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Abstract

Social determinants of health (SDOH) affect health outcomes, and knowledge of SDOH can 

inform clinical decision-making. Automatically extracting SDOH information from clinical text 

requires data-driven information extraction models trained on annotated corpora that are 

heterogeneous and frequently include critical SDOH. This work presents a new corpus with 

SDOH annotations, a novel active learning framework, and the first extraction results on the new 

corpus. The Social History Annotation Corpus (SHAC) includes 4,480 social history sections with 

detailed annotation for 12 SDOH characterizing the status, extent, and temporal information of 

18K distinct events. We introduce a novel active learning framework that selects samples for 

annotation using a surrogate text classification task as a proxy for a more complex event extraction 

task. The active learning framework successfully increases the frequency of health risk factors and 

improves automatic extraction of these events over undirected annotation. An event extraction 

model trained on SHAC achieves high extraction performance for substance use status (0.82-0.93 

F1), employment status (0.81-0.86 F1), and living status type (0.81-0.93 F1) on data from three 

institutions.
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1. Introduction

US life expectancy is decreasing [1], even as medical care advances. Decreasing life 

expectancy may be partly attributable to deteriorating social determinants of health (SDOH) 

[2, 3]. For example, substance abuse (including alcohol, drug, and tobacco use) is 

increasingly recognized as a key factor for morbidity and mortality [4–6]. More Americans 

are living alone, leading to increased social isolation and negative health outcomes [7]. 

Employment and occupation impact income, societal status, hazards encountered, and health 

[8]. Understanding SDOH, including behaviors influenced by these social factors, can 

inform clinical decision-making [9].

SDOH are characterized in the Electronic Health Record through structured data and 

unstructured clinical text; however, clinical text captures detailed descriptions of these 

determinants, beyond the representation in structured data. This text-encoded information 

must be automatically extracted for secondary use applications, like large-scale retrospective 

studies and clinical decision support systems. The automatically extracted data can augment 

the available structured data to create a more comprehensive patient representation in these 

downstream applications [10, 11].

Leveraging the social history information in clinical text requires high-quality annotated data 

to create machine learning-based information extraction models. This work presents a new 

annotated clinical corpus, referred to as Social History Annotation Corpus (SHAC). SHAC 
is comprised of 4,480 social history sections with detailed annotations for 12 critical SDOH. 

SHAC utilizes clinical notes from MIMIC-III [12] and an existing data set from the 

University of Washington (UW) and Harborview Medical Centers. It includes event-based 

annotations for more than 55K annotated spans and 18K distinct events across four note 

types.

Hand annotation of detailed SDOH information in clinical notes is costly, and many critical 

SDOH are infrequent. To address these budget and data sparsity limitations, the corpus 

development used active learning to select samples for annotation. Because extracting the 

event-based SDOH phenomena is a complex sequence labeling task, standard active learning 
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methods are not practical. This work introduces a novel active learning framework that uses 

a simplified surrogate task for assessing sample informativeness. Our experiments show that 

this method increases the diversity and richness of the annotations and improves extraction 

performance for a variety of event types. The largest performance gains achieved by the 

active learning framework are associated with infrequent, but extremely important risk 

factors, like drug use, homelessness, and unemployment.

With the annotated SHAC corpus, we provide a baseline neural event extractor and present 

the first reported extraction results on SHAC for the most frequently annotated SDOH: 

substance use, employment, and living status. The event extraction model identifies 

substance use, employment, and living status events at 0.89-0.98 F1 and characterizes the 

status of these determinants with 0.81-0.96 F1. The annotation guidelines and source code 

will be made available online1.

2. Related work

2.1. SDOH Corpora

Multiple corpora with note-level SDOH annotations have been developed. For example, the 

i2b2 NLP Smoking Challenge introduced a publicly available corpus where tobacco use 

status is labeled at the note-level [13]. Gehrmann et al. [14] annotated MIMIC-III discharge 

summaries with note-level phenotype labels, including substance abuse and obesity. Feller et 

al. [15] annotated 38 different SDOH at the note-level. Annotated corpora with more 

detailed SDOH annotations describing status, extent, temporal information, and other 

characteristics also exist. For example, Wang et al. [16] introduced a corpus with detailed 

substance use annotations for 691 clinical notes, and Yetisgen and Vanderwende [17] created 

detailed annotations for 13 SDOH in a publicly available corpus of 364 notes. Both Wang et 

al. [16] and Yetisgen and Vanderwende [17] utilized deidentified notes from the MTSamples 

website2 that were created by human transcriptionists.

