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Summary

Small open reading frames (smORFs) and their encoded microproteins play central roles in 

microbes. However, there is a vast unexplored space of smORFs within human-associated 

microbes. A recent bioinformatic analysis used evolutionary conservation signals to enhance 

prediction of small protein families. To facilitate annotation of specific smORFs, we introduce 

SmORFinder. This tool combines profile hidden Markov models of each smORF family and deep 

learning models that better generalize to smORF families not seen in the training set, resulting in 

predictions enriched for Ribo-Seq translation signals. Feature importance analysis reveals that the 

deep learning models learn to identify Shine-Dalgarno sequences, deprioritize the wobble position 

in each codon, and group codon synonyms found in the codon table. A core genome analysis of 26 

bacterial species identifies smORFs of unknown function. We pre-compute smORF annotations 

for thousands of RefSeq isolate genomes and HMP metagenomes, and provide these data through 

a public web portal.
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eTOC Blurb

Small proteins are often overlooked using available research tools. Durrant and Bhatt use deep 

learning models to improve the detection of small proteins commonly found in the human 

microbiome. This annotation tool is freely available, along with a re-analysis of thousands of 

publicly available genomes.

Introduction

Small open reading frames (smORFs, alternatively sORFs; ≤50 amino acids in length) and 

the microproteins (also referred to as small proteins) they encode play important roles in 

microbes, including housekeeping, phage defense, and cell signaling functions. 

Microproteins have been identified across multiple domains of life, and given their potential 

role in mediating cell-cell communication, have been a topic of growing interest in various 

fields of biology and translational medicine (Hanada et al., 2013; Storz, Wolf and 

Ramamurthi, 2014; Makarewich et al., 2018; Leslie, 2019). Despite their importance, the 

smORFs that encode these proteins are difficult to identify, and as a result they are often 

overlooked (Su et al., 2013; Storz, Wolf and Ramamurthi, 2014; Duval and Cossart, 2017). 

Techniques such as ribosome profiling (Ribo-Seq) and proteomic approaches have had some 

success and provide evidence of transcription and translation of candidate smORFs (Aspden 

et al., 2014; Miravet-Verde et al., 2019; Weaver et al., 2019; Lohmann et al., 2020). 

However, these approaches are limited by an experimental bottleneck, usually requiring the 
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isolation and culture of an organism of interest, and they can only detect what is being 

actively translated.

Microbial smORFs can be difficult to accurately detect using computational annotation of 

sequenced genomes due to their small size (Hyatt et al., 2010). In the past, many 

microproteins were discovered largely by serendipity, either overlapping noncoding RNAs 

or in the intergenic spaces between large ORFs (Jørgensen et al., 2013; Pinel-Marie, Brielle 

and Felden, 2014). Others have used machine learning techniques to identify smORFs in a 

limited number of bacterial species (Friedman et al., 2017). A more systematic way to 

identify and annotate smORFs within microbial genomes would be of great value.

Recently, a bioinformatic analysis used evolutionary conservation signals to enhance 

smORF prediction and identified thousands of microprotein families in human-associated 

metagenomes at a large scale (Sberro et al., 2019). Unfortunately, many of these smORFs 

remain unannotated in microbial reference genomes and standard genome annotation tools 

do not accurately predict them. While the microprotein families identified by Sberro et al. 

provide a larger set of candidate proteins, no method exists to automatically annotate these 

smORFs in existing genomic sequences from bacterial isolates. Some recent studies have 

shown that logistic regression and support vector machines (SVMs) hold promise as 

methods to identify microproteins (Zhu and Gribskov, 2019; Li and Chao, 2020). In one 

case, the source code is not yet available and it has not yet been published in a peer-reviewed 

journal, making it difficult to evaluate and understand the underlying approach. In the other 

case, the model’s precision on bacterial microproteins from outside of their training set was 

not assessed. Being able to annotate these microproteins in microbial genomes is an 

important step toward understanding their diverse functions. To that end, a computational 

tool that can streamline their annotation and can be applied to any sequenced genome or 

metagenome would be an important step toward understanding the biological functions of 

these microproteins.

Using the >4,500 smORF families identified by Sberro et al. (2019), we sought to build an 

annotation tool that combines profile Hidden Markov models (pHMMs) and deep learning 

models to annotate smORFs in genome and metagenome assemblies. Deep learning has 

rapidly increased in popularity in the field of genomics, and has been applied to the task of 

ORF prediction generally (Al-Ajlan and El Allali, 2019). Deep learning models obviate the 

need for “feature engineering”, the practice of summarizing raw features into metrics and 

statistics that are believed to be more predictive, and can learn important higher-order 

features automatically by analyzing raw sequence data (Zou et al., 2019). However, deep 

learning often does require a careful model architecture and hyperparameter selection 

process to achieve optimal performance (Li et al., 2017), which can be computationally 

expensive (See Table S1, “Glossary of Terms”).

Here, we develop SmORFinder, a tool that combines profile HMMs and deep learning 

classifiers to identify smORFs in microbial genomes. First, we train deep learning models 

that analyze the predictions of the Prodigal ORF annotation tool (Hyatt et al., 2010) to 

determine if the predictions are true smORFs, using the Sberro et al. (2019) data as a 

training set. We demonstrate that the deep neural networks have higher performance (F1 
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score) than profile HMMs when it comes to the classification of smORF families that did not 

exist in the training set. Then we apply this tool to Ribo-Seq and MetaRibo-Seq (Fremin, 

Sberro and Bhatt, 2020) datasets, demonstrating that its predictions are enriched for actively 

translated genes, and that combining predictions from different models improves 

performance. Next, we find evidence that our deep learning models have learned to identify 

Shine-Dalgarno sequences, to deprioritize the wobble position in each codon, and to group 

codons in a way that strongly corresponds with the codon table. Finally, we re-annotate all 

bacterial genomes in the RefSeq database, making the standalone tool and annotations freely 

available to the research community.

Results

Deep learning models detect unobserved smORF families with greater recall and F1 score 
than profile HMM models

Profile Hidden Markov Models (pHMMs) are widely used in bioinformatics to annotate 

proteins that are believed to belong to a certain family, or to contain specific domains (Eddy, 

1998). Annotation tools such as Prokka (Seemann, 2014) use pHMMs built to recognize 

specific protein domains, which can then be used to annotate predicted microbial ORFs. We 

sought to compare deep learning models to pHMMs for predicting smORFs. To maximize 

the potential for comprehensive annotation of smORFs, including those that are highly 

divergent from those included in the training set, we optimized for deep learning models that 

performed well on smORF families (smORF clusters identified by Sberro et al., 2019) that 

were intentionally excluded from the training set (unobserved smORFs; Fig. S1A).

We used a deep learning model architecture that took three different nucleotide sequences as 

inputs - the smORF itself, 100 bp immediately upstream of the smORF, and 100 bp 

immediately downstream of the smORF. Using our training set of predicted true positive 

smORFs (positives) and predicted true negative smORFs (negatives), we developed two 

deep learning models using the hyperband algorithm to tune hyperparameters. We refer to 

these deep learning model architectures generally as DeepSmORFNets (DSN). The first 

model (DSN1) was tuned to have the lowest validation loss on a validation set of observed 

smORF families (“Validation - Observed”), and the second model (DSN2) was tuned to have 

the highest F1 score on a validation set of unobserved smORF families (“Validation - 

Unobserved”) (Fig. S1B and S1C). The models differ in interesting ways: of note, DSN2 

uses bidirectional LSTM layers while DSN1 does not, and DSN1 has more convolutional 

layers and fewer total parameters (Fig. S2E).

We then compared the performance of these models against pHMMs. We randomly split the 

training and validation sets 64 times, where each random split resulted in a unique training 

set, a validation set of observed smORF families (“Validation - Observed”), and a validation 

set of unobserved smORF families (Validation - Unobserved). We trained the DSN models 

on each of these randomly split training sets, and we chose the model with the lowest loss in 

the “Validation - Observed” set. Likewise, we trained pHMMs on the 64 randomized 

training sets, and compared their performance to the deep learning models on the validation 

sets (Fig. 1).
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We find that DSN1, DSN2, and the pHMMs all perform well on the “Validation - Observed” 

set (Fig. 1A), with recall, precision, and F1 Scores that exceed 0.975 for both DSN1 and 

DSN2 at P(smORF) > 0.5, and 0.99 for pHMMs at E-value < 1e-6 (see Fig. S2A for 

Precision and Recall metrics; Table S1 & S2). Performance on the “Validation - 

Unobserved” set shows an interesting difference between deep learning models and 

pHMMs. At a cutoff of P(smORF) > 0.5, DSN2 has better average recall than pHMMs at a 

cutoff of E-value < 1 (Paired t-test; P < 1 x 10−16), better precision (Paired t-test; P < 1 x 

10−16), and a better F1 score (Paired t-test; P < 1 x 10−16). At the same cutoff, DSN1 has 

slightly worse recall than pHMMs at a lenient cutoff of E-value < 1 (Paired t-test; P = 

0.00684), but a slightly better F1 Score (Paired t-test; P = 1.9 x 10−10). These results suggest 

that the deep learning models are better at generalizing to the unobserved smORF families 

overall, while the precision of pHMMs continues to be superior at a significance cutoff of E-

value < 1e-6. This suggests the models may complement each other when used together to 

identify smORFs.

