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Abstract

A variety of G-protein coupled receptors (GPCRs) have been implicated in the pathogenesis of 

pulmonary fibrosis, largely through their promotion of profibrotic fibroblast activation. In contrast, 

recent work has highlighted the beneficial effects Gαs-coupled GPCRs exert on reducing 

fibroblast activation and fibrosis. This review highlights how fibrosis promoting and inhibiting 

GPCR signaling converges on downstream signaling and transcriptional effectors, and how the 

diversity and dynamics of GPCR expression challenge efforts to identify effective therapies for 

IPF. Next generation strategies to overcome these challenges, focusing on target selection, 

polypharmacology and personalized medicine approaches, are discussed as a path toward more 

effective GPCR-targeted therapies for pulmonary fibrosis.
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GPCRs as targets for pulmonary fibrosis

G-protein Coupled Receptors (GPCRs)(see Glossary) are a class of over 800 receptors, 

making up one of the largest and most diverse families of proteins in the genome[1]. The 

basic function of GPCRs is to communicate extracellular cues into intracellular signals. The 

transduction of extracellular stimuli is mediated by the interaction of each receptor with one 

or more of four major unique G-protein families: Gαi/o, Gαq/11, Gα12/13, and Gαs [2, 3] 

(Fig. 1). Physiological appropriate responses are ensured by coordinated cell-specific 

expression of receptors [4, 5] and presentation of their endogenous ligands. Their diverse 

expression, along with their well-defined binding pockets and cell membrane expression, 

have made them frequent targets for therapeutic development [6], accounting for ~35% of all 

FDA approved drugs [7]. Multiple prior and ongoing drug discovery campaigns and clinical 

trial efforts have targeted GPCRs for treatment of idiopathic pulmonary fibrosis (IPF) 

(Table 1).
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IPF is a progressive chronic lung disorder characterized by uncontrolled deposition of 

fibrous connective tissue, notably collagen I, predominantly affecting the alveolar 

interstitium where it results in a replacement of healthy gas exchange tissue with fibrotic 

scar, leading to respiratory failure and eventual death [8]. IPF affects ~3 million people 

worldwide with a median life expectancy after diagnosis of 2–4 years and an increasing 

annual incidence of 3 to 18 cases per 100,000 people in the United States and Europe [8, 9]. 

Nintedanib and Pirfenidone were approved by the FDA in 2014 as the first pharmaceutical 

treatments for IPF based on their ability to reduce the decline of pulmonary function [10, 11] 

however both drugs show only a modest improvement in mortality [11]. The prevailing 

hypothesis for the initiation and propagation of pulmonary fibrosis is that repeated epithelial 
insult and impaired repair leads to recruitment or activation of extracellular matrix (ECM) 

depositing fibroblasts [12–14], potentially supported by additional disease-associated cells 

such as macrophages [15–17]. This can be modeled experimentally by introducing an 

epithelial injury in mice by a onetime intratracheal administration of bleomycin which 

promotes inflammation, injury, and lung fibrosis [18]. Although fibroblasts are transiently 

activated following tissue injury, in pulmonary fibrosis they maintain an active state, driven 

by profibrotic soluble factors, mechanosignaling, altered metabolism, and cellular aging 

[14, 19]. This review focuses on the roles of GPCR signaling in progression and resolution 

of pulmonary fibrosis and as targets for therapeutic intervention. While not a focus of this 

review, the parallels to GPCR signaling in asthma, another chronic lung disease, are striking, 

and include similar challenges with receptor redundancy and desensitization [20, 21]. 

Consideration of the approaches used there, including multi-drug and personalized 

strategies, may provide a useful path for GPCR targeting in IPF.