To achieve high SDOH extraction performance that generalizes across clinicians, 

institutions, and specialties, annotated corpora must be sufficiently large and diverse. 

Unfortunately, existing publicly available corpora with SDOH annotations are lacking in 

either annotation detail, size, and/or heterogeneity. SHAC provides a relatively large corpus 

with high quality, detailed SDOH annotations. SHAC is heterogeneous in that it includes 

clinical notes from multiple institutions and note types, and in the use of active selection to 

encourage a richer representation of SDOH events.

2.2. Active Learning

In annotation projects, the available unlabeled data is often significantly larger than the 

annotation budget. Randomly selecting samples for annotation is suboptimal from a model 

learning perspective, as samples vary in their usefulness, particularly when the phenomena 

of interest may be infrequent. Active learning identifies samples for annotation that 

maximize model learning [18, 19]. Samples are selected using a query function that scores 

1https://github.com/uw-bionlp
2MTSamples website: http://www.mtsamples.com/
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sample informativeness, representativeness, and/or diversity [20–22]. Informativeness 

describes the potential for a sample to reduce classification uncertainty. The literature varies 

in the usage of the terms “representativeness” and “diversity.” Here, representativeness 

describes the degree to which a sample describes the structure of the data, and diversity 

characterizes the variation in the samples selected.

Active learning is well-established for classification tasks, where a single label is predicted 

for each sample. Multiple studies have applied active learning to text classification tasks, 

where a sample is a sentence or a document. Sample informativeness is derived from 

classification uncertainty scores, such as maximizing entropy [23] or minimizing a support 

vector machine margin [24, 25]. Du et al. [22] assesses diversity based on classifier posterior 

distributions, and Wu and Ostendorf [23] assesses diversity and representativeness based on 

sample similarity within the observation space.

Approaches for applying active learning to sequence tagging problems are also well-

established [26–31]. Although predictions are made at the token-level, sample selection is 

typically performed at the sentence or document-level. Representativeness and/or diversity 

are often assessed by calculating sentence similarity metrics in the observation space [26–

28, 30]. Sequence-level uncertainty scores are calculated by various measures, like 

normalized prediction sequence likelihood and minimum token-level confidence. In the 

clinical and biomedical domain, uncertainty scores are generated with conditional random 

field (CRF) models [26–30] or a neural tagger based on contextualized embeddings from 

ELMo and BERT [31].

Active learning is less explored in relation and event extraction tasks, where triggers (heads), 

arguments, and/or relations are annotated. The predictions are more complex, involving 

labeling and linking spans of text. Maldonado et al. [32] apply active learning to a clinical 

relation extraction task, selecting samples using the average entropy of all predicted 

phenomena as an uncertainty score. More recently, Maldonado and Harabagiu [33] explores 

active learning in a medical concept and relation extraction task. In lieu of a heuristic query 

function, an optimal selection strategy is learned from data with strong and weakly 

supervised labels, including 1,000 electroencephalogram (EEG) reports with automatic 

annotations generated by existing extraction models.

SHAC is annotated using an event-based structure, where SDOH are characterized through 

multiple argument types. These argument types are not equally important for secondary use 

applications, and the entropy of different determinant-argument combinations may differ 

significantly. Without sufficient annotated data to learn an optimal selection strategy, we use 

a simplified text classification task as a surrogate for assessing sample uncertainty, to 

prevent under sampling the critical phenomena. We hypothesized that the surrogate task 

would improve extraction performance in the more complex event extraction task and 

validated the hypothesis with experiments on SHAC data.
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3. Materials

3.1. Data

This work utilized two clinical data sets without SDOH annotations: MIMIC-III and UW 
Dataset. MIMIC-III (referred to here as MIMIC) is a publicly available, deidentified health 

database for over 40K critical car' patients at Beth Israel Deaconess Medical Center from 

2001-2012 [12]. MIMIC contains clinical notes, diagnosis codes, and other data. This work 

utilized 60K MIMIC discharge summaries. The UW Dataset is an existing clinical data set 

from the UW and Harborview Medical Centers generated between 2008-2019. This work 

utilized 83K emergency department, 22K admit, 8K progress, and 5K discharge summary 

notes from UW Dataset. An existing corpus with SDOH annotations created by Yetisgen and 

Vanderwende, YVnotes, was used for model training during active learning [17].

