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Abstract

Fine particulate matter (PM2.5) concentrations are highly variable indoors, with evidence for 

exposure disparities. Real-time monitoring coupled with novel statistical approaches can better 

characterize drivers of elevated PM2.5 indoors. We collected real-time PM2.5 data in 71 homes in 

an urban community of Greater Boston, Massachusetts using Alphasense OPC-N2 monitors. We 

estimated indoor PM2.5 concentrations of non-ambient origin using mass balance principles, and 

investigated their associations with indoor source activities at the 0.50 to 0.95 exposure quantiles 

using mixed effects quantile regressions, overall and by homeownership. On average, the majority 
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of indoor PM2.5 concentrations were of non-ambient origin (≥77%), with a higher proportion at 

increasing quantiles of the exposure distribution. Major source predictors of non-ambient PM2.5 

concentrations at the upper quantile (0.95) were cooking (1.4 – 23 µg/m3) and smoking (15 µg/m3, 

only among renters), with concentrations also increasing with range hood use (3.6 µg/m3) and 

during the heating season (5.6 µg/m3). Across quantiles, renters in multifamily housing 

experienced a higher proportion of PM2.5 concentrations from non-ambient sources than 

homeowners in single- and multifamily housing. Renters also more frequently reported cooking, 

smoking, spray air freshener use, and second-hand smoke exposure, and lived in units with higher 

air exchange rate and building density. Accounting for these factors explained observed PM2.5 

exposure disparities by homeownership, particularly in the upper exposure quantiles. Our results 

suggest that renters in multifamily housing may experience higher PM2.5 exposures due to a 

combination of behavioral and building factors that are amenable to intervention.

Keywords

Indoor environment; Air pollution; Real-time monitoring; Housing tenure; Environmental 
inequality

1. Introduction

Exposure to fine particulate matter (PM2.5) indoors is shaped by multiple determinants 

across nested levels of the neighborhood, building, and household environments 

(Adamkiewicz et al., 2011). At the neighborhood-level, major ambient sources of indoor 

PM2.5 include dust, vehicle exhaust, and industrial emissions (Abt et al., 2000; Li et al., 

2017; Martins and Carrilho da Graça, 2018). Within the home, combustion-related activities 

are the primary sources of non-ambient indoor PM2.5 emissions. They include smoking 

(Fernández et al., 2015; Ozkaynak et al., 1996; Wallace, 1996; Ferro et al., 2004), cooking 

(Evans et al., 2008; Militello-Hourigan and Miller, 2018; Olson and Burke, 2006; Wallace et 

al., 2004), candle burning (Fine et al., 1999; Long et al., 2000; MacNeill et al., 2014), and 

incense burning (Jetter et al., 2002; Waller et al., 2003). Other non-ambient sources include 

cleaning products and air fresheners (Nazaroff and Weschler, 2004; Steiber, 1995), walking 

and frequent contact with furniture and flooring (e.g. vacuuming, sweeping, dusting) that 

can resuspend particles into the breathing zone (Abt et al., 2000; Qian et al., 2014; Ferro et 

al, 2004; McCormack et al., 2008), and particle formation from heated metal surfaces 

(Wallace et al., 2015). Building attributes like age, volume, insulation, and ventilation 

systems can influence the degree of air exchange between indoor and outdoor environments 

(Breen et al., 2014; Long and Sarnat, 2004; Meng et al., 2009) and can thus also influence 

indoor exposure profiles.

Across each of these levels, socioeconomic disparities in indoor PM2.5 exposure exist 

(Adamkiewicz et al., 2011). Several of these observed disparities are associated with tenure 

status and building type. Low-income households and persons of color are 

disproportionately more likely to rent (Joint Center for Housing Studies of Harvard 

University, 2019) and live in multifamily apartments known to be older and leakier, which 

can lead to greater PM2.5 infiltration from the outdoors and neighboring units (Fabian et al., 
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2016; Rosofsky et al., 2019; Russo et al., 2015). Renters and multifamily households also 

have higher risks of second-hand smoke exposure and crowding, which can lead to increased 

particle generation and re-suspension (Dacunto et al., 2013; Adamkiewicz et al., 2011; 

Baxter et al., 2007; Fabian et al., 2016). In addition, these households are often located in 

areas with higher outdoor PM2.5 concentrations and other environmental justice concerns 

(O’Neill et al., 2003; Rauh et al., 2008; Rosofsky et al., 2018). Even so, much is still 

unknown about building-level and behavioral contributors to potential disparities in indoor 

PM2.5 concentrations by homeownership.

In residential settings, indoor PM2.5 concentrations are highly variable. Elevated indoor 

concentrations are predominantly driven by behavioral source activities that generate short-

term peaked emissions, at times orders of magnitude above background levels (Abt et al., 

2000; Adamkiewicz et al., 2011; Ferro et al., 2004; Liang et al., 2019; Long et al., 2000; 

Militello-Hourigan and Miller, 2018; Wallace et al., 2006). As such, real-time exposure 

assessment approaches are important for more precise source characterization and targeting 

of public health intervention (Delgado-Saborit, 2012; Ferro et al., 2004; Lioy and Smith, 

2013; Long et al., 2000). Recent advances in portable lower-cost sensors have made possible 

the measurement of real-time PM2.5 in community-wide settings with sufficient accuracy 

and precision. These advances allow for more homes to be reliably characterized (Bulot et 

al., 2019; Gillooly et al., 2019; Lioy and Smith, 2013) with an emphasis on both within-

home and between-home variability. In addition, quantile regression, a non-parametric 

statistical approach to estimate associations at different areas of the PM2.5 distribution 

(Koenker and Hallock, 2001), provides new opportunities to model source contributions that 

may contribute to adverse health effects. While quantile regression has been applied in 

studies of ozone (Austin et al., 2015) and ambient and personal particle exposures (Liang et 

al., 2019), no studies have used it to characterize indoor PM2.5 concentrations in residential 

settings.