Gαi/o, Gαq/11, Gα12/13 are pro-fibrotic fibroblast regulators

Multiple GPCR ligand/receptor pairs have been recognized as potential drivers of fibrogenic 

fibroblast activation in vitro, and fibrosis progression in vivo. The specific ligands 

implicated in pulmonary fibroblast activation and fibrosis include: endothelin (ET-1) [22–

24], lysophosphatidic acid (LPA) [25–29], serotonin (5-HT) [30], sphingosine-1-phosphate 

(S1P) [31] and angiotensin [32]. Although each ligand can interact with multiple cognate 

receptor subtypes, specific receptors including LPA receptor 1, endothelin receptor A, 

serotonin receptors 2A and 2B, and sphingosine-1-phosphate receptor 1 have been identified 

as primary drivers of ligand-mediated fibrogenic activation of human lung fibroblasts. These 

receptors are capable of activating Gαi/o, Gαq/11, and Gα12/13 subclasses of G-proteins 

[33]. The remarkable diversity of these upstream GPCRs all capable of engaging very 

similar patterns of fibroblast activation strongly suggests the presence of convergent 

downstream mechanisms common to all three receptor families. While a diverse array of 

signaling and transcriptional programs is activated by these receptors [34], recent work has 

identified a common intersecting effect on activation of Rho GTPases and actin cytoskeletal 

assembly [35] (Fig. 1). Together the activation of these pathways promotes nuclear 

translocation of myocardin-related transcription factors (MRTF-A/B) and the Hippo 

pathway effectors yes-associated protein (YAP) and transcriptional coactivator with 
PDZ-binging motif (TAZ) [36, 37], both of which are essential to the activation of 

fibroblasts to the contractile and matrix synthetic states that drive fibrosis [38–40]. 

Interestingly, mechanosensitive signaling through integrin and focal adhesion mediated 
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pathways also promote fibroblast activation through the same convergent pathways [41]. 

Genetic and pharmacological approaches have confirmed the central roles for MRTFA/B and 

YAP/TAZ in experimental pulmonary fibrosis [38–40, 42], highlighting the potential for 

identifying and targeting specific upstream GPCRs driving these effects. Additionally, 

MRTFA/B and YAP/TAZ cooperate and crosstalk with SMAD3 downstream of TGFβ [43, 

44], further highlighting their attractiveness as targets for pulmonary fibrosis. Multiple 

clinical trials have already been conducted or are ongoing to test antagonists of specific 

GPCRs (Table 1). Below we detail some of the challenges that this approach faces, and later 

we propose some opportunities for identifying more effective GPCR targeted therapies for 

IPF.

Gαs is an anti-fibrotic fibroblast regulator

Receptors that couple to Gαs activate adenylyl cyclase, elevating intracellular levels of 

cyclic adenosine monophosphate (cAMP). Through the use of the cAMP enhancing 

pharmaco-tool forskolin, elevated cAMP was identified as a means to block transforming 
growth factor beta (TGFβ) induced fibroblast activation [45]. Later it was recognized that 

elevation of cAMP through Gαs coupled GPCRs inhibits fibroblast proliferation, expression 

of ECM proteins, and cellular contractility [46, 47]. Downstream, cAMP interacts with two 

main effector proteins, protein kinase A (PKA) and exchange factor directly activated by 

cAMP 1/2 (EPAC1/2) each sharing unique responsibilities for antifibrotic effects [45]. PKA 

activation causes phosphorylation and activation of the transcription factor cAMP response 

element-binding protein (CREB) which is itself an antifibrotic mediator [48] (Fig. 1). In 

harmony with these findings phosphodiesterase inhibitors, which enhance intracellular 

cAMP, block fibroblast activation and reduce lung fibrosis in vivo [49]. In contrast to all 

other classes of G-proteins discussed above, Gαs/cAMP signaling promotes phosphorylation 

and inhibition of YAP/TAZ nuclear translocation [37, 50], as well as reduced MRTF nuclear 

localization [51]. Ligands and agonists that stimulate Gαs coupled GPCRs promote matrix 

degradation in multiple tissues [52, 53], and exert protective effects against lung fibroblast 

activation and fibrosis [46, 47]. Thus treatments that can selectively enhance Gαs signaling 

in fibroblasts should have promise for anti-fibrotic therapies, and we discuss this opportunity 

in detail below.