3.2. Annotation Scheme

We created detailed annotation guidelines for 12 SDOH (referred to here as event types), 

including substance use (alcohol, drug, and tobacco), physical activity, employment, 

insurance, living status, sexual orientation, gender identity, country of origin, race, and 

environmental exposure. Each event is a characterization of a specific SDOH instance and 

includes a trigger (head) and all associated arguments (attributes). These events capture 

changes to the status, extent, and temporality of SDOH in the patient timeline. Each event 

type is annotated across multiple dimensions. Table 1 summarizes the annotation of the most 

frequent SHAC event types: substance use, employment, and living status. Table A1 in the 

Appendix contains a summary of all annotated event types.

SDOH are annotated as events using the BRAT rapid annotation tool [34]. Figure 1 is a 

BRAT annotation example, describing a patient’s employment and substance use. The 

trigger indicates the event type (e.g. Employment or Tobacco) and arguments describe the 

event. Labeled arguments, like Status, include both an annotated span and subtype label. 

Span-only arguments, like Duration or History, include an annotated span without an 

additional subtype.

3.3. Annotation Cycle

Social history sections, referred to here as samples, were extracted from MIMIC and the UW 

Dataset, using pattern matching to identify section headings (alphanumeric, forward slash, 

backslash, ampersand, or white space characters followed by a colon). SHAG includes train, 
development, and test sets. Samples for the train set were randomly and actively selected. 

Training samples were randomly selected for initial model training in active learning, then 

the initial model Was used in actively selecting samples to bias the training set towards 

diverse samples that frequently contain the phenomena of interest. All development and test 

samples were randomly selected to approximate the true distribution of the SDOH in the 

corpora used. Samples were annotated by four medical students through 12 rounds of 

annotation (8 randomly selected and 4 actively selected). Table A2 in the Appendix 

describes each round of annotation. The first two rounds were randomly sampled and 

double-annotated, to assess inter-annotator agreement. After the initial annotation round, the 

annotation guidelines were revised, and the initial annotations were updated.
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3.4. Evaluation and Annotation Scoring

We treat event annotation and extraction as a slot filling task, as this is most relevant to 

secondary use applications. As such, there can be multiple equivalent span annotations. 

Figure 2 presents the same sentence annotated by two annotators (labeled A and B), along 

with the populated slots. Both annotators labeled two Drug events: Event 1 and Event 2. 

Event 1 describes past intravenous drug use (IVDU), and Event 2 describes current cocaine 

use. Event 1 is annotated identically by both annotators. However, there are differences in 

the annotation spans of Event 2, specifically for the Trigger (“cocaine” versus “cocaine use”) 

and Status (“use” vs. “Recent”). From a slot perspective, the annotations for Event 2 are 

equivalent. Thus, scoring of automatic detection and annotator agreement is based on 

relaxed span match criteria, as described below. Trigger and argument performance is 

evaluated using precision (P), recall (R), and F1, micro averaged over the event types, 

argument types, and/or argument subtypes.

Trigger: Triggers, Ti, are represented by a pair (event type, ei; token indices, xi). For Event 
2 in Figure 2, TA,2 = (eA,2 = Drug; xA,2 = [8]) and TB,2 = (eB,2 = Drug; xB,2 = [8, 9]). 

Triggers of the same event type, e, are aligned by minimizing the distance between span 

centers computed from the token indices. Trigger equivalence is defined as

T i ≡ T j if (ei ≡ ej) ∧ (T i aligned with T j) . (1)

Although there are two drug events in the Figure 2 example, TA,2 aligns with TB,2 because 

of the overlapping spans.

Argument: Events are aligned based on trigger equivalence, and the arguments of aligned 

events are compared using different criteria for labeled arguments and span-only arguments. 