Our Home-based Observation and Monitoring Exposure (HOME) Study within the Center 

for Research on Environmental and Social Stressors in Housing across the Life Course 

(CRESSH) (www.cressh.org) investigated drivers of PM2.5 concentrations of non-ambient 

origin indoors, with a particular emphasis on behavioral and building-level contributors that 

are more amenable to intervention. Our study takes place in an environmental justice 

community (Ou et al., 2018) where the majority of households are low-income and renters 

(City of Chelsea, 2017). We deployed real-time sensors in a representative sample of 

households to investigate indoor PM2.5 concentrations at fine temporal and spatial scales. 

We then employed mixed effects quantile regression to identify non-ambient sources 

associated with indoor PM2.5 concentrations at the median and upper exposure quantiles, 

and evaluated differences in source contributions by homeownership.

2. Materials and Methods

2.1. Study Design and Population

The study was conducted in Chelsea, Massachusetts (MA), a city north of Boston, MA with 

approximately 35,080 residents within 4.7-square kilometers (km) (City of Chelsea, 2019). 

CRESSH’s Community Engagement Core partnered with GreenRoots, a local community-
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based environmental justice organization, to recruit participants using purposive sampling 

stratified by neighborhood and housing types (e.g. multifamily, public housing, elderly/

disabled). Eligibility criteria for participation were at least 18 years of age, fluency in 

English or Spanish, lived in current residence for at least six months, plans to stay for at 

least another six months, and consent to in-home environmental sampling.

For each household, we conducted two home visits in the non-heating (June to October) and 

heating (November to May) seasons to account for seasonal variability. Each home visit 

consisted of a detailed participant interview, a home visual assessment, and placement of a 

real-time sensor platform in the main living area (usually living room) to collect 

environmental samples for one week (mean: 7.1 days, range: 4 to 13 days). We also asked 

participants to complete a daily activity log on each day of the sampling period. A map of 

the study site is in Supplemental Data, Figure S1. All participants provided informed 

consent and were compensated for their involvement. All study protocols were approved by 

the Institutional Review Board of the Harvard T.H. Chan School of Public Health.

From June 2016 to August 2017, we recruited 81 households. Nine households dropped out 

prior to a home visit. Seventy-two households (89%) completed one home visit, of which 59 

completed a second visit. Reasons for non-participation in the second visit included: no 

longer living in residence (n=5), unable to contact (n=5), and refusal (n=3). Data for one 

home visit was excluded due to equipment error, resulting in a sample of 71 households and 

130 sampling sessions.

2.2. Survey Measurements

Questionnaires asked about sociodemographic and building characteristics and occupant 

activities in the home. Trained field staff conducted a visual assessment of the home 

environment, such as general environmental conditions and pollutant sources, including 

stoves. The daily activity log (DAL) included questions about frequency of home occupancy, 

air conditioning (AC) use, window opening, and cooking activities per two-hour intervals 

from 12:00 am to 11:59 pm. The DAL also asked about prevalence of candle use, spray air 

freshener use, and window opening and range hood use while cooking on each day. A copy 

of the DAL (Figure S2) and a summary of variables considered for the analysis (Table S1) 

are in Supplemental Data.

2.3. Environmental Measurements

Real-time indoor environmental measurements were collected using the Environmental 

Multi-pollutant Monitoring Assembly (EMMA) sensor platform developed by our research 

team (Figure S3). Details about EMMA have been described previously (Gillooly et al., 

2019). In brief, the indoor EMMA platform (0.25m [length], 0.27m [width], 0.11m [height]) 

was placed on a flat surface about 0.30m to 1.2m above ground and plugged into an 

electrical outlet in the participant’s main living area where there would be minimal occupant 

interference. The platform consisted of an Alphasense OPC-N2 particle monitor 

(Alphasense, 2017) paired with a filter-pump system that included a 37mm Teflon filter 

inside a Harvard mini personal environmental monitor (miniPEM). Particle counts were 

measured at approximately 1.4-second intervals. To estimate PM2.5 mass concentrations, we 
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normalized raw OPC-N2 measurements to the co-located gravimetric miniPEM filter-

collected measurement by applying a weekly correction factor for each household-specific 

sampling session (i.e. average weekly miniPEM filter concentration divided by the average 

weekly OPC-N2 concentration, multiplied by each real-time OPC-N2 data point). Each 

miniPEM Teflon filter was weighed pre- and post-data collection in a temperature and 

relative-humidity controlled room.

Real-time outdoor environmental measurements were collected using a similar real-time 

sensor platform placed at two locations in Chelsea, MA, approximately 2.0km apart (Figure 

S1). Each outdoor platform consisted of an Alphasense OPC-N2 particle monitor paired 

with a filter-pump system that included a 37mm Teflon filter inside a Harvard Impactor for 

real-time data correction (Marple et al., 1987). The same gravimetric correction process used 

for indoor PM2.5 data was applied to outdoor PM2.5 data. We primarily used PM2.5 estimates 

from the Site 1 monitor located southwest of Chelsea as it was deployed two weeks earlier, 

had fewer missing data, and appeared less influenced by microenvironmental conditions 

(e.g. landscaping equipment emissions, maintenance shed activity) compared to estimates 

from Site 2. For periods when data from Site 1 were unavailable (e.g. power outages), we 

used available data from Site 2.

The indoor and outdoor sensor platforms also contained a Netatmo weather station indoor 

module (Netatmo, n.d.) that measured carbon dioxide (CO2) [ppm], temperature [Celsius], 

and relative humidity (RH) [%] at approximately five-minute intervals. Indoor data were 

time-averaged to five-minutes and outdoor data were time-averaged to hourly for analysis.