Challenges

Redundancy

As already outlined above, GPCRs are a large class of receptors, several of which are 

capable of activating similar profibrotic features in pulmonary fibroblasts. Confirmed 

expression of multiple profibrotic GPCR ligands in human disease and mouse models of 

pulmonary fibrosis further supports the potential for widespread redundancy in fibroblast 

activating mechanisms in vivo. For example, LPA has been shown to be increased in the 

bronchial alveolar lavage fluid (BALF) [29], and exhaled breath condensate (EBC) [25] 

from patients with idiopathic pulmonary fibrosis, and in rodent models of pulmonary 

fibrosis [26–28]. Similar reports have been observed for ET-1 [22–24], serotonin [30] and 

S1P [31]. While mouse models have reported beneficial effects of therapies targeting 

individual GPCRs in these studies, the complex environment in human IPF may not be as 
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amenable to such an approach. Beyond GPCR ligands, additional biochemical and 

biomechanical signals contribute to fibroblast activation. These results strongly suggest 

pulmonary fibrosis is promoted by a profibrotic ligand and extracellular matrix milieu of 

diverse molecules with overlapping and convergent effects on fibroblast activation, 

challenging the concept that efficacy in this disease be achieved by blockade of an individual 

GPCR.

Loss of Gαs coupled GPCRs

An alternative strategy to antagonizing profibrotic signaling would be to agonize antifibrotic 

signaling, as already highlighted above through Gαs -coupled elevation of cAMP. Strikingly 

however, widespread repression of Gs coupled GPCRs has been documented in pulmonary 

fibrosis, posing a challenge to this approach. The most well characterized example is the 

prostaglandin family of receptors. In cultured human lung fibroblasts prostaglandin E2 

stimulates antifibrotic responses [47]. However, in fibroblasts derived from patients with IPF 

the anti-fibrotic efficacy of prostaglandin E2 is muted by reduced expression of the 

prostaglandin receptor PTGER2 [54–56]. This phenomenon is also observed in experimental 

lung fibrosis [57]. Similarly, the relaxin receptor RXFP1 has also been reported to be 

repressed in IPF patient samples [58]. Data from an RNAseq analysis of TGFβ1-stimulated 

IPF fibroblasts (GSE136534) also documents a pervasive repression of Gαs coupled GPCRs 

[59]. Together these findings suggest a coordinated transcriptional repression of Gαs/cAMP 

signaling is a central feature of pathogenic fibroblast activation. While genomic datasets 

support this mechanism, detailed functional studies, as already conducted for prostaglandin 

E2, are still necessary to broadly validate receptor downregulation and its roles in IPF.

Ubiquitous Receptor Expression

Another potential challenge in the development of GPCR regulators for the treatment of 

pulmonary fibrosis is the widespread expression of these receptors. In many cell types and 

multiple organs, receptors for endothelin, LPA, serotonin, angiotensin, S1P, and 

prostaglandins are some of the most highly expressed GPCRs [4, 60, 61]. At a systemic level 

targeting these receptors could cause dose limiting deleterious effects that preclude 

beneficial effects in the lung. Even within the lung there are likely to be confounding roles 

for some of these receptors in specific cell types important for the treatment of fibrosis. A 

prominent example coming into focus is the alveolar epithelium. Alveolar injury is a 

hallmark of IPF and repair of the epithelium is likely to be essential for successful resolution 

[13]. Following alveolar injury, alveolar type II (AEII) cells proliferate and differentiate into 

alveolar type I (AEI) cells, a process essential to lung repair [13]. The same pathway 

identified above as a desirable target in fibroblasts (YAP/TAZ) is essential to epithelial repair 

[62]. Specifically TAZ is required for epithelial differentiation following injury and genetic 

deletion of TAZ in AEII cells worsens fibrosis in the lungs [63]. In another example, 

Gαq/11 genetic deletion in AEII cells causes pulmonary inflammation and alveolar 

enlargement consistent with emphysema [64]. The abundant overlap in GPCR expression 

between alveolar epithelium and fibroblasts [65], thus poses a substantial challenge for 

GPCR therapeutics in IPF. Similarly, overlap between the GPCRs expressed in fibroblasts 

and additional disease relevant cell types such as endothelium and macrophages adds further 

complexity that is only now beginning to be appreciated.
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Next Generation Strategies

Solutions to Redundancy: Target downstream, polypharmacology, personalized medicine

