied.82 However, to 

date only a few studies have interrogated the gut microbiome of this coveted population. To 

gain insight into which gut microbiome signatures are associated with longevity, Kong et 

al83 recently characterized the microbiota of a group of long-living (90 years of age or older) 

from the Dujiangyan region of China; 1 of 5 “longevous counties” in China. Comparing the 

gut microbiota in this long-living cohort with that of a younger adult group, Kong and 

colleagues83 found that the long-living group had a greater gut microbiome diversity than 

the younger adult group.

These results were not only validated using data from an independent Italian cohort that also 

included a group of long-living individuals32,84 but was also supported by 2 additional 

recent studies.37,85 Deeper characterization of the microbiota in the long-living cohort by 

Kong et al86 showed enrichment of several potentially beneficial bacterial taxa that are 

known to be short-chain fatty acid producers. Curiously, this result was coupled with a 

decrease of certain operational taxonomic units commonly associated with beneficial 

bacteria, such as Faecalibacterium, and an increase of some operational taxonomic units 

related to potential bacterial pathogens (eg, Escherichia and Shigella). Although it is too 

premature to draw any causal relationships between gut microbiota and healthy aging, this 

observational study does provide an important clue to suggest that maintaining a diverse and 

balanced gut microbiome may be a key contributor to healthy aging. All the same, whether 

one can modulate the intestinal microbiome to specifically target and promote healthy aging 

is an important question that needs to be carefully addressed. More specifically, because 

increasing age also engenders age-related morbidities that affect the quality and quantity of 

life (eg, heart disease, stroke, hypertension, cognitive impairment, and cancer), 

understanding how the aging microbiome affects these disease processes is critical to 
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improving human health via the gut microbiome beyond just prevention of opportunistic 

pathogens.

The first association between microbes and healthy aging was made by Elie Metchnikoff, 

one of the founding fathers of modern microbiology and immunology. In 1908, he not only 

shared the Nobel Prize for Medicine with Paul Ehrlich but also published one of the most 

impactful books of that era entitled The Prolongation of Life (Metchnikoff, 1908). In this 

book Metchnikoff develops the concept that higher animals need an increasingly complex 

intestine to struggle for existence, and distinguished 2 types of metabolism for gut bacteria: 

(1) putrefaction that resulted in noxious metabolites as waste products, and (2) fermentation 

that resulted in beneficial metabolic end-products like lactic acid. To combat the process of 

putrefaction in the gut, he recommended improvements in diet and championed the notion 

that the fermentative metabolism of lactic acid bacteria would counterbalance putrefaction 

by the noxious gut bacteria and their toxic effect on our tissues. He backed these concepts by 

the observation that populations showing traditionally high yogurt consumption also showed 

increased longevity. More than 100 years later, modulation of the microbiome by either diet 

or probiotic interventions is evidenced in animal models supporting the tantalizing 

hypothesis that host longevity can be lengthened by shifting microbiome communities.87 

Although this potential among humans is still relatively unexplored, and can be complicated 

by individual heterogeneity, it does tender a unique and potentially promising strategy to 

influence the aging process.

Inflammation and Age-related Diseases

One of the basic mechanisms shared in ARDs and geriatric syndromes is chronic low-grade 

inflammation called inflamm-aging.5,88 ARDs are diseases that increase in incidence 

exponentially with age and include disorders such as atherosclerosis, diabetes, hypertension, 

cancer, and Alzheimer disease (AD).89,90 Chronic upregulation of proinflammatory 

mediators (eg, tumor necrosis factor-a, interleukin (IL)-6) have been shown to be induced 

during the aging process. These proinflammatory mediators activate many signaling 

pathways91 that have a dramatic impact on immune function, which leads to a gradual 

deterioration of the immune system, called immunosenescence.14,92 Currently, both 

inflamm-aging and immunosenescence are thought to be responsible for most ARDs (and 

not just by the increased risk of bacterial infections) and are fertile ground for novel 

interventions to promote healthy aging.93 Dysbiosis of the gut microbiome can serve as a 

catalyst for fueling inflamm-aging (Figure 2).14 However, the contribution of dysbiosis in 

the context of the human microbiome interaction particularly regarding its impact on 

systemic immune functioning or deterioration of this function among the elderly as it relates 

to ARDs has not been rigorously studied.13

Nevertheless, there is a growing body of literature that implicates age-related dysbiosis of 

the gut microbiome as contributing to a global inflammatory state in the elderly.94,95 For 

example, neuroinflammation, one result of immunosenescence, has long been thought to 

promote progression of several neurological disorders, including AD and Parkinson disease 