We generated estimates of air exchange rates (AER) using log-linear regression coefficients 

of CO2 decay curves for each sampling period using methods developed by research team 

members (Guillermo et al., 2012). In brief, the AER algorithm assumes well-mixed 

conditions within single-zone spaces, infiltration of external air at constant ambient CO2 

concentration (398 ppm), and indoor CO2 concentration standardized to 400 ppm. To 

identify eligible decay curves, smoothing was set as the running average of three points to 

limit the number of sudden concentration increases within a decay period. CO2 decay curves 

with a minimum difference of 50 ppm between the start and the end of the decay period, and 

a regression fit of R2 ≥ 0.90 were considered eligible (See Supplemental Data, Table S2 for 

eligible AER values per household in each sampling session). From the eligible decay 

curves, we calculated the daily median AER (h−1) for each household in each sampling 

period to account for day-to-day variability. We retained the previous or nearest AER for 

days in which there were no eligible curves. Similar AER estimation approaches using CO2 

data have been validated in laboratory and field settings (Cui et al., 2015; Hou et al., 2015; 

You et al., 2012).

2.4 Data Quality

Data quality control and validation of environmental measurements have been described 

elsewhere (Gillooly et al., 2019). In brief, we excluded PM2.5 estimates during periods when 

the sensor lost power or the pump-and-filter stopped, as these periods affected gravimetric 

filter concentrations for OPC-N2 data corrections. We also trimmed the first two hours and 

last 15 minutes of each home visit to minimize any team-influenced re-suspension when 
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field team members were at participant’s home. Extreme data points were manually 

reviewed and included if there were no known sensor issues at that time and the data 

exhibited a peaked pattern. In addition, any concentrations that were below 0.01 μg/m3 were 

set to 0.01 μg/m3, which is the minimum value reported for Alphasense OPC-N2 particle 

measurements in previous studies (Alphasense, 2017; Badura et al., 2018; Breen et al., 2014; 

Bulot et al., 2019; Sousan et al., 2016).

Questionnaire, DAL, and visual assessment data were evaluated for internal consistency. In 

instances where similar information was captured in both the visual assessment and 

questionnaires (e.g. stove fuel, range hood type, if range hood works), we prioritized data 

from the visual assessment conducted by trained staff. Non-responses to DAL questions 

were treated as ‘No’ responses.

2.5. Calculations and Data analyses

2.5.1. Infiltration factor and fraction of indoor PM2.5 concentrations of 
ambient and non-ambient origins—Under steady state conditions, assuming no 

generation or re-suspension of non-ambient sources and using a simple box model, the 

infiltration of ambient PM2.5 concentrations indoors can be characterized as (Equation 1):

Cindoor ambient = Pa/ a + k •Coutdoor = Finf • Coutdoor (Equation 1)

where Cindoor ambient is the estimated indoor PM2.5 concentrations of ambient origin (μg/m3), 

Coutdoor is the calibrated outdoor PM2.5 concentrations (μg/m3), P is the penetration 

efficiency (dimensionless), a is the AER (h−1), k is the deposition rate (h−1), and Pa/(a+k) is 

the infiltration factor (Finf).

P and k theoretically can vary by building type, building envelope tightness, ventilation 

modes, air exchange rate, window opening, particle size distribution, and meteorological 

conditions (Chen and Zhao, 2011; El Orch et al., 2014; Chao et al., 2003). Multifamily units 

generally have different P and k values than single-family units due to fewer walls facing 

outdoors, differences in airflow patterns, building stack effects, indoor surface types, and 

surface-to-volume ratios (Chen and Zhao, 2011). P is also higher during periods of window 

opening. While we expect k to depend on the surface-to-volume ratio, HVAC systems, 

particle size distribution, and types of indoor surfaces (Breen et al., 2015; Chen and Zhao, 

2011), we do not expect k to vary significantly by window opening. Therefore, to account 

for these factors, we obtained P and k values from studies specific to single-family (Breen et 

al., 2015) and multifamily (Zhao and Stephens, 2017) housing and differentiated P values by 

periods of window opening. For single-family households, we used Pwindow open = 0.93, 

Pwindow closed = 0.74, and k = 0.21 h−1. For multifamily households, we used Pwindow open = 

0.87, Pwindow closed = 0.73, and k = 0.45 h−1. Details about our selection of P and k values 

and sensitivity analyses using various combinations of P and k values are described in 

Supplemental Data (Tables S3-S5). We did not account for window opening in our 

estimation of daily median AERs (described in section 2.3) due to the limited number of 

eligible AERs per day across household-specific sampling sessions (Table S2).
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Using the estimated P, k, and AER values, we calculated Finf specific to single- and 

multifamily housing by periods of window opening (Table S3). We then estimated indoor 

PM2.5 concentrations of ambient origin [Cindoor ambient] for each sampling period by 

multiplying the specific Finf by hourly outdoor PM2.5 concentrations [Coutdoor] (Equation 1). 

Indoor PM2.5 concentrations of non-ambient origin [Cindoor non-ambient] were obtained by 

subtracting the proportion of Côor ambient from the total indoor PM2.5 concentrations 

[Cindoor non-ambient = Cindoor total - Cindoor ambient]. Any concentrations that were negative 

were set to 0.01 μg/m3. The generation of negative values may be attributed to certain 

sampling periods with lower than expected indoor PM2.5 concentrations and/or that the 

estimated infiltration factors, although all below 1.0, were higher than what would have fit 

our data.

2.5.2. Descriptive statistics by homeownership—We compared prevalence of 

sociodemographic and building characteristics by homeownership using χ2-test of 

proportions, or Fisher’s exact tests if expected cell counts were below 5. We also compared 

prevalence of time-varying source activities by homeownership using the Kruskal-Wallis 

rank sum test. To identify shared behaviors, we generated a phi (φ) coefficient matrix for 

binary source activities, with coefficients above 0.15 indicating strong associations (Akoglu, 

2018). We also generated summary measures of PM2.5 and AER estimates and compared 

them by homeownership using the Kruskal-Wallis rank sum test.