We then compared DSN1 and DSN2 models to simpler neural networks without 

hyperparameter optimization (Fig. S2B). A simple neural network with only one 

convolutional layer and all three input sequences performs well on the “Validation - 

Unobserved” set (F1 score = 0.756±0.029), although not as well as DSN2 (F1 score = 

0.776±0.021; Paired t-test; P = 4.4 x 10−14). A simple neural network analyzing only the 

smORF nucleotide sequence performed poorly on the “Validation - Unobserved” set (F1 

score = 0.676±0.02). We also compared the final DSN models to simple k-nearest neighbor 

algorithms trained on nucleotide and protein k-mer composition, and we show substantial 

improvements by DSN models on both the “Validation - Observed” and “Validation - 

Unobserved” sets (Fig. S2C). Finally, we analyzed how the false positive rate varied across 

curated negatives (naturally occurring smORF sequences with no evidence of codon 

conservation) and shuffled negatives (smORF sequences randomized using tetramer 

shuffling) (Fig. S2D). We find that both the DSN1 and DSN2 models perform well at 

correctly identifying curated negatives for both the training set and the “Validation - 

Observed” set. It was more difficult for DSN1, DSN2, and pHMM models to correctly 

identify curated negatives that were in the “Validation - Unobserved” dataset, with the false 

positive rate reaching as high as 0.189±0.034 when using a lenient significance cutoff of 

P(smORF) > 0.5. In general, the DSN models and the pHMMs performed relatively well on 

the shuffled negatives with all models reaching an average false positive rate less than 0.06 

at the most lenient significance cutoffs.

Despite the increased precision of pHMMs, there are several advantages to the deep learning 

models. Both deep learning models have fewer learnable parameters than the pHMMs (Fig. 

S2E), with the pHMMs having 4x more parameters than DSN1. As implemented in python’s 

keras package and the command line tool hmmsearch, DSN1 runs about as fast as the 

pHMMs, while DSN2 is slower (Fig. S2F) (Eddy, 1998; Chollet and Others, 2015). Notably, 

the deep learning models require no sequence clustering or alignment, just the raw smORF 

and flanking nucleotide sequences. To construct pHMMs for each smORF family, they must 

be clustered and aligned, with a different pHMM being built for each family. This 

alignment-free approach to building the model can be considered an advantage of the deep 
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learning models. However, the pHMMs are generative models and require no negative 

examples for training, while the deep learning models do require these negative examples.

After hyperparameter tuning of the final DSN models and evaluating their performance on 

the 64 randomized validation sets, we trained the models one final time on the final training 

set, which included at least one representative of each smORF family. We then evaluated all 

three models (pHMMs, DSN1, and DSN2) on a test set that was held out entirely from the 

hyperparameter tuning process. We find that all three models perform well on the validation 

and test sets, with the pHMMs performing the best overall, but all three models having 

recall, precision and F1 scores that exceed 0.98 on the test set (Fig. 1B).

We find that while there is considerable overlap in the positive predictions made by DSN1, 

DSN2, and the pHMM models across datasets (Fig. S3), some of their predictions are 

complementary. Thus, we built an ensemble model that could combine predictions of each 

model to optimize overall performance. We tested ensemble model combinations at lenient 

(pHMM E-value < 1, DSN1 P(smORF) > 0.5, and DSN2 P(smORF) > 0.5) and strict 

(pHMM E-value < 1e-6, DSN1 P(smORF) > 0.9999, and DSN2 P(smORF) > 0.9999) 

significance cutoffs (Fig. 1C). We find that by combining the union of all predictions that 

meet a strict significant cutoff for one model (“Union (Strict)”) with the intersection of all 

lenient predictions (“Intersection (Lenient)”) we can maintain both a high F1 score in the 

training and “Validation - Observed” sets (0.998 and 0.994, respectively), and a relatively 

high F1 score in the “Validation - Observed” set (0.757). This final ensemble model 

functions as a balance between the high performance of the pHMMs in the Training and 

“Validation - Observed” sets with the high performance of the DSN models in the 

“Validation - Unobserved” set.

Predicted smORFs are enriched for Ribo-Seq signal

We next decided to gauge the quality of the smORF predictions using Ribo-Seq signal as a 

proxy. Ribo-Seq, a method for ribosome profiling, can identify mRNA sequences that are 

directly bound by a ribosome, indicating active translation (Ingolia et al., 2009). We 

reasoned that a more accurate set of smORF predictions would be more likely to be 

translated, and thus more likely to be enriched for a Ribo-Seq signal. We used previously 

generated and sequenced Ribo-Seq libraries for one Bacteroides thetaiotaomicron isolate 

(previously published (Sberro et al., 2019)), and four metagenomic human microbiome 

samples using MetaRibo-Seq, a technique for metagenomic ribosome profiling (Fremin, 

Sberro and Bhatt, 2020).

We packaged all three models (pHMMs, DSN1, and DSN2) together into a single command 

line tool that we refer to as SmORFinder. We kept all predicted smORFs that met a pHMM 

cutoff of E-value < 1.0, a DSN1 cutoff of P(smORF) > 0.5, or a DSN2 cutoff of P(smORF) 

> 0.5. We found 15 smORF families were false positives, and they are automatically 

excluded from consideration by SmORFinder. These false positive families corresponded to 

the N-terminus of Peptide chain release factor RF2 (prfB) in many different species. This 

gene contains a naturally occurring programmed frameshift that is corrected upon translation 

(Curran, 1993), and the Prodigal tool fails to account for this, leading to a spurious smORF 

annotation.
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In B. thetaiotaomicron, we find that 86.1% of non-smORFs (ORFs coding for proteins 

greater than 50 aa in length) have a Ribo-Seq signal (Reads Per Kilobase Million (RPKM) ≥ 

0.5; Fig. 2A) compared to 23.6% of smORFs. We find that genes predicted by at least one 

model to be true smORFs are more likely to be enriched for Ribo-Seq signal than “Rejected 

smORF” predictions (smORFs that did not meet minimum significance cutoffs for any of the 

three models). The set of predicted smORFs that met strict significance cutoffs for DSN1, 

DSN2 and pHMMs was found to be enriched for Ribo-Seq signal over the “Rejected 

smORFs” (Fisher’s exact test; P=0.0250). This set was identical to the set identified by 

DSN1 alone with a high significance cutoff of P(smORF) > 0.9999. The small number of 

predicted smORFs in this bacterium reduces the power to detect Ribo-Seq enrichment.

We repeated this analysis using published MetaRibo-Seq data generated from stool samples 

of four human subjects (Fig. 2B) (Fremin, Sberro and Bhatt, 2020). We find in general that 

predicted smORFs are much more enriched for MetaRibo-Seq signal than “Rejected 

smORFs”. In these samples, the MetaRibo-Seq enrichment of predicted smORFs even 

exceeds the non-smORF enrichment for high-confidence sets that meet high significance 

thresholds for one or more of the models. As we require higher significance thresholds for 

the three models (pHMM, DSN1, DSN2), and concordance across multiple models, the 

MetaRibo-Seq enrichment increases across the four samples. This suggests that there is 

value in combining the predictions of the three sets to generate a confident set of smORF 

predictions.

Feature importance analysis reveals inner workings of deep learning models

Deep learning models have been criticized in the past due to their lack of interpretability, 

often described as a “black box”. Recent advances in deep learning interpretation have 

overcome this challenge, enabling us to gain insight into the features of the input that play a 

role in the final model prediction, a technique called feature importance analysis (Shrikumar, 

Greenside and Kundaje, 2017). We applied feature importance analysis to our deep learning 

models using the Deep Learning Important FeaTures (DeepLIFT) method as implemented in 

the SHapley Additive exPlanations (SHAP) python package (Lundberg and Lee, 2017). 