(PD).96,97 Both acute and chronic systemic inflammation are associated with declining 

cognitive function in AD.98 To put this in perspective, more than 46 million people 
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worldwide live with dementia, and this number is predicted to double in the next 20 years99 

with an alarming projection of 3.3% of the US population being affected by AD.100 Both 

inflamm-aging and immunosenescence have been well described in patients with AD.101–104 

The inflammatory response that accompanies AD pathology is hallmarked by higher 

peripheral concentrations of cytokines IL-6, tumor necrosis factor-α, IL-1β, transforming 

growth factor-β, IL-12, and IL-18.101 Moreover, both the innate and acquired immune 

systems have been shown to be altered in AD.105–107 For instance, patients with AD exhibit 

decreased levels of naïve T cells, along with elevated memory T-cell populations,108 and 

higher percentages of activated CD4+ CD25+ T cells.103 Such variances in T-cell 

populations, which are common in patients with AD, denote a heightened differentiated T-

cell state. This is consistent with an adaptive immune system undergoing persistent antigen 

exposure and dysregulation of the naïve/memory T-cell balance.108

One area coming into focus as a potential driver of this proinflammatory state is the 

intestinal microbiome. The dysbiotic intestinal microbiome has been shown to induce 

systemic inflammation that triggers neuroinflammation leading to cognitive impairment.109 

Glial cell phenotypes are known to be profoundly modulated by peripheral inflammatory 

stimuli, including those due to dysbiosis of the gut microbiota.110,111 Increased abundance 

of proinflammatory, with reduced abundance of anti-inflammatory, bacteria in the intestine 

also has been shown to be associated with systemic inflammatory states in patients with 

cognitive impairment and brain amyloidosis.112 With respect to the AD-intestinal 

microbiome interaction, AD pathogenesis has long been thought to be linked to chronic 

bacterial infections as a possible etiology.113 More recent 16S-based studies have found 

significant changes in the abundance of certain taxa in patients with AD compared with 

healthy controls,114,115 and one of these studies also linked microbiota composition back to 

AD cerebrospinal fluid biomarker levels.114 Thus, one prevailing theory is that AD 

pathogenesis is closely related to the imbalance of the gut microbiome and, in fact, may 

originate in the gut.

Although the role of microbes in promoting the inflammatory causal pathway of AD is 

becoming increasingly recognized,113,116,117 it is yet to be established. In taking a step 

toward addressing this goal, studies performed by Harach et al118 were among the first to 

report that gut microbes play a role in the development of cerebral Aβ amyloidosis in 

patients with AD. A key finding in this study was the dramatic shift in the gut microbiota of 

Aβ precursor protein (APP) transgenic mice as compared with non-transgenic wild-type 

mice. In addition, they also observed a profound reduction in cerebral Aβ amyloid pathology 

when APP transgenic mice were raised in a germ-free environment as compared with 

control mice, which harbored an intestinal microbiome. This observation was further 

supported by demonstrating that colonization of germ-free APP transgenic mice with 

microbiota from conventionally raised APP transgenic mice increased cerebral Aβ 
pathology, whereas colonization with microbiota from wild-type mice was much less 

effective. In summary, these findings reveal the potential of microbial involvement in the 

development of Aβ amyloid pathology, and more generally suggest that microbiota may 

contribute to the development of neurodegenerative diseases.
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More recently, our group has reported findings among a cohort of NH elders that 

demonstrates a dysbiotic pattern is seen when comparing AD elders with those with no 

dementia.16 Such dysbiosis is characterized by a reduction in the proportion and prevalence 

of bacteria with the potential to synthesize butyrate, an essential metabolite in the human 

colon with anti-inflammatory properties, as well as an acquisition of taxa that are known to 

cause proinflammatory states. Consistent with these changes, we also demonstrated how the 