As discussed above a multitude of receptors may be activated in IPF that all have the 

capacity to promote fibroblast activation. However, these receptors appear to rely on 

common intracellular pathways for this effect (Fig. 1). Thus, one strategy would be to target 

the common downstream pathways. Gαq is one of the major profibrotic heterotrimeric G-

proteins activated by LPA, ET-1, ATII, and 5-HT signaling. Synthetic and naturally derived 

Gαq inhibitors have been investigated for efficacy in experimental models of asthma but 

have yet to be tested in pulmonary fibrosis [66]. Rho-associated coiled-coil containing 
kinases (ROCK1/2) are downstream effectors to Rho GTPases, and ROCK1/2 inhibitors 

effectively block fibroblast activation and pulmonary fibrosis in rodent models [67]. 

However the pleotropic roles of ROCK kinases and the well-known side effects of their 

inhibition, has raised concerns regarding their potential as therapeutic targets [68]. A recent 

investigation has found ROCK1- or ROCK2-haploinsufficient mice are equally resistant to 

pulmonary fibrosis, and targeting ROCK1 may have a beneficial effect in preventing alveolar 

epithelial apoptosis [69], opening the door to developing ROCK1/2 selective inhibitors that 

could offer greater safety while still effectively targeting lung fibrosis. Continuing 

downstream, another opportunity could be in targeting transcriptional regulators. Multiple 

small-molecule inhibitors of the MRTFA/B pathway have been developed and tested in 

models of tissue fibrosis [39, 70–72]. Notably, CCG-203971 reduced collagen lung content 

and enhanced apoptosis of activated fibroblasts in two rodent models of pulmonary fibrosis 

[42]. Similar approaches have been pursued in developing inhibitors of YAP/TAZ 

transcriptional activity. The first focused effort in developing a YAP/TAZ inhibitor resulted 

in the identification of porphyrin family rings, specifically verteporfin, as a feasible 

mechanism to therapeutically inhibit YAP/TAZ function [73]. Later studies showed effective 

antifibrotic effects of verteporfin in a silicosis model of pulmonary fibrosis [74]. 

Additionally, dihydrotanshinone I, a natural compound was found to reduce collagen 

expression through disruption of YAP/TAZ nuclear localization and transcriptional activity, 

shows efficacy in rodent models of liver [75] and lung [74] fibrosis. Finally, substantial 

effort has focused on targeting YAP and TAZ through modulating RhoGTPase membrane 

association via mevalonate metabolism, one effect of inhibiting HMG-CoA reductase using 

statin drugs [76]. Although this is a means of indirectly targeting YAP/TAZ, statins have 

already shown beneficial effect in rodent models of pulmonary fibrosis [77, 78] and in 

clinical data emerging from retrospective analysis [79, 80]. Together these data support the 

potential of targeting downstream of GPCRs to solve the problem of activating receptor 

redundancy. However, the potential challenge inherent in the widespread expression and 

function of these pathways, addressed below, remains.

Polypharmacology is the design and development of pharmaceutical agents with the ability 

to simultaneously interact with multiple targets and signaling pathways. Recently, 

polypharmacology has gained interest for its potential to generate higher efficacy agents 

with more predictable pharmacokinetic profile and reduced drug resistance [81]. Aided by 

advancements in GPCR structural and molecular biology, compounds can be rationally 

designed to target multiple receptors as agonist and antagonist [82]. Intriguingly, one of the 
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two drugs approved for the treatment of IPF is a clear example of a polypharmacology. 

Nintedanib is a tyrosine kinase inhibitor initially designed to target proangiogenic pathways. 