Briefly, this method calculates the importance of individual input features relative to a set of 

randomized references by backpropagating the contributions of all neurons to every feature 

of the input. In the case of our smORF nucleotide sequences, this results in importance 

scores (also called contribution scores) assigned to each nucleotide in the sequence. For 

example, if a deep learning model was built to identify ChIP-seq binding sites for a given 

transcription factor, such as CTCF, feature importance analysis using the DeepLIFT method 

would identify the CTCF binding motif in individual examples, producing experimentally 

actionable information.

We apply this technique to both DSN1 and DSN2 to see if we can gain insight into how the 

models identify true smORFs. First, we analyze the average DeepLIFT importance scores of 

all upstream and downstream smORF-flanking nucleotide sequences found in the training 

set (Fig. 3A). In the upstream sequence, we see a distinct peak at −12 bp in both the DSN1 

and DSN2 importance scores. This is in the range of where we typically find the Shine-

Dalgarno sequence (a well-described and conserved ribosomal binding site), and upon 
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inspection of individual examples we see that both models did in fact identify the AGGAGG 

Shine-Dalgarno motif as an informative discriminating feature (Fig. S4A and S4B). In the 

downstream sequence, it would appear that DSN1 places greater importance on the more 

proximal nucleotide sequences, while DSN2 seems to have identified two particularly 

important positions at +13 and +4 positions downstream from the stop codon of the smORF. 

At positions +1 through +10, the nucleotides with the highest average importance scores for 

DSN2 are all adenine, with the exception of position +3 which is a thymidine. At positions 

+10 through +20, the nucleotides with the highest average importance scores for DSN2 are 

all adenine. This suggests that DSN2 has determined that an A-rich downstream sequence 

may be predictive of a true smORF. By contrast, DSN1 places greater importance on 

cytosines in the downstream sequence, although it assigns much less importance to the 

downstream sequence overall. The prioritization of A-rich downstream regions may indicate 

the rho-independent (intrinsic) transcription termination mechanism, which includes a chain 

of uracils in the mRNA transcript (d’Aubenton Carafa, Brody and Thermes, 1990; Peters, 

Vangeloff and Landick, 2011).

To further illuminate the role of the upstream and downstream regions in the DSN1 and 

DSN2 models, we perform a feature ablation experiment (Chuang and Keiser, 2018) where 

we only train the model architectures using the upstream sequence input branch, the 

downstream sequence input branch, and the ORF sequence input branch independently (Fig. 

S4C). We find that the upstream and downstream regions of the DSN2 model perform quite 

well independently of the ORF sequence, and substantially better than the DSN1 model, 

corresponding to the higher number of parameters allotted to these flanking regions in the 

DSN2 model. We find that the high F1 scores of the DSN1 and DSN2 models in the 

“Validation - Unobserved” set are only achieved when all three sequence regions are 

combined in the full model that includes the upstream, downstream, and smORF sequences.

Next, we analyze the average importance scores across the first 21 and the last 21 base pairs 

within each smORF (Fig. 3B). There appears to be some difference across both scores for 

the two models, but what is most striking is the obvious periodicity in the signal. This is not 

surprising considering the periodic nature of codons found in functional ORFs. When we 

average the importance scores across all codons, we see that both DSN1 and DSN2 place 

greatest importance on the second codon position, and the least importance on the third 

codon position or “wobble” position (Fig. 3C). While it is not clear why greater importance 

would be placed on the second codon position compared to the first codon position, the fact 

that the wobble position has less overall importance is intriguing considering its often 

redundant role in the codon. This implies that the model has learned to deprioritize the 

identity of the wobble position when making its predictions.

We next look at average importance scores of each unique codon across all true smORFs 

(Fig. 3D). We find that codons are highly correlated in their average importance across the 

two models (Spearman r = 0.906; P < 2.2 x 10−16). When the importance score of each 

amino acid is averaged across all codon synonyms, glutamate, aspartate, valine, and alanine 

have the four highest average importance scores for both DSN1 and DSN2. The four amino 

acids with the lowest average importance scores across the two models are arginine, serine, 

tryptophan, and cysteine. In the case of DSN2, the average importance scores of these four 
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amino acids are actually negative, indicating that on average these amino acids actually 

prompt the model toward making negative predictions, implying that in certain contexts true 

smORFs may typically lack these amino acids.

To further shed light on the inner workings of the DSN model, we analyze the average 

feature importance score for each codon in the training set to determine if there was a 

significant correlation with Shannon positional entropy of microprotein family multiple 

sequence alignments. We find that for the training set on the whole there is a slight negative 

correlation (Pearson r = −0.0145; P < 1e-16), indicating that regions with higher positional 

entropy tend to have lower feature importance scores (Fig. S4D). However, as we increase 

the minimum number of unique microprotein sequences per family above 40, we begin to 

see a positive correlation between feature importance and positional entropy. This suggests 

that while there is some relationship between positional entropy and feature importance, this 

may vary between microprotein families of different sizes, and it cannot fully explain the 

behavior of the DSN models.

Finally, we investigated if the deep learning models learned to assign similar importance to 

codon synonyms. This implies that some representation of the codon table was learned 

during training. We developed a Codon Synonym Similarity Score (CSS score), which is the 

average standard deviation of importance values among codon synonyms (Fig. 3E). We first 

calculated the CSS score for the DSN1 and DSN2 models, and then we permuted the codon 

synonyms across the importance scores to generate a null distribution of CSS scores. We 

find that for both models, the true CSS score is very low in the range of permuted CSS 

scores, indicating that codon synonyms share similar importance scores, and that some 

representation of the codon table was learned by the model.

Core genome analysis identifies core smORFs of unknown function

Seeing the value in pre-computing smORF annotations for RefSeq genomes for the scientific 

community, we used SmORFinder to analyze 191,138 RefSeq genomes, in addition to the 

HMP metagenomic samples that were used as part of the initial smORF family identification 

process. This included genomes across 63 bacterial phyla, with 104,658 genomes belonging 

to members of the Proteobacteria phylum, and 19,681, 12,338, and 11,511 genomes 

belonging to the Escherichia coli, Staphylococcus aureus, and Salmonella enterica species, 

respectively. These data, along with other useful tools for smORF analysis, are available 

through our web portal that can be accessed through our github repository at https://

github.com/bhattlab/SmORFinder.

We carried out a core-genome analysis of 26 of the most common species’ genomes found 

in RefSeq (Table S3). We find 692 putative smORFs to be part of the core genome across the 

26 species (Fig. 4A). These include all smORFs annotated by Prodigal with lowered 

minimum size cutoffs, and prior to filtering according to DSN or pHMM significance 

cutoffs. The total number of such core smORFs varies widely across species, with 106 

identified in Bacillus cereus, and 4 identified in Helicobacter pylori. However, the total 

number of core smORFs is difficult to meaningfully compare across species, as they vary in 

their overall diversity. Across all species, 70.7% of these smORFs contain no recognized 
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Pfam domains (El-Gebali et al., 2019), 9.54% contain a ribosomal protein domain, and 

19.77% contain some other known domain.

When we then use our DSN predictions as calculated by the SmORFinder tool to filter this 

list of core smORFs, we reduce the total number from 692 to 213 (Fig. 4B). By default, this 

tool uses an ensemble model that combines the predictions of the three models (See Fig. 

1C). This enriches for smORFs that contain a predicted Pfam domain, with 31.0% being 

ribosomal proteins, 30.49% containing some other Pfam domain (including domains of 

membrane bound YbgT-like proteins, entericidins, and Multidrug efflux pump-associated 

protein AcrZ among others), and 38.5% containing no Pfam domain. This list can be further 

reduced by relying only on pHMM models of known smORF families with a strict 

significance cutoff (E-value < 1e-6), resulting in 167 such core smORFs (Fig. 4C). Using 

only this significance cutoff as a filter, the total number of core smORFs drops dramatically 

for some species, such as B. cereus whose total number of core smORFs drops from 23 to 8. 

We find that overall, using the smORFs identified by the SmORFinder tool as opposed to the 

strict pHMM predictions alone increases the number of core smORFs with a domain of 

unknown function from 18 to 20, the number of core smORFs with some other domain of 

known function from 37 to 45 (including Staphylococcus haemolytic domains and Stage V 

sporulation domains), and the number of core smORFs with no domain from 53 to 90.