“AD microbiome” can adversely affect intestinal epithelial homeostasis via dysregulation of 

P-glycoprotein (P-gp). P-gp is a critical mediator of intestinal homeostasis,119 and when 

downregulated, can lead to a proinflammatory state (Figure 3). The bacterial species that 

differentiates the microbiome of AD from elders without dementia was also found to be 

predictive of lower P-gp expression levels among patients with AD. These species are key 

butyrate producers and include members of the Eubacterium, Clostridium, and Butyrivibrio 
genera,120 as well as bacteria known to associate with proinflammatory states in the 

intestines, such as Bacteroides dorei and Akkermansia glycaniphila.121 Therefore, the 

microbial members found to best predict the observed lower P-gp expression in patients with 

AD are all known to influence colonic inflammation in other pathological states. We are just 

beginning to disentangle the complex interplay involved in the gut-brain axis. Hence, a 

deeper understanding of the taxa and the role these microbial communities play in 

contributing to the progression of AD (as well as other neurodegenerative diseases) is 

needed to help advance our knowledge of causal relationship between dysbiosis and 

cognitive decline with the ultimate goal of preventing or halting disease.

The gut microbiota also has been found to regulate motor deficits in neuroinflammation in a 

murine model of PD.122 Motor dysfunction in patients with PD is often characterized by 

aggregation of the protein alpha-synuclein (αSyn). Sampson et al122 used a mouse model 

that over-expresses αSyn to demonstrate that gut microbiota is required for motor deficits, 

microglia activation, and αSyn pathology. In this same study, colonization of αSyn-over-

expressing mice with microbiota from PD-affected patients was also found to enhance 

physical deterioration as compared with microbiota engrafted from healthy human donors. 

Although the mechanism by which gut microbes affect the progression of PD is not well 

understood, the recent finding that αSyn is found in gut endocrine cells before appearing in 

the brain supports the contention that PD pathology originates first in the gut and then may 

spread to the central nervous system in a manner analogous to cell-to-cell prion-like 

propagation.123

Other ARDs share a similar inflamm-aging/immunosenescence profile that may have origins 

in the inflammatory type dysbiosis of the gut. For example, Fransen et al,29 when 

transferring aged microbiota to young germ-free mice, identified certain bacterial species 

within the aged microbiota that promote inflamm-aging. This effect was primarily associated 

with lower levels of Akkermansia and higher levels of TM7 bacteria and Proteobacteria in 

the aged microbiota after transfer. Such changes in the microbiota composition correlated 

with intestinal inflammation predominantly in the small intestine, leakage of inflammatory 

bacterial components into the circulation, and increased T-cell activation in the systemic 

compartment.29 In other examples, inoculation of mice with fecal samples from patients 

with rheumatoid arthritis promoted development of rheumatoid arthritis in the arthritis-prone 

mice via a Th17-dependent manner.124 Likewise, gut dysbiosis has been shown to contribute 

Haran and McCormick Page 8

Gastroenterology. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to systemic homeostasis disruption and subsequent proinflammatory pathways leading to 

obesity, B-cell decline, and type 2 diabetes.125 Lipopolysaccharides and other microbial 

factors promote inflammatory signaling and skeletal muscle changes that are also the 

hallmarks of the aging muscle phenotype.126 Finally, there is even an emerging, yet 

unproven, contributing role for the human microbiome in the cause and development of 

multiple different cancer types.127 Therefore, different forms of dysbiotic-induced 

inflammation, commencing locally and then exerting effects systemically, just might serve 

as the initiation and/or driver of many ARDs that pose significant burden to healthy human 

aging.

Is the Microbiome Frailty Connection a Linchpin to Other ARDs?