2.5.3. Modeling indoor source activities of non-ambient indoor PM2.5 

concentrations—We investigated the association of indoor source activities with elevated 

non-ambient indoor PM2.5 concentrations at the 0.50, 0.65, 0.75, 0.85, and 0.95 quantiles of 

the distribution. Quantile regression allows for the examination of associations at multiple 

points in the distribution of PM2.5 concentrations other than the mean. We ran linear quantile 

mixed effects models with a random intercept for household cluster (Geraci and Bottai, 

2014) using the lqmm R package (Geraci, 2014), and estimated 95% confidence intervals 

with cluster bootstrapping. Predictors of interest were prevalence of DAL-reported source 

activities and indoor smoking (yes/no). Specifically, we included a DAL indicator for any 

cooking activity occurring within a two-hour time block concurrent with the environmental 

sampling period (Figure S2, DAL question 4). We also specified a 30-minute time lag after 

each two-hour time block to account for potential prolonged durations of cooking emissions 

and temporal uncertainty in the information collected in our DAL. We adjusted for heating 

season (vs. non-heating) and prevalence of AC use and window opening (yes/no) to account 

for behavioral contributors to air exchange. We also controlled for other sources of potential 

variation in non-ambient indoor PM2.5 concentrations such as sampling year (categorical), 

hour of day (sine and cosine, −1 to 1), indoor relative humidity (centered, continuous), 

occupant density (i.e. number of occupants per bedroom, continuous), and number of levels 

within unit (count) (Wallace et al., 2006; MacNeill et al. 2014; Long et al., 2001; U.S. EPA, 

2020; Badura et al. 2018; Bulot et al., 2019; Baxter et al. 2007; Price et al., 2006 Akaike 

Information Criterion (AIC) was used to compare model fit, with lower AIC scores 

indicating better fit. Effect modification by homeownership was evaluated using stratified 

models. Eleven sampling sessions were excluded from final models due to missing outdoor 
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PM2.5, DAL, or covariate data, resulting in an analytical sample of 68 households and 119 

sampling sessions.

Data management was conducted using SAS 9.4 software (SAS Software, 2020) (SAS 

Institute Inc., Cary, NC) and data analysis was conducted using RStudio 1.1.4 software 

(RStudio Team, 2015) (RStudio Team, Boston, MA).

3. Results

3.1. Sociodemographic and Building Characteristics

Our participants were predominantly female (86%), self-identified as Hispanic/Latinx 

(49%), and had some high school education or an Associate’s degree (65%). About one-

third completed the interview in Spanish and almost half were foreign-born. The mean age 

was 52 years old (range 27-87) and mean occupancy was three people (range 1-8). The 

majority of buildings were constructed prior to year 1971 (90%), did not have central air 

(76%), and were not weatherized (65%). The majority of households reported that their 

range hood worked (85%), and 59% reported having a recirculating hood (Table 1).

Over half of households were renters in multifamily units (55%). Compared to homeowners 

in single- and multifamily units, renters were more likely to be Hispanic/Latinx (67% vs. 

≤30%), interviewed in Spanish (54% vs. ≤23%), unemployed (73% vs. ≤15%), and without 

a Bachelor’s degree or higher (85% vs. ≤45%) (p ≤ 0.006) (Table 2). In addition, renters 

were more likely to live on the third or higher floors (54% vs. ≤23%), and in homes without 

central air (90% vs. ≤70%) or weatherization (87% vs. ≤45%) (p ≤ 0.001).

3.2. Descriptive Statistics of Indoor and Outdoor PM2.5 Concentrations

The median indoor PM2.5 concentration was 5.8 (5th, 95th percentiles: 1.5, 28.7) μg/m3, 

median outdoor PM2.5 concentration was 5.1 (2.3, 9.2) μg/m3, and the median AER was 

0.48 (0.26, 1.5) h−1 (Table 1). Renters, compared to homeowners in single- and multifamily 

units, experienced higher indoor PM2.5 concentrations at the median (8.2 vs. ≤5.2 μg/m3) 

and 95th percentile (39.7 vs. ≤21.6 μg/m3) of the exposure distribution (p = 0.002) (Table 2). 

Median AER estimates were also higher among renters (AER: 0.59 vs. ≤0.43 h−1) (p = 

0.004). Outdoor PM2.5 concentrations from central site monitors were similar across groups.

On average, non-ambient sources contributed a significant proportion of total indoor PM2.5 

concentrations for all households (≥77%) (Figure 1), with increasing proportions at higher 

quantiles of the exposure distribution. Compared to homeowners, renters experienced a 

higher proportion of non-ambient source contributions across quantiles, from 78% at the 

median to 95% at the 0.95 quantile. Multifamily homeowners also experienced a higher 

proportion of non-ambient source contributions than single-family homeowners across most 

quantiles, with the exception of the 0.95 quantile (Figure 1). The spike in the proportion of 

non-ambient source contributions for homeowners in single-family units at the 0.95 quantile 

is attributed to short periods of very high indoor PM2.5 concentrations from one household’s 

sampling session during the week of July 4th. Exclusion of this household’s sampling 

session reduced the proportion of non-ambient indoor PM2.5 concentrations at the 0.95 
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quantile to 76% for this group (data not shown). Indoor PM2.5 concentrations of ambient 

origin were similar across groups (Figure 1).

During periods of window opening, indoor PM2.5 concentrations of both ambient and non-

ambient origins and AERs were generally higher than during periods when the windows 

were closed for all households and across most quantiles (Table S6).

3.3. Occupant Source Activities Associated with Indoor PM2.5 of Non-Ambient Origin

3.3.1. Descriptive statistics—Compared to homeowners in single- and multifamily 

units, renters more frequently reported indoor source activities like cooking (16% vs. ≤10% 

per 2-hour sampling period), spray air freshener use (43% vs. ≤22% per day), and incense 

use (20% vs. ≤10% per session) (p ≤ 0.02) (Table 2). Notably, smoking was prevalent only 

among renters (24%) and positively correlated with spray air freshener use (phi coefficient 

[φ] = 0.24) (Table S7). In addition, renters more frequently reported smoking odors from 

neighbors (61% vs. ≤40%) and ventilation practices like range hood use (51% vs. ≤22%) 

and window opening while cooking (34% vs. ≤27%) compared to homeowners (p ≤0.03). 