We find four smORF families with no recognized Pfam domain that appear in more than two 

different species’ core genomes (Fig. 4D). The smORF family smorfam02479 is 

homologous to YshB, a predicted transmembrane protein recently shown to play a role in 

intracellular replication in Salmonella virulence (Bomjan, Zhang and Zhou, 2019). We find 

that members of this smORF family exist in the core genomes of S. enterica as well as other 

Enterobacteriaceae such as E. coli, K. pneumoniae, and S. sonnei. The smORF family 

smorfam02447 shown in Fig. 4D is a gene encoding a 40 aa protein found between genes 

encoding the P-loop guanosine triphosphatase YjiA and zinc uptake system protein ZnuA in 

the Enterococcus faecalis genome. Members of this smORF family were found in the core 

genomes of S. aureus, S. agalactiae, S. pyogenes, and E. faecalis, and its function has not 

been characterized. The smORF family smorfam04045 protein shown in Fig. 4D is a 49 aa 

protein found between genes encoding a largely uncharacterized protein and a predicted 

lipase in the B. cereus genome. Members of this smORF family were found in the core 

genomes of B. cereus, S. suis, and S. pyogenes, and the representative member of this family 

is 91.8% identical to a B. manliponensis gene described as an “Alcohol dehydrogenase” in 

UniProt, although most other homologs are described as uncharacterized. The smORF 

family smorfam00860 shown in Fig. 4D encodes a 44 aa protein found between the genes 

encoding an uncharacterized protein and putative HMP/thiamine permease protein YkoE in 

the S. aureus genome. Members of this smORF family were found in core genomes of S. 
aureus and S. epidermidis, and its function has not been characterized.

Discussion

Recent advances in bioinformatic annotation approaches and de novo annotation of genes 

using Ribo-Seq have enabled the discovery of thousands of smORFs. The microproteins that 

they encode have emerged as macromolecules of interest in organisms ranging from 
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microbes to plants to mammals. Unfortunately, to date, no method exists for the accurate 

annotation of microbial genomes for these smORFs, and most existing microbial genomes 

are lacking comprehensive annotation for ORFs less than 150 nucleotides in length. In this 

study, we present and evaluate the performance of a smORF annotation pipeline based on 

the 4,500 smORFs identified by Sberro et al. (2019). We demonstrate that deep learning 

models can distinguish between true smORFs and spurious smORFs about as well as 

pHMMs trained on observed smORF families, and they perform better than pHMMs on 

unobserved smORF families.

We find that both the deep learning models and the pHMMs dramatically increase the Ribo-

Seq and MetaRibo-seq enrichment signal of the annotated smORF set. This suggests that 

selecting smORFs based on the predictions of these models greatly enriches for actively 

translated and thus likely functional smORFs. Including the three different models (DSN1, 

DSN2, and the pHMMs) in the SmORFinder annotation tool enables a user to select a range 

of options for filtering a set of candidate smORFs. For example, rather than relying on a 

strict significance cutoff for one or multiple models, we find that using lenient significance 

cutoffs that must be met by all three models is another good strategy for narrowing down a 

list of candidate smORFs. We recommend using the default ensemble model to achieve a 

balance between recall and precision when annotating smORFs, but for applications where 

precision is more important than recall we recommend using even more stringent cutoffs or 

relying exclusively on the pHMMs with a stringent cutoff.

Recent advances in feature importance analysis allow us to peer into the “black box” of deep 

learning. This is a fascinating look at how these powerful predictive algorithms learn to 

identify true smORF families, and we can see that they automatically learn features that 

scientists characterized long ago by experimental means (Shine-Dalgarno sequences, codon 

periodicity, codon synonyms, etc.). It also acts as an interesting opportunity to find 

generalizable features that may have previously gone unnoticed. For example, DSN2 

appears to assign greater importance to 3’ downstream sequences that are A-rich. This could 

indicate that the model has learned to recognize rho-independent (intrinsic) transcription 

termination sequences, which are known to contain a chain of uracils in the mRNA 

transcript (d’Aubenton Carafa, Brody and Thermes, 1990; Peters, Vangeloff and Landick, 

2011). Intrinsic terminator sequences are not taken into consideration by ORF annotation 

algorithms such as Prodigal (Hyatt et al., 2010).

Our core genome analysis of 26 different bacterial species identified many smORFs that 

appear to be highly conserved, including smORFs that were identified using permissive 

Prodigal annotation and clustering before any SmORFinder models were applied. Using 

SmORFinder predictions to filter these core smORFs showed a significant reduction in the 

total number of smORFs for some species. For example, 106 core smORFs were found in B. 
cereus genomes prior to SmORFinder filters, and reduced to only 8 core smORFS after 

applying strict filters. This could indicate that there are many smORFs that were not found 

in the initial set of core smORFs but are found in the B. cereus genome, or that a large 

number of the core smORFs found in the B. cereus genome are false positives. Further 

experiments and efforts to supplement our set of core smORFs will likely shed light on this 

question.
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While efficient and powerful, the approach that we take in this study has several limitations. 

First, the SmORFinder annotation tool is primarily limited by the Prodigal calling algorithm. 

The original set of >4,500 families identified by Sberro et al. relied on a downstream 

analysis of smORFs that were identified by Prodigal with a lowered minimum size 

threshold. This resulted in a set of candidate microproteins that are still biased toward the 

larger end of this size distribution. SmORFinder is also limited to predictions made by 

Prodigal, and can be thought of as an additional filter step on top of Prodigal predictions. 

Second, we are also limited by the accuracy of the predictions made by Sberro et al. in their 

original study. In the course of completing this analysis, we identified 15 smORFs that are 

false positives; while this is a relatively small number of overall false positives, it is likely 

that there are other such false positives in the overall set. Third, the true generalizability of 

the models introduced in this study is also questionable. That is, it does not appear that the 

model can reliably identify true smORFs that are completely unrelated to smORFs in the 

original training set. This means that some number of true smORFs that are not represented 

in the training set will be overlooked by our tool. Due to the origin of the 4,500 smORF 

families used in the training set, SmORFinder is particularly well-suited for the analysis of 

human microbiomes, but it may not as readily generalize to species limited to other 

environments. Finally, we rely on Ribo-Seq signals as a test of whether our model enriches 

for true microproteins, and we acknowledge that Ribo-Seq may not be able to accurately 

identify true smORFs in all circumstances.

These limitations notwithstanding, with the growing interest in microproteins, SmORFinder 
should be valuable to the research community as it will allow researchers to filter down lists 

of candidate smORFs to a more accurate list of smORF predictions. We have precomputed 

the smORFs of thousands of bacterial RefSeq genomes and HMP metagenomes and made 

them available for download through a web portal. The annotation tool can easily be 

installed as a python package and is ready for use. This will enable the study of smORFs, 

opening up many avenues for biological research. For example, the reannotation of these 

bacterial genomes could help gain insights into previously conducted experiments, such as 

transposon-mutagenesis experiments, affording researchers a wealth of functional data. Data 

are freely available for the research community through our github repository and web portal 

(https://github.com/bhattlab/SmORFinder). It is possible that a suite of tools, including but 

not limited to SmORFinder, will be developed and applied for the comprehensive, sensitive 

and specific detection of smORFs across prokaryotes. As such, we anticipate that 

SmORFinder may be augmented by other models as they are published and thoroughly 

validated.

STAR★Methods

Resource Availability

Lead Contact—Further information regarding the data and code presented in this study is 

available through the Lead Contact, Ami S. Bhatt (asbhatt@stanford.edu).

Materials Availability—This study did not generate new unique reagents.
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Data and Code Availability—The code for SmORFinder is available at github.com/

bhattlab/SmORFinder. The web portal can be accessed through the github repository. A link 

to the web portal is available on the github. All data used to train the models presented in 

this study are available in the github repository github.com/bhattlab/

SupplementaryInformation/tree/master/SmORFinder.