Nintedanib acts as an ATP-competitive inhibitor of fibroblast growth factor receptor 

(FGFR)-1, vascular endothelial growth factor receptor (VEGFR)-2, platelet-derived growth 

factor receptors (PDGFRs), Flt-3 and members of the Src-family, such as Src, Lyn and Lck 

[83],[84]. Two new GPCR ligands in clinical trials for IPF may also elicit their effects 

through polypharmacology (Table 1). RP5063 is a modulator of dopamine and serotonin 

receptors developed primarily for the treatment of schizophrenia and neuropsychiatric 

disorders. It has a partial agonism and potent binding affinity with dopamine D2, D3, D4, and 

serotonin 5-HT1A and 5-HT2A receptors, and antagonist activity at the serotonin 5-HT2B, 5-

HT6 and 5-HT7 receptors. Moreover, it exhibits moderate binding affinity for 5-HT2C, α2-

adrenergic, and muscarinic acetylcholine receptors [85]. PBI-4050 is a synthetic analog of a 

medium-length chain fatty acid recognized as an agonist of GPR40 and an antagonist of 

GPR84, both Free Fatty Acid Receptors (FFAR). As it exerts anti-inflammatory and anti-

fibrotic properties, it is being studied for the treatment of Alström Syndrome, Liver and 

Lung fibrosis, and Chronic Kidney Diseases [86]. PBI-4050 diminishes bleomycin-induced 

pulmonary fibrosis in mice and reduces TGF-β induced fibroblast activation in vitro [87]. 

The recent enthusiasm for polypharmacology is a potentially powerful solution to the 

complexity of GPCR actions in IPF. However, an inherent challenge to this strategy is how 

much “polypharmacology” is enough, especially when considering the diversity of ligands 

present in IPF. For example it is unlikely that one molecule could antagonize serotonin 

receptors (small-molecule) and endothelin receptors (peptide). Polypharmacology will likely 

benefit from an individualized patient strategy.

Personalized medicine involves a customized approach to disease, identifying the specific 

characteristics of a patient and tailoring their therapy accordingly. To date, clinical trials 

testing GPCR ligands for the treatment of IPF have taken a non-personalized approach, one 

compound for all enrolled patients (Table 1). More broadly, trials in IPF patients have thus 

far not considered “endotypes”, or subtypes of a disease with distinct pathophysiological or 

molecular mechanisms [88], a strategy embraced in other lung diseases including asthma 

and COPD [89, 90]. Several methods are available to ascertain levels of molecules in 

patients with IPF, including exhaled breath condensate, and serum sampling [91, 92]. These 

techniques could be used to identify the relative expression of potential GPCR ligands and 

tailor therapies based on molecular profiles. Going one step further, patient derived cells can 

be studied to rapidly identify suitable therapeutic strategies. For example, patient derived 

multicellular “pulmospheres” have shown responses that were predictive of therapeutic 

response to approved IPF drugs pirfenidone and nintedanib [93]. Future clinical trials may 

divide patient populations based on their respective endotypes, and analysis of ongoing and 

past trials of GPCR targeted therapeutics may provide critical insight into molecular 

classifiers that identify patients most likely to benefit from specific therapeutic approaches. 

Given the diversity of GPCRs implicated in IPF, such an approach seems warranted.
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Solutions to Loss of Gαs Receptors: Rescue downregulated receptors, or target those that 
remain

Agonists of Gαs receptors display impressive anti-fibrotic effects [46, 47, 52, 53]. However, 

decreased expression of receptors of this class in diseased tissue or in TGFβ-stimulated 

fibroblasts provides a challenge to an agonist based therapeutic. Significant efforts have been 

devoted to understanding the reduced responsiveness of IPF fibroblasts to prostaglandin E2 

and have identified epigenetic repression of the PTGER2 receptor through promoter 

hypermethylation as critical [54]. Inhibitors of PI3K and Akt reduce methylation of the 

PTGER2 promoter and enhance its transcription, suggesting a mechanism to restore receptor 

expression and function [54]. In a recent study, TGFβ induced repression of GPCR encoding 

genes including prostanoid receptors (PTGER2, PTGER4, and PTGIR), adenosine receptors 

(ADORA2A and ADORA2B), as well as the beta-2 adrenergic receptor (ADRB2). This 

repression is dependent on histone deacetylase (HDAC) activity, and treatment with an 

investigational HDAC inhibitor pracinostat (SB939) enhanced expression of these Gαs 

coupled receptors [59]. MicroRNAs have also been identified to function in TGFβ induced 

repression of Gαs coupled receptors. Expression of miR-144–3p is enhanced in lungs of 

patients with IPF and stimulated by TGFβ in cultured lung fibroblasts. Expression of 

miR-144–3p causes reduced expression of the Gαs coupled receptor, RFXP1, whereas 

blocking miR-144–3p with a targeted antagomir enhances expression of the receptor and 

reduces fibroblast activation [94]. These studies identify potential mechanisms to rescue 

Gαs coupled receptors in patients with IPF by targeting the signaling pathways, epigenetic 

regulators, or microRNAs that repress their presentation.