For renters, window opening while cooking was also strongly correlated with window 

opening in the main living area (φ = 0.36) (Table S7).

3.3.2. Associations across quantiles of non-ambient indoor PM2.5 

concentrations—In multivariable models, cooking, smoking, range hood use, and heating 

season (versus non-heating) were significant predictors of non-ambient indoor PM2.5 

concentrations, with strong associations observed in the upper quantiles of the exposure 

distribution (Figure 2, Table S8a). Cooking activity was associated with increased 

concentrations at the 0.95 quantile, both for the time period concurrent with the PM2.5 

measurement (β0.95: 1.4, 95% CI: −0.52, 7.6 μg/m3) and during the 30-minute exposure 

period following the cooking activity (β0.95: 22.7 μg/m3, 95% CI: 11.5, 41.4 μg/m3) (Figure 

2a). By homeownership, the association of non-ambient indoor PM2.5 concentrations with 

concurrent cooking activity was stronger among renters (6.2 vs. −0.16 μg/m3), while the 

association with the 30-minute lag following the cooking activity was stronger among 

homeowners (28.8 vs. 16.3 μg/m3) at the 0.95 quantile of the exposure distribution (Figure 

2a). Range hood use while cooking was also associated with increased non-ambient PM2.5 

concentrations at the upper quantiles, and particularly for homeowners (β0.95: 9.2, 95% CI: 

0.22, 16.8 μg/m3) (Figure 2b). Among renters, households that reported indoor smoking had 

higher non-ambient indoor PM2.5 concentrations than non-smoking households across 

quantiles, with differences ranging from 4.5 to 15.1 μg/m3 (Figure 2e). Also, daily window 

opening while cooking (Figure 2c) and spray air freshener use (Table S8b) showed negative 

trends with increasing quantiles of the exposure distribution.

For all households, non-ambient indoor PM2.5 concentrations were higher in the heating 

than the non-heating season, with stronger associations in the upper quantiles of the 

exposure distribution (Figure 2d). We found no differences in non-ambient indoor PM2.5 

concentrations by daily candle use after adjusting for all other source activities (Table S8a). 

Overall, accounting for major source activities, ventilation behaviors, season, and other 
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covariates attenuated observed differences in non-ambient indoor PM2.5 concentrations by 

homeownership, particularly at the 95th percentile (Figure S4).

3.4. Sensitivity analyses

Our multivariable model findings appear generally insensitive to alternative assumptions 

about P and k, though with some evidence that the effects of smoking, range hood use, and 

cooking at the 95th percentile of non-ambient indoor PM2.5 concentrations may be sensitive 

to the selection of higher k values (Tables S4 and S5). Also, our model findings for most 

occupant activities were insensitive to extreme non-ambient indoor PM2.5 concentrations 

and periods of high relative humidity indoors. However, the effect of smoking at the 75th to 

95th percentiles may have been underestimated during periods when indoor relative humidity 

was above 70% (Table S9).

4. Discussion

Using real-time data coupled with non-parametric statistical methods, we quantified the 

significant role of non-ambient sources in driving elevated PM2.5 concentrations indoors in 

residential settings in a community-wide sample of households. While numerous studies 

have evaluated indoor source contributions, our combination of study population and 

statistical methods allowed us to develop valuable insights about exposure disparities. We 

found that renter households in multifamily units were exposed to significantly higher 

concentrations of non-ambient PM2.5 indoors than homeowner households at the median and 

upper percentiles of the exposure distribution. Accounting for behavioral and building-level 

drivers of non-ambient PM2.5 concentrations, such as cooking, smoking, range hood use, 

and building size, explained much of the observed exposure disparities by homeownership.

As documented elsewhere, we found that cooking activity was a significant driver of non-

ambient indoor PM2.5 concentrations, especially at higher exposure quantiles and consistent 

with a large but intermittent emissions profile (Abt et al., 2000; Baxter et al., 2009; He et al., 

2004; Long et al., 2000; Militello-Hourigan and Miller, 2018; Olson and Burke, 2006; 

Ozkaynak et al., 1996). In addition, PM2.5 concentrations were drastically elevated in the 30 

minutes following a cooking event, with a more pronounced effect among homeowners. This 

delay may be in part explained by temporal imprecision in the cooking indicator, which 

recorded any activity within a two-hour interval. However, it may also be reflective of 

particle suspension from cooking emissions (Militello-Hourigan and Miller, 2018), with a 

greater delay for homeowners given differences in housing volume and mixing times. 

Homeowners in our study tended to live in larger units (i.e. more bedrooms, multiple floors 

of living space), which could facilitate longer mixing times (Singer et al., 2017). More 

generally, this difference points to the importance of characterizing the exposure lags from 

cooking events in future studies.

In addition to cooking, smoking was a strong driver of non-ambient indoor PM2.5 

concentrations across all exposure quantiles, consistent with previous findings (He et al., 

2004; Ozkaynak et al., 1996; Wallace, 1996; Ferro et al., 2004). The minimal variation in the 

effect of smoking across quantiles is likely attributed to its data availability as a binary 

indicator of smoking prevalence in the past 30 days rather than a time-resolved measure like 
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for cooking activity. Smoking households also reported higher use of spray air fresheners, 

which are widely prevalent in U.S. households and often used to mask smoking and other 

odors (Nazaroff and Weschler, 2004; Steinemann, 2017). Spray air freshener use is a source 

of volatile organic compounds and secondary formation of pollutants associated with 

adverse health effects (Cohen et al., 2007; Nazaroff and Weschler, 2004; Kim et al., 2015). 