Method Details

Curating positive and negative training examples—A critical first step in any 

approach to develop a homology/pattern-based annotation algorithm is development of a 

positive and negative training set. In this case, positive and negative examples of smORFs 

were needed to train the neural network. Positive examples were derived from the 4,539 

microprotein families that were originally reported by Sberro et al. (2019). A maximum of 

64 examples per protein family were kept, and these 64 were randomly chosen. 100 base 

pairs of upstream and downstream sequences were used as model inputs, along with the 

ORF sequence itself. In the event that the upstream and downstream sequences were shorter 

than 100 base pairs, whatever sequence was available was used. The strategy used to identify 

negative examples was similar to the one used to identify the positive examples, but with 

criteria reversed. Prior to applying filters, Sberro et al. identified approximately 444,000 

microprotein family clusters (clustered using CD-HIT with the parameters -n 2 -p 1 -c 0.5 -d 

200 -M 50000 -l 5 -s 0.95 –aL 0.95 –g 1). To identify negative examples (smORF families 

that are most likely spurious ORFs), the following filters were applied: First, smORF 

clusters were excluded if they were predicted to contain a known protein domain according 

to an Reversed Position Specific (RPS) BLAST search of the Conserved Domains Database 

(CDD) database (A predicted domain was considered significant if the e-value was less than 

or equal to 0.01, and the microprotein sequence aligned to at least 80% of the length of the 

position-specific scoring matrix (PSSM)) (Lu et al., 2020). Next, families with less than 4 

unique members were excluded, as this is too few examples to be properly analyzed by 

RNAcode. Next, RNAcode was run on each family with the parameter --num-samples 200, 

and default parameters otherwise. RNAcode can identify conserved coding sequences with 

samples as small as 4 unique examples, but the average pairwise identity of these examples 

must be below 90% (Washietl et al., 2011). For families with 4 to 7 members, the RNAcode 

results were considered only if this average pairwise identity threshold was met for the 

family. With families that contained >8 members, we required at least one pair to fall below 

the 90% identity threshold. Any families that were predicted by RNAcode to contain coding 

sequence (CDS) regions were excluded. Next, protein families were aligned to each other 

using the DIAMOND search algorithm (Buchfink, Xie and Huson, 2014). If any remaining 

negative example was a significant (e-value < 1e-3) match for any positive example, it was 

excluded. If any negative example aligned to another negative example that failed the 

RNAcode conserved CDS detection, it was also excluded. This resulted in 4,705 high-

confidence negative microprotein examples. To further supplement this dataset of negative 

examples, more negative examples were synthesized by shuffling upstream, downstream, 

and ORF nucleotide sequences. Both positive and negative sequence examples were shuffled 

using a tetramer shuffling algorithm implemented in the tool by fasta-shuffle-letters in the 

MEME Suite (Bailey et al., 2009), which was built on the uShuffle algorithm (Jiang et al., 

2008). Start and stop codons were preserved, and shuffled ORF sequences were only kept if 
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they could be fully translated using the same translation table as the original sequence. This 

was to ensure that the deep learning model would learn to discriminate true positives from 

random sequences. In summary, the two types of negative data we included were 1) 

Randomly shuffled tetramers of both positive and negative examples (called “shuffled 

negatives” and 2) naturally occurring smORFs that have no conservation signal attributable 

to orfs, and do not contain known protein domains (called “curated negatives”). The final 

ratio of positive to negative examples was 0.417.

Splitting dataset into training, validation, and test sets—We used a stratified 

sampling approach to randomly split the full dataset into training, validation, and test sets 

(Fig. S1A). First, we made sure that each dataset had at least one member of each smORF 

family, which were randomly distributed across the three datasets. After this requirement 

was met, the remaining examples were randomly allocated to the three different datasets, 

with approximately 80% being allocated to the training set, 10% to the validation set, and 

10% to the test set. The final training set included 367,184 examples (112,427 positive, 

254,757 negative), the final validation set included 47,248 examples (13,192 positive, 34,056 

negative), and the final test set included 46,932 examples (12,933 positive, 33,999 negative). 

The training and validation sets were combined and permuted such that certain protein 

families in the validation set were excluded from the training set (unobserved smORF 

families). These permuted datasets were used to estimate the performance of the model on 

the unobserved smORF families.

Deep learning model architecture and hyperparameter tuning—Hyperparameter 

tuning was used to identify model architectures that performed best on the validation dataset. 

The basic model included three inputs, a one-hot encoded vector with dimensions 153x4 to 

represent the smORF sequence itself, with zeroes padded on the right for smORFs shorter 

than 153 bp, 100 bp upstream of each smORF encoded as a 100x4 vector, and 100 bp 

downstream of each smORF encoded as a 100x4 vector. These are then fed into one-

dimensional convolutional layers, which are followed by a dropout layer and a pooling layer. 

All three input branches are flattened and concatenated as a single vector, which is processed 

by a final dense layer, a dropout regularization, and a final dense layer with a sigmoid 

activation function that calculates the probability that the input smORF is a true smORF. The 

many hyperparameters in this model were tuned using the hyperband algorithm (Li et al., 

2017) as implemented by the keras-tuner python package (O’Malley, 2020). This algorithm 

randomly sampled the hyperparameter space, including number of convolutional layers per 

input branch (1, 2, or 3), the number of filters per layer (32, 64, 128, 256, 512, or 1024), the 

size of each filter (6, 12, 18, or 24), the dropout rate of the convolutional layers (0.1, 0.3, or 

0.5), the dropout rate of the final dense layer (0.1, 0.3, or 0.5), the number of neurons in the 

final dense layer (16, 32, 64, 128, 256, or 512), the learning rate (1e-5, 1e-4, or 1e-3), the 

padding method (“valid” or “same”), and the pooling method (max pooling or average 

pooling). Adam optimization with a learning rate of 1e-4 was used to train the model 

(Kingma and Ba, 2014). After the first convolutional layer, the number of convolution filters 

is divided by 2, and the filter size is reduced by one-third of the original filter size. For 

example, if a model had three layers and 1024 filters of length 18, the second layer would 

have 512 filters of length 12, and the third layer would have 256 filters of length 6. Our aim 
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was to identify models that minimized the loss across the “Validation - Observed” dataset, 

and maximized the F1 score of the “Validation - Unobserved” dataset. Hyperband was run 

with a maximum number of epochs of 200 and a downsampling factor of 3 over 4 complete 

iterations, resulting in 512 different hyperparameter combinations. This was repeated for 

both the “Validation - Observed” and “Validation - Unobserved” datasets. Finally, the same 

process was repeated with an additional LSTM layer added at the end of each input branch, 

which added hyperparameters including the number of LSTM neurons per input branch (16, 

32, 64, 128, or 256) and the LSTM dropout rate (0.1, 0.3, or 0.5). DSN1 and DSN2 were 

chosen as the models with the best loss in calculated over the “Validation - Observed” 

dataset, and the best F1 score calculated over the “Validation - Unobserved” dataset, 

respectively. See Fig. S1 for a final description of each model’s hyperparameters.

Building profile Hidden Markov Models—Using the positive examples (true smORFs) 

of each protein family found in the training dataset, profile HMM models were constructed. 

Microprotein families were aligned using MUSCLE (Edgar, 2004). We then used the 

command line tool hmmbuild to construct the pHMM for each family (HMMER, no date). 

All pHMMs were combined into a single file, and the e-value of the pHMM with the lowest 

pHMM is used to assign a given sequence to a smORF to a family.

Determining how deep learning models and profile HMMs generalize to 
unobserved smORF families—A permutation approach was used to determine how 

well the deep learning models and pHMMs generalize to Unobserved smORF families. As 

depicted in Fig. S1A, the training set and validation set were combined, and the two 

validation sets were created - one that contained smORF families that were observed at least 

once in the training set (Validation - Observed), and one that contained smORF families that 

were not observed in the training set (Validation - Unobserved). The smORF families that 

were excluded from the training set were randomly chosen, and this process was repeated 64 

times to create 64 train-validation splits. The deep learning models (DSN1 and DSN2) were 

both trained on all 64 training sets for up to 2000 epochs to minimize the training loss. Early 

stopping was used to choose the model that had no improvement in the calculated 

“Validation - Observed” loss after 100 epochs. This final trained model was then evaluated 

on the training set and validation sets to estimate the model’s precision, recall, and F1 score. 

The distribution of these performance metrics across the 64 permuted datasets was used to 

determine the error of each estimate as shown in Fig. 1A. The pHMM models were also 

trained independently on the same 64 permuted datasets to get comparable performance 

estimates.

Finalizing deep learning model—We trained the final deep learning models and 

pHMMs on the initial, unmodified training set (Fig. S1A). We selected the deep learning 

models with the lowest loss in the validation set, with a maximum of 2000 training epochs 

and early stopping after 100 epochs of no improvement in the validation loss. We then 

evaluated all models on the validation set and the test set, which was held out from the 

beginning and was not included in the model architecture selection process. These final 

models are included in the SmORFinder annotation tool in its current implementation.
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Validating SmORFinder with Ribo-Seq datasets—Ribo-Seq datasets were used to 

determine whether the SmORFinder annotation tool enriches for actively translated 

smORFs. We used previously published Ribo-seq datasets that are available through the 

NCBI SRA portal under the projects PRJNA540869 (Ribo-Seq of B. thetaiotaomicron 
isolate) and PRJNA510123 (MetaRibo-Seq of human stool samples from 4 individuals) 

(Sberro et al., 2019; Fremin, Sberro and Bhatt, 2020). The B. thetaiotaomicron reference 

genome was annotated using Prodigal configured to identify smORFs. Assembled 

metagenomes of the 4 MetaRibo-Seq samples were also annotated and used as a reference 

for each respective sample. Ribo-Seq reads were aligned to reference genomes using 

bowtie2 (Langmead and Salzberg, 2013). Ribo-Seq coverage of each predicted ORF was 

calculated using bedtools (Quinlan and Hall, 2010). Any ORF that had a calculated RPKM 

≥0.5 was considered to have a Ribo-Seq signal. The SmORFinder annotation tool was used 

to identify predicted smORFs. Any smORF that met at least one of the significance cutoffs 

(pHMM e-value < 1; DSN1 > 0.5; DSN2 > 0.5) was considered a potential smORF. All 

smORFs that did not meet any of these cutoffs were considered “Rejected smORFs”. 