A simpler approach is to target Gαs coupled receptors not repressed in IPF. The calcitonin-

receptor-like receptor (CRLR), which is activated by adrenomedullin and couples to Gαs to 

promote cAMP, is actually increased in expression by TGFβ in fibroblasts and in the mouse 

lung following bleomycin induced fibrosis [95]. Likewise, the dopamine receptor D1 

(DRD1) couples to Gαs, and is not decreased in IPF patient fibroblasts or in freshly sorted 

fibroblasts from bleomycin injured mice [65]. More broadly, RNA-seq analysis of TGFβ 
stimulated fibroblasts identified three receptors that exclusively couple to Gαs that were not 

repressed by TGFβ; dopamine receptor D1, G-protein bile acid receptor 1, and an orphan 

GPCR, GPR3. Further identification of GPCRs preserved in disease settings, such as 

through emerging single cell RNA-seq analyses [17], will help to define the Gαs coupled 

receptors available for targeting in IPF patients.

Solutions to Ubiquitous Receptor Expression: Allosteric modulators, target selectively 
expressed receptors

The final and perhaps most challenging aspect of GPCR targeting is their widespread 

expression and function. One potential solution to this challenge is the use of allosteric 
modulators, molecules that bind to a unique site on a receptor to influence the activity of 

the ligand that binds to the orthosteric, or principle binding site [96]. This approach takes 

advantage of the potentially unique tissue and compartment-specific expression of 

endogenous ligands, such that it modulates GPCR function only where these ligands are 

present. This limits some of the problems that may occur with direct GPCR agonists and 

antagonists that will function throughout the organism [96]. Importantly, allosteric 
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molecules can enhance (positive allosteric modulators) or repress (negative allosteric 

modulators) the activity of ligand-receptor signaling. Two allosteric modulators have been 

FDA approved and there are several more in clinical trials [97]. Although not yet 

investigated for utility in pulmonary fibrosis, multiple allosteric modulators have been 

identified and developed for receptors of interest in IPF including serotonin, adenosine, 

adrenergic, dopamine, endothelin, free fatty acid and prostaglandin receptors [98–100]. The 

toolbox of allosteric modulators may thus provide unique opportunities to target widely 

expressed GPCRs safely and effectively for IPF.

A simpler solution, when available, is to identify and target receptors expressed uniquely in 

the cell type or compartment of interest. For example, the “GPCRome” of fibroblasts and 

alveolar epithelial cells displays considerable overlap, but there are multiple receptors 

uniquely expressed in each cell type [65]. The D1 dopamine receptor is the most 

preferentially expressed receptor in fibroblasts compared to alveolar epithelial cells and lung 

endothelial cells, and it can be selectively activated in vitro and in vivo without apparent 

effects on either lung epithelial or endothelial cells. D1 agonism in the mouse lung reduces 

lung collagen abundance after bleomycin injury, and in vitro stimulation of the D1 receptor 

prompts fibroblasts to take on a pro-resolution phenotype by enhancing gene expression of 

matrix degrading enzymes, reducing expression of matrix crosslinking genes, and promoting 

fibroblasts to produce a less stiff ECM. This approach to selectively target Gαs in lung 

fibroblasts shows early promise as a targeted therapy for IPF. Expansion of this approach to 

include analysis of systematic datasets, including single cell RNA-seq profiles, may further 

refine our understanding of GPCR and ligand expression patterns across cell populations in 

health and disease, allowing for identification of additional selective targets for therapeutic 

intervention. The number of drugs which target GPCRs is very large; however the number of 

distinct GPCRs targeted by those drugs is actually only a small percentage of the more than 

800 unique GPCRs [101]. Until recently, investigations into GPCR signaling in disease was 

focused on non-chemosensory, class A receptors (almost all of the receptors mentioned in 

this review). However enthusiasm has shifted towards lesser known adhesion receptors, 

orphan receptors, and chemosensory receptors [102], paving the way for new discoveries in 

pulmonary fibrosis.