Labeled arguments, Li, are represented as a triple (argument type, ai; token indices, xi; 

subtype, li). For Event 2 in Figure 2, LA,2 = (aA,2 = Status; xA,2 = [9], lA,2 = current) and 

LB,2 = (aB,2 = Status; xB,2 = [7], lB,2 = current). For labeled arguments, the argument type, a, 

and subtype, l, capture the salient information and equivalence is defined as

Li ≡ Lj if (T i ≡ T j) ∧ (ai ≡ aj) ∧ (li ≡ lj) . (2)

Span-only arguments, Si, are represented as a pair (argument type, ai; token indices, xi). For 

Event 2 in Figure 2, SA,3 = (aA,3 = Type; xA,3 = [7]) corresponds to “cocaine.” Span-only 

arguments are not easily mapped to a fixed set of classes, and the identified span, x, contains 

the most salient argument information. Span-only arguments with equivalent triggers and 

argument types, (Ti ≡ Tj) ∧ (ai ≡ aj), are compared at the token-level (rather than the span-

level) to allow partial matches. Partial match scoring is used as partial matches can still 

contain useful information.

Cohen’s Kappa: We evaluate annotator agreement using Cohen’s Kappa, κ, coefficient, 

where higher κ denotes better annotator agreement [35]. Calculating κ for the full event 

structure is not informative, because the probability of random agreement is close to zero. 
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Instead, we calculate κ for trigger annotation in the subset of sentences with zero or one 

trigger for a given event type in either set of annotations, which covers most of the data. We 

focus on this subset of sentences, because triggers for a given event type are equivalent, if 

the annotated sentences both include one trigger of that type. We assess annotator agreement 

on the full event structure using F1 scores.

3.5. Annotation Statistics

SHAC consists of 4,480 annotated social history sections (70% train, 10% development, 

20% test). Table 2 presents the corpus composition by source. The SHAC training samples 

are 29% randomly selected and 71% actively selected. All development and test data are 

randomly sampled. Figure 3 presents the event type distribution. The most frequent event 

types are Drug, Tobacco, Alcohol, Living status, and Employment, with the remaining event 

types occurring infrequently.

Figure 4 presents the annotator agreement for all event types in terms of F1 score for 300 

doubly annotated notes from the first two rounds of annotation. For Alcohol, Drug, Tobacco, 
Employment, and Living status, trigger κ is 0.94 – 0.97. For the remaining event types, 

trigger κ is 0.61 – 0.90. κ is calculated for sentences with 0-1 events for each type (≥ 99% of 

all sentences). The trigger agreement is very high, in terms of F1 and κ, indicating the 

annotators are consistently identifying and distinguishing between events. The argument 

agreement is also high for labeled arguments. The somewhat lower agreement for span-only 

arguments is primarily due to small differences in the start and end token spans (e.g. 

“construction worker” vs. “construction”).

4. Active Learning

This section presents the active learning framework used create SHAC and describes the 

associated performance gains.

4.1. Methods

A portion of the SHAC training samples were selected using active learning, where a sample 

is a social history section. Specifically, batch-mode active learning was used to facilitate 

coordination with human annotators through the cyclical cyclical process shown in Figure 5.

A batch of samples, B, was annotated and added to the labeled pool, L. The surrogate 

classifier was trained on L and then generated uncertainty scores for unlabeled data U. Using 

the uncertainty scores, the query function identified the next batch of samples, B. This 

process was repeated until the annotation objective was met.

Similar to Wu and Ostendorf [23], a query score is designed to combine informativeness and 

diversity scores of a batch of samples, B. Here, the score has the form:

Q(B) = ∑
i ∈ B

(1 − si)αu(i) (3)

where u(i) is the uncertainty entropy of sample i, si is the similarity score of sample i relative 

to B, and (1 – si) is the diversity score. α is a weight used to balance the relative importance 
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of the two scores (α > 0). The objective is to maximize the batch score, Q(B). We explored 

different forms for the uncertainty and similarity scores for this multi-label scenario. We 

implemented a greedy approach to selecting examples, as shown in Algorithm 1.