Different subsets of smORFs were identified based on their statistical significance and 

agreement across the three different models. These subsets were compared to the “Rejected 

smORFs” subset in terms of Ribo-Seq signal, and Fisher’s exact test was used to determine 

if the subset significantly differed.

Feature importance analysis—A feature importance analysis of both the DSN1 and 

DSN2 models was performed to interpret, in part, how the deep learning models were 

learning to identify true smORFs. This was done using the DeepLIFT algorithm (Shrikumar, 

Greenside and Kundaje, 2017) as implemented in the SHAP python package (Lundberg and 

Lee, 2017). This technique measures the importance of individual features, nucleotides in 

this case, in determining the model’s prediction relative to some references. Dinucleotide 

shuffling of upstream and downstream nucleotide sequences were used as a reference. The 

start and stop codons of the ORF sequences were preserved in the references, and the 

intermediate sequence was dinucleotide shuffled until a non-interrupted ORF was generated. 

Twenty shuffled references were used for each example. Averages across all examples in the 

training dataset are shown in Fig. 3.

Codon Synonym Similarity Score—A codon synonym similarity score (CSS score) 

was calculated to determine how similar the DeepLIFT importance scores were for codons 

that code for the same amino acid. This was calculated as:

CSS score = 1
k ∑

i = 1

k
σi

Where σi is the standard deviation of the average feature importance scores for codon 

synonym group i. This was calculated for k = 18 amino acids, excluding methionine and 

tryptophan which only have one codon for each. To determine a null distribution of this 

score, codon synonym labels were randomly permuted across the feature importance scores, 

and the CSS score was recomputed. This was repeated 10,000 times to calculate a permuted 
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null distribution. The original CSS score was compared to this permuted null distribution to 

determine its statistical significance.

Annotating smORFs in RefSeq genomes—All RefSeq bacterial genomes were 

downloaded on April 29th, 2020. This included all genomes matching the NCBI Entrez 

search query ‘“Bacteria”[Organism] AND (latest[filter] AND (all[filter] NOT 

anomalous[filter] AND all[filter] NOT partial[filter]))’. In total, 191,138 genomes were 

downloaded. These were annotated using the SmORFinder annotation tool, and data were 

compiled into a database that can be accessed through the github repository https://

github.com/bhattlab/SmORFinder.

Core-genome analysis—A core-genome analysis was carried out on 26 bacterial species 

with a high number of available isolates (Table S3). This included Acinetobacter baumannii, 
Bacillus cereus, Burkholderia pseudomallei, Campylobacter jejuni, Clostridioides difficile, 
Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Helicobacter pylori, 
Klebsiella pneumoniae, Listeria monocytogenes, Mycobacterium tuberculosis, 
Mycobacterium abscessus, Neisseria meningitidis, Pseudomonas aeruginosa, Pseudomonas 
viridiflava, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Staphylococcus 
epidermidis, Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, 
Streptococcus suis, Vibrio cholerae, and Vibrio parahaemolyticus. Mash distances for all 

isolates of each species, and only isolates that had an average mash distance < 0.05 

(corresponding roughly to 95% average nucleotide identity (ANI)) to all other isolates of the 

species were kept (Ondov et al., 2016). All isolate genomes were annotated using Prodigal 

(Hyatt et al., 2010) to identify all open reading frames, with the minimum gene size filter 

lowered to 15 nucleotides. All identified protein sequences were then clustered at 80% 

identity using CD-HIT (Huang et al., 2010), where each cluster represented a unique “gene”. 

All genes that were found to exist in greater than 97% of all isolates for each species were 

considered to be part of that species’ “core genome.”

Comparison to k-nearest neighbors algorithm—The k-nearest neighbor algorithm 

was used as a comparison with the trained DSN models. The k-mer composition of the 

smORF nucleotide sequences, the smORF+US+DS sequences, and the microprotein 

sequence was calculated in python. For nucleotide sequences, the 1-mer, 2-mer, 3-mer, and 

4-mer compositions were calculated. For protein sequences, the 1-mer and 2-mer 

compositions were calculated. This was repeated for all 64 randomized validation sets. The 

distance between each example in the randomized “Validation - Observed” and “Validation - 

Unobserved” sets and all of the examples in the training set was calculated using numpy. 

The mode of the labels of the top k-nearest neighbors was used as the final prediction, with k 

= 1, 3, 5, 7, 8, and 11 being used.

Correlation between feature importance and positional entropy—The correlation 

between feature importance of the smORF sequence as calculated by DeepLIFT and 

Shannon positional entropy of each amino acid in the microprotein family multiple sequence 

alignment was calculated. The average feature importance of each codon was used to 

directly compare with microprotein positional entropy. Only the final training set examples 
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were used for the analysis, with the initial methionines being excluded. The Pearson 

correlation coefficient was calculated and the significance of the correlation was calculated 

using the cor.test function in R. An iterative filter was applied to the examples by only 

including families that had a minimum number of unique examples in the training set, and 

the correlation test was repeated.

Quantification and Statistical Analysis

All details of statistical analyses and software used in this study can be found in the method 

details, which we summarize here briefly. Statistical analyses were all conducted in the R 

programming language. A paired t-test was used to compare performance metrics of 

different models across the 64 randomized training and validation sets. For Ribo-Seq and 

MetaRibo-seq enrichment tests, a Fisher’s exact test was used to determine if specific 

subsets of smORFs were enriched or depleted or Ribo-Seq signal relative to the “Rejected 

smORFs” category.

Additional Resources

A web server that includes (a) pre-computed smORF annotations for RefSeq genomes and 

HMP metagenomes and (b) a tool to enable uploading and annotation of genomes of interest 

is linked to at the bottom of the smORFinder github repository webpage: https://github.com/

bhattlab/SmORFinder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Hila Sberro for assistance with compiling information about the smORFs identified in her original study. 
We thank Brayon J. Fremin for his help with previously published Ribo-Seq and MetaRibo-Seq datasets and for 
providing feedback on the manuscript. We thank Soumaya Zlitni, Dylan Maghini, Aaron Behr, and Chris Severyn 
for providing feedback on the manuscript. This work was supported by NIH R01AI148623 and NIH R01AI143757 
to A.S.B., the National Science Foundation Graduate Research Fellowship to M.G.D., and in part by NIH P30 
CA124435 which supports the Stanford Cancer Institute Shared Resource Genetics Bioinformatics Service Center.

References

Al-Ajlan A and El Allali A (2019) ‘CNN-MGP: Convolutional Neural Networks for Metagenomics 
Gene Prediction’, Interdisciplinary sciences, computational life sciences, 11(4), pp. 628–635.

Aspden JL et al. (2014) ‘Extensive translation of small Open Reading Frames revealed by Poly-Ribo-
Seq’, eLife, 3, p. e03528. [PubMed: 25144939] 

Bailey TL et al. (2009) ‘MEME SUITE: tools for motif discovery and searching’, Nucleic acids 
research, 37(Web Server issue), pp. W202–8. [PubMed: 19458158] 

Bomjan R, Zhang M and Zhou D (2019) ‘YshB Promotes Intracellular Replication and Is Required for 
Salmonella Virulence’, Journal of bacteriology, 201(17). doi: 10.1128/JB.00314-19.

Buchfink B, Xie C and Huson DH (2014) ‘Fast and sensitive protein alignment using DIAMOND’, 
Nature methods, 12(1), pp. 59–60. [PubMed: 25402007] 

d’Aubenton Carafa Y, Brody E and Thermes C (1990) ‘Prediction of rho-independent Escherichia coli 
transcription terminators. A statistical analysis of their RNA stem-loop structures’, Journal of 
molecular biology, 216(4), pp. 835–858. [PubMed: 1702475] 

Chollet F and Others (2015) Keras. Available at: https://keras.io.