Concluding Remarks

GPCR targeting approaches have thus far yielded disappointing results as IPF therapies 

(Table 1). Despite this, several promising therapies continue to enter and progress through 

clinical trials, raising hopes for future success. Several challenges have emerged as outlined 

above, and major questions remain to be addressed (see Outstanding Questions) as we 

progress toward next generation therapeutic targets and candidates. The widespread 

expression and complex cell-specific effects of GPCR modulators will clearly need to be 

considered in refining our approaches to target identification and early testing. Single cell 

RNA-seq datasets will provide unique perspectives on receptor distribution [17, 103], while 

more complex human cellular model systems such as organoids and organ on chip models 

may provide useful early testing strategies for identifying promising directions [104, 105]. 

Personalized approaches that target molecular endotypes may split the patient population 

into smaller segments better served by specific candidate therapies. Candidate molecules 
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that employ polypharmacology or target common downstream mechanisms may overcome 

the challenge of redundant fibrosis-promoting signals. Finally, Gαs targeting strategies, 

particularly those focused on receptors uniquely expressed on fibrosis-promoting activated 

fibroblasts may provide an effective new approach to IPF treatment. Collectively, these 

advances in understanding offer a fresh perspective on the challenges and opportunities in 

targeting GPCRs in IPF, and will underpin efforts to identify new strategies that offer 

therapeutic benefit.
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Glossary

Allosteric Modulators
Molecules that affect protein activity by binding to a secondary, allosteric, site rather than a 

primary, orthosteric, site

Alveolar and Alveolus
Refers to an alveolus (plural: alveoli), a small, balloon-shaped air cavity arranged in clusters 

at the end of the respiratory tree in the lung parenchyma

Bronchial Alveolar Lavage Fluid (BALF)
Fluid collected following the insertion of a device that can infuse solutions into specific 

parts of the lung

Cyclic Adenosine Monophosphate (cAMP)
Second messenger molecule which is elevated following Gαs activation

Endotypes
A subtype of a condition defined by a distinct pathophysiological mechanism

Exhaled Breath Condensate (EBC)
Breath is condensed following exhalation and allows the determination of biomolecules 

present in respiratory compartments

Extracellular Matrix (ECM)
Non-cellular component that provides structural support to cells and organs

Fibroblasts
Spindle-shape cells in the connective tissue responsible for the synthesis and degradation of 

extracellular matrix

Fluorescence-Activated Cell Sorting (FACS)
The process of sorting cells for a desired population through the use of metrics such as size, 

protein fused fluorescent proteins, and cell surface markers
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G-protein Coupled Receptors (GPCRs)
Largest family of cell membrane receptors that mediate physiological responses through the 

transduction of extracellular

Histone Heacetylase (HDAC)
A class of enzymes which removes acetyl groups from histones. This removal causes DNA 

to bind more tightly, and an overall decrease in gene expression

Idiopathic Pulmonary Fibrosis (IPF)
A progressive lung disease characterized by the uncontrolled scarring of the lung connective 

tissue by activated fibroblasts

Myocardin-Related Transcription Factor (MRTFA/B)
Transcriptional coactivators which are regulated by cytoskeletal dynamics, regulate 

expression of profibrotic genes

Nintedanib
An approved small molecule, therapeutic for the treatment of IPF. It has been shown to elicit 

antifibrotic activity through the inhibition of a wide range of tyrosine kinase receptors

Pirfenidone
An approved small molecule, therapeutic for the treatment of IPF. It has proven anti-fibrotic 

activity, but an unknown mechanism of action

Polypharmacology
Design and development of pharmaceutical agents that simultaneously interact with multiple 

targets

Profibrotic and Antifibrotic
A property that promotes or reduces fibrosis - the pathological accumulation of fibrous 

proteins in an organ

Rho-associated coiled-coil containing kinases (ROCK1/2)
Are a pair of serine/threonine kinases that are important for a wide range of processes in IPF

Transforming Growth Factor-Beta (TGFβ)
A profibrotic cytokine involved in fibroblast proliferation and recruitment, cell 

differentiation, and matrix regulation

Yes-Associated Protein (YAP)/Transcriptional Coactivator with PDZ-binding Motif (TAZ)
Transcriptional coactivators which are regulated by G-protein and mechanosignaling, 

regulate expression of profibrotic genes
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Outstanding Questions

• Can targeting a single GPCR effectively treat most patients with IPF?