Algorithm 1:

Greedy query function

Input: unlabeled samples U, batch size N

Output: batch of samples B

B ← ∅

while |B| < N do

k argmaxi ∈ UQ(B ∪ i);
B ∪ k ;

U U − k ;
end

Diversity: Sample diversity is assessed in the observation space using two different 

similarity metrics: average similarity and maximum similarity, defined as

sia = 1
B ∑

j ∈ B, j ≠ i
aj, i sim = max

j ∈ B, j ≠ i
aj, i,

respectively, where aj,i is the cosine similarity of samples j and i. The maximum similarity 

approach is a stricter condition that pushes the batch of samples farther apart in the 

observation space, especially with larger batch sizes. Similar to Lilleberg et al. [36], 

unsupervised vector representations of samples were learned as the TF-IDF weighted 

averages of pre-trained word embeddings. Word embeddings were created using the 

word2vec skip-gram model [37] and trained on the entirety of the MIMIC discharge 

summaries (not just the social history sections). Separate TF-IDF weights were calculated 

for MIMIC and UW Dataset samples.

Uncertainty: Active learning query functions typically assess sample informativeness 

(uncertainty) using the target classification task. In this work, sample uncertainty was 

assessed using a simplified surrogate classification task, as a proxy for the more complex 

event-based annotation scheme. The SHAC annotation scheme includes some arguments 

(e.g. Status for Alcohol) that are more predictive of negative health outcomes than others 

(e.g. Type for Alcohol), and the prediction uncertainty varies across event types and 

arguments. To ensure the query function biases selection towards the most salient arguments, 

each of the five most frequent event types in SHAC were represented using the single 

argument that is most predictive of negative health outcomes: Alcohol-Status, Drug-Status, 
Tobacco-Status, Employment-Type, and Living status-Status. To cover samples with 

multiple events of the same type (e.g. both previous and current tobacco use described), an 

additional class, “multiple,” is added to the argument subtypes, yl, in Table 1, yc = {yl ∪ 
“multiple”}.
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The text classification model, Surrogate Classifier in Figure 6, was used to assess sample 

uncertainty. The Surrogate Classifier operates on a sample, as a single sequence of n tokens 

without line breaks. The input social history section is mapped to contextualized word 

embeddings using Bio+Discharge Summary BERT [38], a version of BERT [39] trained on 

clincal text from MIMIC. The BERT output feeds into a bidirectional long short-term 

memory (bi-LSTM) layer, the output of which feeds into event-specific output layers. 

Separate self-attention (Attn) output layers for each event type make sample-level 

predictions. Details of the Surrogate Classifier are similar to the shared and event-argument 

layers of the full event detec-tion system described in the next section. The Surrogate 

Classifier generates a set of five multi-class predictions for each sample, one for each event 

type.

We explored two approaches to characterizing sample uncertainty: i) the sum of the five 

event entropy values, similar to previous work [32, 40–42], and ii) entropy for an individual 

event type, iterating over all types (referred to as “loop”). As a “loop” example, Alcohol-
Status entropy is used for sample 1, Drug-Status entropy is used for sample 2, and so forth, 

starting over with Alcohol-Status entropy for sample 6. The second method was motivated 

by the concern that summing the entropy values (referred to as “sum”) could overly bias the 

selection process in favor of high-entropy event types, reducing the diversity of event types.

4.2. Experiments & Results

Query strategy selection: Due to limitations in the annotation budget, the query strategy 

was determined early in the annotation effort. We used the first 700 annotated samples, LQ, 

which consists of random MIMIC samples. LQ was partitioned into LQ
T  ≔ {620 train 

samples} and LQ
D ≔ {80 development samples}. For random sampling and each active 

sampling configuration, 10 runs were performed:

i. LT1 ← 100 samples from 100 samples from LQ
T . Train model, M1, on LT1

ii. LT1 ← 100 samples from {LQ
T − LT1} (random or active). Train model, M2, on 

{LT1 ∪ LT2}

iii. Evaluate the performance of M2 on LQ
D

Active sampling experimentation included different uncertainty types (“loop” vs. “sum”), 

similarity types (“average” vs. “maximum”), and α values {0.1, 1, 2}. All active learning 

configurations outperform the random baseline with significance (p < 0.053). The best 

configuration, uncertainty type =“sum”, similarity type=“maximum”, and α = 0.1, was used 

in active selection. This configuration and other hyperparameters of the Surrogate Classifier 

were tuned on LQ
D (for details, see Tables A3 and A4 in the Appendix).