Frailty is a state of increased vulnerability and poor resolution of homeostasis following a 

stressful event to the elder.128,129 Frailty is highly prevalent in community-dwelling 

elders130 but is especially high in NH populations, with as many as 50% of elders being frail 

and an additional 40% meeting a prefrail definition.131 Fried et al128 provided one of the 

first operational definitions of frailty as meeting 3 of 5 phenotypic criteria indicating 

compromised energetics: low grip strength, low energy, slowed waking speed, low physical 

activity, and/or unintentional weight loss. Since then many other scoring systems have 

emerged that are easier to apply clinically.132,133 But even with all of these established 

parameters there remains a lack of a gold standard in defining an older adult as frail.134–136 

Nevertheless, regardless of the instrument tool used to measure frailty, elders defined as frail 

have a clear increased risk of mortality among elders in the emergency department,137 

admitted to the hospital,138 or living in either the community139,140 or NH141,142 settings.

This complex process, which is linked closely with aging, involves a decline in a 

constellation of physiological systems that leads to increased vulnerability and 

disproportionate changes in health status following even a minor stressor event.143 Outside 

of the relatively few medical causes (eg, medications, nutrition, or lack of exercise) the cause 

of frailty remains poorly understood.136,143,144 An emerging theory of a cause of frailty, 

however, ties back to inflamm-aging and the development of immunosenescence. As with 

other ARDs, frailty also has associations with immune dysfunction and inflammation, with a 

complex altered production of inflammatory cytokines.145,146 Nestled within this theory is 

an association to the gut microbiome; however, studies linking dysbiosis to frailty have been 

relatively unexplored.147 What is known is that frailty is hallmarked by a loss of microbiota 

diversity and specific taxonomic associations, such as increased abundances of Eubacterium 
dolichum and Eggerthella lenta and decreases in Faecalibacterium prausnitzii.21 In NH 

elders, this is associated with losses of community-dwelling associated microbiota36 that 

specifically involves a dysbiotic pattern where there is a loss of butyrate-producing 

organisms coupled with an increase in abundances of inflammation-associated organisms, as 

well as an increase in lipopolysaccharide biosynthesis and peptidoglycan biosynthesis 

metabolic pathways.41 Given the important connection to clinical outcomes and health-

related quality of life in elders, combined with emerging theories and lack of any mechanism 

to treat frailty, the gut microbiome may hold a vital key to improving healthy aging.
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Challenges and Opportunities to Improve the Elder Microbiome

The identification of gut microbiome associations with diseases in the elderly opens up the 

door for interventions to improve or prevent diseases. These microbiome-based interventions 

have lagged behind studies of younger-aged populations, but offer a great opportunity to 

improve human health given the increasing aging population and the burden of disease 

among elderly individuals. Microbiome-based interventions have traditionally focused on 

probiotics, typically lactobacilli and bifidobacterial, or prebiotics with nondigestible 

oligosaccharides.148 Clinical trials among elder participants have demonstrated not only the 

ability to manipulate the gut microbiome but also the safety among this population in doing 

so.149 However, clinical efficacy in this regard is yet to be well substantiated.

Advancing clinical trial work focused on manipulating the microbiome would avail new 

opportunities with the potential to address a wide range of disease processes. Lactobacilli, 

historically, have been one of the most chronicled probiotics studied. Since its first isolation 

from the feces of a normal healthy individual in 1987, Lactobacillis has been used for a wide 

variety of clinical indications. In healthy individuals it temporarily colonizes the distal 

gastrointestinal track and positively affects the resident microflora.150,151 In addition, 

Lactobacillis has been used in clinical trials addressing diarrhea from use of 

antibiotics152,153 to travelers’ diarrhea154 and diarrhea from autoimmune causes.155 Outside 

of gastrointestinal disorders, Lactobacillis has been used to prevent urinary tract infections,
156 to treat rheumatoid arthritis,157 as an immune modulator for vaccine administration,158 

and as preventive treatment in intensive care unit patients.159 Beyond Lactobacillis, other 

probiotic bacteria and bacterial combinations have been tested as a therapy to treat a 

multitude of human disease, many of which are age-related. Clearly, probiotics have a track 

record and potential to treat multiple disease processes that needs to be soundly tested in 

elder populations.