Durrant and Bhatt Page 18

Cell Host Microbe. Author manuscript; available in PMC 2022 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/bhattlab/SmORFinder
https://github.com/bhattlab/SmORFinder
https://keras.io


Chuang KV and Keiser MJ (2018) ‘Adversarial Controls for Scientific Machine Learning’, ACS 
chemical biology, 13(10), pp. 2819–2821. [PubMed: 30336670] 

Curran JF (1993) ‘Analysis of effects of tRNA:message stability on frameshift frequency at the 
Escherichia coli RF2 programmed frameshift site’, Nucleic acids research, 21(8), pp. 1837–1843. 
[PubMed: 8493101] 

Duval M and Cossart P (2017) ‘Small bacterial and phagic proteins: an updated view on a rapidly 
moving field’, Current opinion in microbiology, 39, pp. 81–88. [PubMed: 29111488] 

Eddy SR (1998) ‘Profile hidden Markov models’, Bioinformatics , 14(9), pp. 755–763. [PubMed: 
9918945] 

Edgar RC (2004) ‘MUSCLE: multiple sequence alignment with high accuracy and high throughput’, 
Nucleic acids research, 32(5), pp. 1792–1797. [PubMed: 15034147] 

El-Gebali S et al. (2019) ‘The Pfam protein families database in 2019’, Nucleic acids research, 47(D1), 
pp. D427–D432. [PubMed: 30357350] 

Fremin BJ, Sberro H and Bhatt AS (2020) ‘MetaRibo-Seq measures translation in microbiomes’, 
Nature communications, 11(1), p. 3268.

Friedman RC et al. (2017) ‘Common and phylogenetically widespread coding for peptides by bacterial 
small RNAs’, BMC genomics, 18(1), p. 553. [PubMed: 28732463] 

Fu L et al. (2012) ‘CD-HIT: accelerated for clustering the next-generation sequencing data’, 
Bioinformatics , 28(23), pp. 3150–3152. [PubMed: 23060610] 

Hanada K et al. (2013) ‘Small open reading frames associated with morphogenesis are hidden in plant 
genomes’, Proceedings of the National Academy of Sciences of the United States of America, 
110(6), pp. 2395–2400. [PubMed: 23341627] 

HMMER (no date) Available at: http://hmmer.org (Accessed: 25 June 2020).

Huang Y et al. (2010) ‘CD-HIT Suite: a web server for clustering and comparing biological 
sequences’, Bioinformatics , 26(5), pp. 680–682. [PubMed: 20053844] 

Hyatt D et al. (2010) ‘Prodigal: prokaryotic gene recognition and translation initiation site 
identification’, BMC bioinformatics, 11, p. 119. [PubMed: 20211023] 

Ingolia NT et al. (2009) ‘Genome-wide analysis in vivo of translation with nucleotide resolution using 
ribosome profiling’, Science, 324(5924), pp. 218–223. [PubMed: 19213877] 

Jiang M et al. (2008) ‘uShuffle: a useful tool for shuffling biological sequences while preserving the k-
let counts’, BMC bioinformatics, 9, p. 192. [PubMed: 18405375] 

Jørgensen MG et al. (2013) ‘Dual function of the McaS small RNA in controlling biofilm formation’, 
Genes & development, 27(10), pp. 1132–1145. [PubMed: 23666921] 

Kingma DP and Ba J (2014) ‘Adam: A Method for Stochastic Optimization’, arXiv [cs.LG], Available 
at: http://arxiv.org/abs/1412.6980.

Langmead B and Salzberg SL (2013) ‘Langmead. 2013. Bowtie2’, Nature methods, 9, pp. 357–359.

Leslie M (2019) New universe of miniproteins is upending cell biology and genetics, Science. 
Available at: https://www.sciencemag.org/news/2019/10/new-universe-miniproteins-upending-
cell-biology-and-genetics (Accessed: 6 July 2020).

Li L et al. (2017) ‘Hyperband: A novel bandit-based approach to hyperparameter optimization’, The 
Journal of Machine. Available at: https://dl.acm.org/doi/abs/10.5555/3122009.3242042.

Li L and Chao Y (2020) ‘sPepFinder expedites genome-wide identification of small proteins in 
bacteria’, bioRxiv. doi: 10.1101/2020.05.05.079178.

Lohmann P et al. (2020) ‘Function is what counts: how microbial community complexity affects 
species, proteome and pathway coverage in metaproteomics’, Expert review of proteomics, 17(2), 
pp. 163–173. [PubMed: 32174200] 

Lundberg SM and Lee S-I (2017) ‘A Unified Approach to Interpreting Model Predictions’, in Guyon I 
et al. (eds) Advances in Neural Information Processing Systems 30 Curran Associates, Inc., pp. 
4765–4774.

Lu S et al. (2020) ‘CDD/SPARCLE: the conserved domain database in 2020’, Nucleic acids research, 
48(D1), pp. D265–D268. [PubMed: 31777944] 

Makarewich CA et al. (2018) ‘MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-
Oxidation’, Cell reports, 23(13), pp. 3701–3709. [PubMed: 29949755] 

Durrant and Bhatt Page 19

Cell Host Microbe. Author manuscript; available in PMC 2022 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://hmmer.org
http://arxiv.org/abs/1412.6980
https://www.sciencemag.org/news/2019/10/new-universe-miniproteins-upending-cell-biology-and-genetics
https://www.sciencemag.org/news/2019/10/new-universe-miniproteins-upending-cell-biology-and-genetics
https://dl.acm.org/doi/abs/10.5555/3122009.3242042


Miravet-Verde S et al. (2019) ‘Unraveling the hidden universe of small proteins in bacterial genomes’, 
Molecular systems biology, 15(2), p. e8290. [PubMed: 30796087] 

O’Malley T (2020) ‘Hyperparameter tuning with Keras Tuner’.

Ondov BD et al. (2016) ‘Mash: fast genome and metagenome distance estimation using MinHash’, 
Genome biology, 17(1), p. 132. [PubMed: 27323842] 

Peters JM, Vangeloff AD and Landick R (2011) ‘Bacterial transcription terminators: the RNA 3’-end 
chronicles’, Journal of molecular biology, 412(5), pp. 793–813. [PubMed: 21439297] 

Pinel-Marie M-L, Brielle R and Felden B (2014) ‘Dual toxic-peptide-coding Staphylococcus aureus 
RNA under antisense regulation targets host cells and bacterial rivals unequally’, Cell reports, 7(2), 
pp. 424–435. [PubMed: 24703849] 

Quinlan AR and Hall IM (2010) ‘BEDTools: a flexible suite of utilities for comparing genomic 
features’, Bioinformatics , 26(6), pp. 841–842. [PubMed: 20110278] 

Sberro H et al. (2019) ‘Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, 
Novel Genes’, Cell, 178(5), pp. 1245–1259.e14. [PubMed: 31402174] 

Seemann T (2014) ‘Prokka: rapid prokaryotic genome annotation’, Bioinformatics , 30(14), pp. 2068–
2069. [PubMed: 24642063] 

Shrikumar A, Greenside P and Kundaje A (2017) ‘Learning Important Features Through Propagating 
Activation Differences’, in Proceedings of the 34th International Conference on Machine Learning 
- Volume 70 Sydney, NSW, Australia: JMLR.org (ICML’17), pp. 3145–3153.

Storz G, Wolf YI and Ramamurthi KS (2014) ‘Small proteins can no longer be ignored’, Annual 
review of biochemistry, 83, pp. 753–777.

Su M et al. (2013) ‘Small proteins: untapped area of potential biological importance’, Frontiers in 
genetics, 4, p. 286. [PubMed: 24379829] 

Washietl S et al. (2011) ‘RNAcode: robust discrimination of coding and noncoding regions in 
comparative sequence data’, RNA , 17(4), pp. 578–594. [PubMed: 21357752] 

Weaver J et al. (2019) ‘Identifying Small Proteins by Ribosome Profiling with Stalled Initiation 
Complexes’, mBio, 10(2). doi: 10.1128/mBio.02819-18.