• When identifying GPCR-based targets for antifibrotic therapy, when and how 

should receptor expression and function in diverse cell types be considered?

• Is the field too focused on molecular target identification and not enough on 

understanding the complex multicellular interactions and integrated effects of 

GPCR-based therapeutic candidates?
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Highlights

• Multiple GPCR ligand receptor pairs are implicated in IPF, and clinical trials 

are currently underway targeting GPCR pathways for the treatment of IPF.

• Individual GPCRs can promote profibrotic or antifibrotic phenotypes in lung 

fibroblasts, depending on the receptor class and downstream signaling 

pathways.

• The convergence of downstream pathways on common signaling and 

transcriptional mechanisms integrates diverse GPCR effects and may provide 

a path to overcome redundancy.

• Signaling programs downstream of GPCR signaling are also essential to 

alveolar epithelial regeneration and repair, highlighting the need to identify 

strategies that account for this complexity.
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Fig. 1. GPCR Signaling Promotes profibrotic and antifibrotic signaling.
In IPF there is increased abundance of profibrotic ligands, notably: LPA, endothelin, and 

serotonin that activate receptors coupled to Gαi/o, Gαq/11, Gα12/13 promoting multiple 

pathways including Rho and ROCK which regulates the actin cytoskeleton. MRTF-A/B and 

YAP/TAZ are cytoskeletal sensitive profibrotic transcription co-factors essential to fibroblast 

activation. Known transcript targets for MRTF and YAP/TAZ are profibrotic genes: 

COL1A1, COL1A2, CTGF,and ACTA2. GPCRs which couple to Gαs are antifibrotic and 

negatively regulate MRTF-A/B and YAP/TAZ, but are often repressed in IPF patient 
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fibroblasts. Profibrotic signaling is shown in orange and antifibrotic signaling is show in 

blue.
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Table 1.

Summary of GPCR Targeting Clinical Trials for IPF

Receptor activity Drug Outcomes Status Trial Number Citation

ETA and ETB antagonist Bosentan No significant Improvements. Phase 2/3 (completed) NCT00071461 [106]

ETA and ETB antagonist Bosentan No significant Improvements. Phase 3 (completed) NCT00391443 [107]

ETA antagonist Ambrisentan

More patients experienced 
disease progression and death in 
treatment group compared to 
placebo.

Phase 3 (terminated) NCT00768300 [108]

ETA and ETB antagonist Macitentan No significant Improvements. Phase 2 (completed) NCT00903331 [109]

LPA1 antagonist BMS-986020
Improvement in forced vital 
capacity for the 600 mg/bid 
group compared to placebo.

Phase 2 (completed) NCT01766817 [110]

GPR40 agonist and GPR84 
antagonist PBI-4050 PBI-4050 alone or in 

combination was well tolerated. Phase 2 (completed) NCT02538536 [111]

AT1 antagonist Losartan Improvement in forced vital 
capacity. Pilot Study NCT00879879 [112]

β2 Adrenergic agonist Formoterol
Treatment significantly improved 
forced expiratory volume and 
flow.

Pilot Study EudraCT: 
2013-004404-19 [113]

Leukotriene antagonist Tipelukast - Phase 2 (recruiting) NCT02503657

Prostanoid antagonist Treprostinil - Phase 2 (terminated) NCT00703339

Prostanoid antagonist Treprostinil - Phase 2 (completed) NCT00705133

GPR84 antagonist GLPG1205 - Phase 2 (recruiting) NCT03725852

Smoothened antagonist Vismodegib - Phase 1 (completed) 
Phase 2 (terminated)

NCT02648048 
NCT02168530

Serotonergic and 
Dopaminergic ligand RP5063 - Phase 2 (planning) -
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