However, most probiotics are manufactured as food, which makes it challenging to ensure 

the quality and safety of these products as novel therapeutic agents. The basic issues of 

dosing, safety, and mechanism of action of these agents still need to be worked out because 

it is still unclear which bacterial strains hold benefit under different disease conditions. With 

the emergence of multistrain probiotics onto the market and the premise of engineered 

microorganisms for designer probiotics, it is even more crucial to move forward our 

understanding of how food and probiotics can influence exact mechanistic action on the 

microbiome and also necessitates a better understanding of the elder microbiome in health 

and disease.

Among elderly individuals, dietary interventions have shown promise in addressing some of 

the most devastating ARDs, such as AD. Large epidemiological studies have shown that 

healthy eating is protective against dementia and cognitive decline, which has been proven 

with diet interventions such as the MIND diet in AD.160 Large-scale interventions, such as 

the Finnish FINGER trial are under way and show promising results in preventing AD.161 

Although the exact mechanism of these dietary interventions is not well known, there is 

mounting evidence that the gut microbiome alterations that occur during dietary intervention 

may be the driving force behind the improved outcomes in AD.95,162 In this regard, it is 
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important for us to have a better understanding of how dietary interventions change the 

microbiome and if these changes are the primary drivers that improve AD symptomology. 

Whether the microbiome acts as a mediator or the primary agent in the causal pathway 

during a dietary intervention is still unclear; however, unraveling this mystery would greatly 

help us to understand the pathophysiology and treatment of cognition decline via the gut-

brain axis.

The future of microbiome research is full of exciting possibilities. There is a wealth of 

evidence that links the gut microbiome to healthy human development and how dysbiosis of 

the microbiome leads to disease. It is now being increasingly recognized that it may not be 

the abundance of individual bacterial populations that drives a disease process, but the 

collective microbiome (ie, microbial consortia of functional genes and pathways) and its 

metabolites termed the “functional core microbiome” that may hold the key to understanding 

increased susceptibility to diseased states. Clinically, how we can alter the “functional core 

microbiome” in disease prevention or treatment still has a long way to go before it is put into 

practice.

Abbreviations used in this paper:

AD Alzheimer disease

APP Aβ precursor protein

ARD age-related disease

IL interleukin

MDRO multi-drug-resistant organism

NH nursing home

PD Parkinson disease

P-gp P-glycoprotein

αSyn alpha-synuclein
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Figure 1. 
Human microbiota: onset and shaping through life stages. The graph provides a global 

overview of the relative abundance of key phyla of the human microbiota composition in 

different stages of life. Measured by either 16S RNA or metagenomic approaches (DNA). 

Data arriving from infants breast-and formula-fed (Schwartz et al, 2012), infant solid food 

(Koenig et al., 2011), toddler antibiotic treatment (Koenig et al., 2011), toddler healthy or 

malnourished (Monira et al., 2011), adult, elderly, and centenarian healthy (Biagi et al., 

2010), and adult obese (Zhang et al., 2009).
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Figure 2. 
Inflamm-aging and related ARDs. The intestinal microbiome has been linked to disorders of 

the brain, heart, endocrine, musculoskeletal, and immune systems. This is an overview of the 

sections along the inflamm-aging to age-related disease pathways.
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Figure 3. 
The MRP2/HXA3 (hepoxilin A3) axis forms the proinflammatory arm of a dynamically 

regulated system in which inflammatory pathways that activate responses to pathogens or 

aberrant signals are balanced against the anti-inflammatory P-glycoprotein (P-gp)/

endocannabinoid (eCB) pathway that suppresses neutrophil responses in the context of 

normal commensal colonization. The 2 sets of lipid-based signaling molecules (eCB and 

HXA3) are released from the apical surface during periods of either tolerance or 

inflammation, which control the recruitment of neutrophils to the intestinal lumen. 

Dysregulation of this critical balance may contribute directly to inflammatory disorders of 

the intestine (108).
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