Zhu M and Gribskov M (2019) ‘MiPepid: MicroPeptide identification tool using machine learning’, 
BMC bioinformatics, 20(1), p. 559. [PubMed: 31703551] 

Zou J et al. (2019) ‘A primer on deep learning in genomics’, Nature genetics, 51(1), pp. 12–18. 
[PubMed: 30478442] 

Durrant and Bhatt Page 20

Cell Host Microbe. Author manuscript; available in PMC 2022 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://JMLR.org


Highlights

• Deep learning approaches to smORF identification improve performance

• Deep learning models learn biologically meaningful features of smORF 

sequences

• SmORFinder annotation tool identifies several core smORFs of unknown 

function
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Figure 1: Deep learning models detect unobserved smORF families with greater recall and F1 
score than profile HMM models
(A) Each point is the average value after running the training procedure 64 times with 

randomly selected families excluded from the training set and assigned to the “Validation - 

Unobserved Families” set. Showing F1 Score (the weighted average of precision and recall) 

for the three sets with different significant cutoffs. Data are represented as mean ± SEM. (B) 

The F1 Score, Recall, and Precision of the final DSN1, DSN2, and pHMM models. A 

positive prediction cutoff of P(ORF) > 0.5 was used for DSN, and a cutoff of E-value < 1e-6 

was used for pHMM. (C) The average F1 score of various ensemble model combinations 

across sets. “Intersection (Lenient)” indicates that all positive predictions met the lenient 

significance cutoffs (pHMM E-value < 1, DSN1 P(smORF) > 0.5, and DSN2 P(smORF) > 

0.5), “Intersection (Strict)” indicates that all positive predictions met the strict significance 

cutoffs (pHMM E-value < 1e-6, DSN1 P(smORF) > 0.9999, and DSN2 P(smORF) > 

0.9999), “Union (Lenient)” indicates that at least one of the three models met the lenient 

significance cutoffs, and “Union (Strict)” indicates that at least one of the three models met 

the strict significance cutoffs. See also Figure S1, Figure S2 and Table S2.
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Figure 2: Predicted smORFs are enriched for Ribo-Seq signal
(A) The proportion of genes with Ribo-seq signal (RPKM ≥ 0.5) in different gene sets in a 

Bacteroides thetaiotaomicron isolate. Table along the x-axis denotes the genes included in 

each set. The label “smORF” indicates if set includes smORFs (+) or only non-smORFs (−), 

“pHMM” indicates that the set includes pHMM-predicted smORFs at E-value < 1.0 (+), 

“DSN1” indicates the set includes DSN 1-predicted smORFs at P(ORF) > 0.5 (+), “DSN2” 

indicates the set includes DSN2-predicted smORFs at P(ORF) > 0.5 (+), “pHMM-HC” 

indicates the set includes pHMM-predicted smORFs at E-value < 1e-6 (+), “DSN1-HC” 
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indicates the set includes DSN1-predicted smorfs at P(ORF) > 0.9999, and “DSN2-HC” 

indicates the set includes DSN2-predicted smorfs at P(ORF) > 0.9999. If multiple “+” 

symbols are found in a column, then that means all genes in the set meet each cutoff. The 

symbol “−” indicates that all genes meeting the specified cutoff were excluded from the set. 

The final column indicates all smORFs that were not predicted by any model to be a true 

smORF at any significance cutoff. Error bars indicate the standard error of each proportion. 

These smORFs are referred to as “Rejected smORFs”. The number of total genes in each 

gene set is given at the bottom of each bar. Asterisks indicate that the proportion is 

significantly higher (P < 0.05) in the specified set than in the “Rejected smORFs” set. (B) 

The proportion of genes with MetaRibo-seq signal (RPKM ≥ 0.5), normalized to rejected 

smORF MetaRibo-Seq signal, in different gene sets in four different MetaRibo-seq samples. 

Normalization was performed by subtracting the proportion of rejected smORFs with a 

MetaRibo-Seq signal from the proportion of genes in each set with MetaRibo-Seq signal. 

The x-axis table is the same as the one shown in (A) with additional gene sets added. For 

example, one additional column is the 8th column from the left, designated by “smORF = 

+”, “pHMM = +”, “DSN1 = −” and “DSN2 = −” indicates the set of smORFs with predicted 

by the pHMM model to be a true smORF, but predicted by both DSN1 and DSN2 to be a 

false smORF. Asterisks indicate that the proportion is significantly higher (P < 0.05) in the 

specified set than in the “Rejected smORFs” set. See also Figure S3.
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Figure 3: Feature importance analysis reveals inner workings of deep learning models
(A) Average feature importance scores across the 100 bp upstream and downstream of each 

true smORF example in the training set. Showing the feature importance scores for DSN1 

(red) and DSN2 (blue). (B) The average feature importance scores across the first 21 and last 

21 bp of all true smORF examples in the training set. (C) The average feature importance 

scores of the first, second, and third codon position in codons of each true smORF example 

in the training set. Both models assign higher feature importance to the first two codon 

positions than the third (wobble) position. (D) The average feature importance scores of 

each codon in the codon table, excluding stop codons. The nucleotide of the first codon 

position is on the x-axis, while the second and third positions are shown on the y-axis. (E) 

The true codon synonym similarity (CSS) score (dotted lines) vs. the distribution of CSS 

scores (solid line) observed when randomly permuting codon synonym labels across all 

scores. See also Figure S4.
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Figure 4: Core genome analysis identifies core smORFs of unknown function
(A) The total number of core smORFs found in each species’ genomes. These smORFs were 

not filtered using DSN, all smORFs identified by the Prodigal annotation tool (with a 

lowered minimum size cutoff of all smORF predictions greater than 15 nucleotides) were 

included. (B) The total number of core smORFs identified by the SmORFinder annotation 

tool as being true smORFs. This includes all smORFs that meet strict significance cutoffs 

for at least one model (pHMM E-value < 1e-6, DSN1 P(smORF) > 0.9999, or DSN2 

P(smORF) > 0.9999), or those that meet lenient significance cutoffs for all three models 

(pHMM E-value < 1, DSN1 P(smORF) > 0.5, and DSN2 P(smORF) > 0.5). (C) The total 

number of core smORFs per species that meet the pHMM significance cutoff of E-value < 

1e-6. Colors indicate if each core smORF contains a Pfam domain (E-value < 1e-6), and 

which type. “Ribosomal” (yellow) implies a ribosomal protein domain, “Domain of 
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unknown function” (blue) implies it has a recognized domain of unknown function, “Other 

domain” (brown) indicates some other Pfam domain, and “No domain” (grey) indicates that 

it does not contain any known Pfam domain. (D) Four example core smORFs with no 

recognized Pfam domain that exist in the core genome of two or more species. Arrows 

indicate ORFs identified by SmORFinder or by the Prokka annotation tool. The red regions 

indicate the position of each core smORF. The text indicates gene names as assigned by 

Prokka. The absence of any gene name indicates that Prokka identified the genes as 

“hypothetical” proteins. The species to which each genome belongs is noted to the left of the 

gene diagram, the smORF family (smorfam) ID and NCBI Reference Sequence ID are given 

in the strip above each region. See also Table S3.
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Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

The datasets of smORF examples used to 
train the models generated in this study.

This study github.com/bhattlab/SupplementaryInformation/
tree/master/SmORFinder

Software and Algorithms

SmORFinder Software and DBSmORF 
Web Portal

This study github.com/bhattlab/SmORFinder

Keras Chollet and Others, 2015 keras.io

Keras Tuner O’Malley, 2020 keras-team.github.io/keras-tuner

CD-HIT Fu et al., 2012 http://weizhongli-lab.org/cd-hit

RNAcode Washietl et al., 2011 viennarna.github.io/RNAcode

MEME Suite Bailey et al., 2009 meme-suite.org

uShuffle Jiang et al., 2008 github.com/guma44/ushuffle

MUSCLE Edgar, 2004 www.drive5.com/muscle

HMMER HMMER, no date hmmer.org

bowtie2 Langmead and Salzberg, 2013 bowtie-bio.sourceforge.net

bedtools Quinlan and Hall, 2010 bedtools.readthedocs.io

DeepLIFT Shrikumar, Greenside and Kundaje, 2017 github.com/kundajelab/deeplift

SHAP Lundberg and Lee, 2017 github.com/slundberg/shap

Prodigal Hyatt et al., 2010 github.com/hyattpd/Prodigal

Mash Ondov et al., 2016 mash.readthedocs.io

DIAMOND Buchfink, Xie and Huson, 2014 github.com/bbuchfink/diamond

Other

B. thetaiotaomicron Ribo-Seq data Sberro et al., 2019 BioProject PRJNA540869

MetaRibo-Seq data Fremin, Sberro and Bhatt, 2020 BioProject PRJNA510123

Publicly available isolates for 26 species NCBI Assembly, multiple sources Multiple identifiers, Table S3

Conserved Domains Database Lu et al., 2020 www.ncbi.nlm.nih.gov/cdd

Pfam database El-Gebali et al., 2019 pfam.xfam.org
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