However, these secondary pollutants are likely too small in size and negligible in mass to be 

detected by our sensors.

The positive association of range hood use with non-ambient indoor PM2.5 concentrations is 

contrary to expectation. However, this could be indicative of reverse causation in which 

hood use was motivated by periods of intense cooking or accumulation of particles and 

smells during cooking. There is also the possibility of such actions changing the airflow and 

particle dynamics in the household in a way that increases PM2.5 concentrations in the living 

area. Notably, the majority of homes had recirculating hoods, which are less efficient at 

particle removal than vented hoods that move air outdoors and especially if filters are not 

routinely cleaned or replaced (Jacobs and Cornelissen, 2017; Rojas et al., 2017; Seltenrich, 

2014). The positive association could also reflect the range hood’s ineffectiveness at particle 

removal, especially during periods of high emissions (Militello-Hourigan and Miller, 2018). 

However, we did observe a general negative effect for window opening while cooking 

among renter households which was consistent with expectation.

Differences in building characteristics by homeownership may also facilitate increased 

PM2.5 infiltration from the outdoors and neighboring units, which we may not have fully 

accounted for with the use of central site outdoor monitors. In our study, renters lived in 

older apartment complexes without central air or weatherization and had higher AERs than 

homeowner and single-family households, consistent with previous studies (Price et al., 

2006; Rosofsky et al., 2019). Rental units were also located on the third or higher floors and 

susceptible to building stack effects (U.S. EPA, 2018; Price et al., 2006). While homeowners 

in multifamily units could in theory share these building characteristics, in our study they 

were more likely to live in newer units with central air and weatherization, corresponding to 

the lower observed AERs. Also, renters more frequently reported second-hand smoke 

exposure from neighboring units, which is a major source of PM2.5 infiltration in 

multifamily housing consistent with national trends (U.S. CDC, 2019) and previous studies 

(Meng et al., 2009; Russo et al., 2015; Wallace et al., 2006).

While our quantitative findings are specific to the population under study, the patterns 

observed are broadly consistent with the literature and previous studies in Boston-area 

housing. Compared to Boston-area studies by Baxter et al. (2007) and Long et al. (2000), 

our AERs were similar across season while our median indoor PM2.5 concentration of 5.8 

μg/m3 was lower, though consistent with cohort variability and secular changes in ambient 

PM2.5 concentrations, housing stock, and occupant activities. Also, while our study did not 

recruit renters in single-family housing, our sample reflects the distribution of housing stock 

and tenure in our study site of Chelsea, MA, which is predominantly multifamily (>90%) 

and renter households (~70%) (City of Chelsea, 2017). Given that the majority of 

households in similar urban communities across the U.S. are renters and live in multifamily 
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housing, our findings have important implications for public health and addressing 

environmental exposure disparities indoors.

Our study is subject to limitations common to monitoring studies with lower-cost sensors. 

While lower-cost sensors generally do not meet the performance standards of reference-

grade monitors, those used in our study met pre-specified performance criteria and exhibited 

high sensitivity and reasonable accuracy during testing (Gillooly et al., 2019). That said, 

measurements on a very short time scale can display substantial and often unexplained 

heterogeneity. Secondly, estimates of outdoor PM2.5 concentrations were from central sites 

and not spatially resolved. Although we time-averaged outdoor concentrations to hourly 

estimates, there may be additional time lags in infiltration of outdoor PM2.5 concentrations 

that may introduce error in our estimation of indoor PM2.5 concentrations of ambient and 

non-ambient origins. However, given the small size of our study site (4.7km2) and close 

proximity of each household to the central site monitors (within 1.6km), we think any 

additional error would be minimal. Thirdly, our source activity data were self-reported and 

could be subjected to information bias, though any bias should be non-differential as 

participants were likely unaware of their PM2.5 levels in real-time. The timescale used for 

reported occupant activities at the two-hour and daily levels may have been too coarse to 

detect associations with very short-term PM2.5 peaks. Similarly, additional measures of 

intensity and duration for cooking and smoking activities would have enabled more precise 

characterization of their influence on PM2.5 peaks. Specific information about range hood 

capture efficiency and having a paired particle sensor in the cooking area would also have 

enabled better characterization of cooking source strengths and decay rates. Fourth, we did 

not specifically evaluate re-suspension activity as there was no logical way to formally 

parameterize this term, though we did control for occupant density. Fifth, the strong effect of 

heating season in multivariable models suggests other potential contributors to AER and/or 

seasonal behavioral source activities that should be investigated in future studies. Lastly, our 

mass balance models to derive non-ambient indoor PM2.5, while based on first principles, 

included some uncertainty given the use of centralized monitors for outdoor PM2.5, 

estimated values for P and k, and assumptions of a single-compartment model for AER 

estimation, which contribute to overall uncertainty in our regression models. Nevertheless, 

we were still able to observe strong associations with occupant source activities across 

quantiles of non-ambient indoor PM2.5 concentrations without an excessive burden on 

participants.

In spite of these limitations, our study provided insights about behavioral and building-level 

contributors of non-ambient indoor PM2.5 concentrations across a diverse set of homes. By 

using a combination of data collection approaches consisting of validated portable sensors, 

in-home interviews, visual inspection, and daily activity logs, coupled with non-parametric 

statistical methods, we were able to better characterize non-ambient predictors of indoor 

PM2.5 at the upper quantiles of the exposure distribution that may be more relevant for 

health (Pope et al., 2006; Li et al., 2017). We used a novel and efficient method to calculate 

AER based on CO2 decay curves that was cost-effective and may be more feasible in large-

scale studies than tracer gas methods (Cui et al., 2015). In addition, the use of lower-cost 

sensors paired with high quality calibrations allowed us to collect intensive data in more 

homes, which allowed for a larger recruitment size and the inclusion of more diverse 
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housing and household characteristics than many previous studies of indoor PM2.5 in 

residential settings. The small geographic area of our study site also minimized spatial 

variability in outdoor PM2.5 concentrations across households and allowed us to more 

precisely characterize the role of indoor sources on non-ambient indoor PM2.5 

concentrations. Furthermore, we identified heterogeneity in source contributions of non-

ambient indoor PM2.5 concentrations by homeownership, a marker of socioeconomic status, 

across exposure quantiles that can inform interventions. Renter households in our study had 

higher levels of indoor air pollution and prevalence of indoor source contributors compared 

to homeowner households. Renters were also more likely to be non-English speakers, 

Hispanic/Latinx, unemployed, and without a college degree. As such, our findings have 

important implications for addressing racial/ethnic and socioeconomic disparities in indoor 

air pollution, which should be further explored in future studies.

5. Conclusions

To our knowledge, this is the first study to characterize exposure disparities in indoor PM2.5 

concentrations of non-ambient origin, with an explicit emphasis on homeownership and the 

behavioral and building-level factors contributing to these differences. Our findings shed 

light on the need for multi-level interventions at the household and building levels in order to 

equitably and effectively reduce indoor PM2.5 exposure disparities. For renter and 

multifamily households, building-wide improvements addressing ventilation and source 

elimination (e.g. smoke-free policies) should be paired with tenant engagement about 

strategies to reduce source activity-related PM2.5 emissions and improve ventilation in the 

home. Household-level interventions such as replacement of recirculating hoods with vented 

hoods and smoking cessation programs could be coupled with financial and housing 

assistance to account for socioeconomic correlates of behavioral source activities. While 

outdoor sources and regional PM2.5 patterns may be challenging to modify at the household-

level, especially within a short timeframe, modifying source activities and building 

conditions that shape PM2.5 exposure indoors may be possible and contribute to reducing 

exposure disparities.
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Highlights:

• Quantile regression of real-time data better captures indoor PM2.5 variability

• Key sources of indoor PM2.5 peaks are non-ambient (cooking, smoking)

• Renters have higher indoor PM2.5 exposure and non-ambient sources than 

homeowners

• Building and behavioral factors explain indoor PM2.5 disparities by 

homeownership
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Figure 1. 
Percentages (%) and Concentrations (µg/m3) of Indoor PM2.5 from Ambient and Non-

Ambient Origins across Quantiles of the Exposure Distribution by Homeownership and 

Multifamily Status, HOME Study, Chelsea, MA 2016-2017
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Figures 2a-e. 
Multivariable Regression Coefficients at the 0.50 to 0.95 Quantiles of Non-Ambient Indoor 

PM2.5 Concentrations (µg/m3) for Major Occupant Activities, Overall and by 

Homeownership, HOME Study, Chelsea, MA 2016-2017
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Table 1.

Sociodemographic, Building Characteristics, and Environmental Measures, HOME Study, Chelsea, MA 

2016-2017

Sociodemographic characteristics (N=71)

Mean Range

Age of householder (years) 52 27 - 87

Number of occupants 3 1 - 8

N Percent

Gender of Householder

 Female 61 86%

 Male 10 14%

Race/Ethnicity of Householder

 Hispanic or Latinx 35 49%

 White Non-Hispanic 28 39%

 Other, Non-Hispanic (Black, Asian, Multiracial) 8 12%

Language of Interview

 English 45 63%

 Spanish 26 37%

Nativity

 US-born 40 56%

 Foreign-born 31 44%

Highest level of education (completed in U.S. or elsewhere)

 Up to Highschool 18 25%

 Highschool diploma or GED 11 15%

 Some College or Associate’s degree 18 25%

 Bachelor’s degree 13 18%

 Graduate degree 11 15%

Homeownership and Tenure

 Renter – Multifamily unit 39 55%

 Renter – Single-family unit 0 0%

 Homeowner – Multifamily unit 22 31%

 Homeowner – Single-family unit 10 14%

Building characteristics (N=71) N Percent

Number of bedrooms

 1 bedroom 21 30%

 2 bedrooms 22 31%

 3 bedrooms 16 23%

 4+ bedrooms 12 17%

Year built

 1850-1900 23 32%

 1901-1950 18 25%
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Sociodemographic characteristics (N=71)

 1951-1970 23 32%

 1971-2013 7 10%

Stove fuel type

 Electric 34 48%

 Natural gas 37 52%

Range hood type

 Exhaust fan to outside 22 31%

 Recirculating hood 42 59%

 No range hood (use windows or ceiling fan) 7 10%

Range hood works?
^

 Yes 110 85%

 No 7 5%

 No range hood 13 10%

Central air use

 Yes 14 20%

 No 3 4%

 No Central air 54 76%

Weatherization

 Yes 23 32%

 No 46 65%

 Don’t know/NA 2 3%

Environmental Measures (N=69) 
‡ Mean (SD) Median (0.05 – 0.95)

 Indoor PM2.5 (µg/m3) 10.4 (12.9) 5.8 (1.5 – 28.7)

 Outdoor PM2.5 (µg/m3) 6.4 (2.6) 5.1 (2.3 – 9.2)

 AER (h−1) 0.70 (0.41) 0.48 (0.26 – 1.5)

Footnote: Percentages may not add up to 100% due to rounding.

^
Denominator is total sessions from heating and non-heating seasons (N=130) instead of total households (N=71)

Abbreviations: GED = General Education Development or High School Equivalence Certificate, AER = air exchange rate, SD = Standard 
deviation.

‡
Data missing for two households
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Table 2.

Sociodemographic, Building Characteristics, Source Activities, and Environmental Measures by 

Homeownership and Multifamily Status, HOME Study, Chelsea, MA 2016-2017

Renters in Multifamily 
unit (N=39)

Homeowners in 
Multifamily unit (N=22)

Homeowners in Single-
family unit (N=10)

Sociodemographic characteristics N Percent N Percent N Percent p*

Education

 Up to Highschool, GED, or Some 
College 33 85% 10 45% 3 30% <0.001

 Bachelor’s degree or higher 6 15% 12 55% 7 70%

Race/ethnicity

 White non-Hispanic 8 21% 14 64% 6 60% 0.006

 Hispanic/Latinx 26 67% 6 27% 3 30%

 Other, Non-Hispanic (e.g. Black, 
Asian, Multiracial) 5 13% 2 9% 1 10%

Nativity

 U.S.-born 16 41% 16 73% 8 80% 0.062

 Foreign-born 23 59% 6 27% 2 20%

Interview Language

 English 18 46% 17 77% 10 100% <0.001

 Spanish 21 54% 5 23% 0 0%

Employment status^

 Yes 19 27% 34 87% 17 85% <0.001

 No 51 73% 5 13% 3 15%

Building characteristics N Percent N Percent N Percent p*

Entrance to home

 First floor 10 26% 7 32% 10 100% <0.001

 Second floor 8 21% 10 45% 0 0%

 Third floor or higher 21 54% 5 23% 0 0%

Number of bedrooms

 1-2 bedrooms 27 69% 14 64% 2 20% 0.086

 3 bedrooms 9 23% 4 18% 3 30%

 4+ bedrooms 3 7% 4 18% 5 50%

Number of units in Multifamily

 2 units 5 13% 5 23% -- -- NA

 3-9 units 13 33% 8 36% -- --

 10+ units 21 54% 9 41% -- --

Year home built

 1850-1900 8 21% 9 41% 6 60% <0.001

 1901-1950 11 28% 6 27% 1 10%

 1951-1970 19 49% 1 5% 3 30%
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Renters in Multifamily 
unit (N=39)

Homeowners in 
Multifamily unit (N=22)

Homeowners in Single-
family unit (N=10)

 1971-2013 1 3% 6 27% 0 0%

Central air use

 Yes 1 3% 10 45% 3 30% <0.001

 No 3 8% 0 0% 0 0%

 No Central air 35 90% 12 55% 7 70%

Weatherization

 Yes 3 8% 12 55% 8 80% <0.001

 No 34 87% 10 45% 2 20%

 Don’t know 2 5% 0 0% 0 0%

Range hood type

 Exhaust to outdoor 12 31% 7 32% 3 30% 0.998

 Recirculating hood 23 59% 13 59% 6 60%

 No range hood (use windows or 
ceiling fan) 4 10% 2 9% 1 10%

Range hood works?^

 Yes 58 83% 34 85% 18 90% 0.925

 No 5 7% 2 5% 0 0%

 No range hood 7 10% 4 10% 2 10%

Stove fuel type

 Electric 21 54% 10 45% 3 30%

 Natural gas 18 46% 12 55% 7 70% 0.389

Household Activity per Session^ N Percent N Percent N Percent p*

Smoking indoors

 Yes 17 24% 0 0% 0 0% NA

 No 53 76% 40 100% 20 100%

Smoking odors from neighbors

 Yes 43 61% 16 40% 7 35% 0.030

 No 27 39% 23 58% 13 65%

 Missing -- -- 1 2% -- --

Incense use

 Yes 14 20% 1 2% 2 10% 0.021

 No 56 80% 39 98% 18 90%

Prevalence of Daily Household 
Activity^ Percent SD Percent SD Percent SD p†

 Candle use 15% 31% 7% 19% 11% 27% 0.739

 Spray air freshener use 43% 43% 6% 18% 22% 35% <0.001

 Window open while cooking 34% 33% 16% 26% 27% 31% 0.007

 Range hood on while cooking 51% 42% 22% 36% 21% 22% <001

Prevalence of 2-hour Household 
Activity^ Percent SD Percent SD Percent SD p†
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Renters in Multifamily 
unit (N=39)

Homeowners in 
Multifamily unit (N=22)

Homeowners in Single-
family unit (N=10)

 Occupancy at home 75% 28% 69% 14% 78% 11% 0.001

 Air conditioning in living area 11% 23% 10% 27% 10% 25% 0.744

 Window open in living area 21% 32% 22% 34% 31% 33% 0.251

 Any Cooking 16% 14% 9% 7% 10% 7% 0.002

 Frying/Grilling/Broiling 7% 9% 5% 5% 5% 4% 0.427

Environmental measures
‡ Mean (SD) Median 

(0.05 – 0.95) Mean (SD) Median 
(0.05 – 0.95) Mean (SD) Median 

(0.05 – 0.95) p†

 Indoor PM2.5 (µg/m3) 12.8 (14.3) 8.2 (1.3 - 
39.7) 6.01 (4.2) 5.2 (1.9 - 

15.0) 8.8 (17.0) 4.4 (1.5 - 
21.6) 0.002

 Outdoor PM2.5 (µg/m3) 5.6 (2.3) 5.4 (2.8 - 
9.7) 5.2 (3.2) 4.6 (2.5 - 

9.9) 5.2 (2.1) 5.5 (2.2 - 
8.8) 0.354

 AER (h−1) 0.70 (0.41) 0.59 (0.32 - 
1.5) 0.52 (0.39) 0.39 (0.23 - 

1.1) 0.58 (0.42) 0.43 (0.34 - 
1.7) 0.004

Footnote: Percentages may not add up to 100% due to rounding. The time-scale noted for different household activities (e.g. 2-hour, daily, session) 
refer to the time period that participants were asked to report on such activity.

^
Denominator is total sessions from heating and non-heating seasons (N=130) instead of total households (N=71)

*
From χ2 or Fisher’s exact test (if expected cell counts <5). The p-value pertains to comparisons across the three household groups.

†
Kruskal-Wallis rank sum test of household-specific sampling sessions

‡
Data missing for two households

Abbreviations: GED = General Education Development or High School Equivalence Certificate, AER = air exchange rate, Pct. = Percent, SD = 
Standard deviation, p = p-value
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