Active learning performance: After the first round of active learning, performance of 

the Surrogate Classifier was evaluated to confirm the effectiveness of the active learning 

framework. Model training included the sets: LY ≔ {284 YVnotes samples} and LR ≔ {532 

3Significance was assessed using Welch’s T-test, which is T-test variant that assumes unequal variances is the test distributions.

Lybarger et al. Page 9

J Biomed Inform. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



random MIMIC train samples}. YVnotes was used to train the Surrogate Classifier to 

improve its accuracy and thereby obtain a better uncertainty score. LR was partitioned into 

LR
I  ≔ {288 initial training samples} and LR

P  ≔ {244 remaining samples, LR − LR
I }. For the 

first round of active selection, an initial model, MI, was trained on {LR
I ∪ LY } and used to 

select 400 MIMIC samples, LA. LR
P  was withheld when training MI to validate the active 

learning approach. Hyperparameters were tuned on LD ≔ {188 MIMIC development 

samples} (parameter values in Table A4 of the Appendix).

Figure 7 presents the performance of four cases on LE ≔ {376 MIMIC test samples}. For 

MIMIC-only initial, +random, and +active, 10 runs were performed to account for variance 

in model initialization. For MIMIC-only initial and +random, the training sets are fixed, as 

all data is used each run. For +active, the training set varies because only a subset of LA is 

randomly selected each run, so sampling variance is introduced. The error bars in Figure 7 

indicate the standard deviation of the F1 scores across runs. Comparing MIMIC-only initial 
to initial demonstrates that including YVnotes improves performance. Adding active 

samples to the initial training set yields a statistically significant improvement over adding 

random samples (p < 0.063), demonstrating the effectiveness of the active learning 

framework on the surrogate task.

The effectiveness of the active learning framework on the target event extraction task for the 

same conditions is presented in Figure 8, where scores are averaged across event types.4 The 

details of the event extraction model are presented in Section 5. The performance achieved 

by adding active samples outperforms that of adding random samples for labeled argument 

and span-only argument extraction, with significance (p < 0.013). The addition of actively 

selected notes improved extraction performance, relative to the random baseline, across most 

annotated phenomena. However, the largest active learning performance gains were 
achieved for prominent health risk factors, including past and current drug use, 
current tobacco use, unemployment, homelessness, and living with others (+0.09 ΔF1 

for current Drug Status, +0.14 ΔF1 for past Drug Status, +0.07 ΔF1 for current Tobacco 
Status, +0.04 ΔF1 for unemploye. Employment Status, +0.06 ΔF1 for homeless Living 
Status Type, and +0.07 ΔF1 for with others Living Status Type). The difference in trigger 

performance is not statistically significant. This result validates the use of the simplified 

surrogate text classification task as a proxy for the more complex event extraction task. After 

validating the active learning strategy, three additional rounds of active selection were 

performed (see Table A2 of the Appendix for details), and the Surrogate Classifier model 

was retrained prior to each active round. Due to the limited number of random samples, 

further comparisons of active vs. random sampling are not possible.

We hypothesized the Surrogate Classifier uncertainty would bias the selection process to 

include more health risk factors (e.g. positive substance abuse, unemployment, being on 

disability, homelessness, etc.), which tend to be more challenging to automatically extract 

than less risky behavior (e.g. no sub stance use, being employed, and living with family). 

Active learning successfully identified samples with richer, more detailed SDOH 

4For the Event Extractor, we exclude LY since YVnotes do not include all of the labeled phenomena of SHAC.

Lybarger et al. Page 10

J Biomed Inform. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



descriptions. Figure 9 presents the label frequency per sample (note section) for random and 

active samples for the entirety of SHAC. The frequency of positive substance use (Status ∈ 
{current, past}) is 83% higher in active samples than random samples, with the frequency of 

positive drug use 151% higher with active selection. Active sampling produced higher rates 

for all Employment Status labels, except retired. Descriptions of retirement, tend to have low 

entropy, because of the reliable presence of keywords like “retired” or “retirement.” 

Regarding Living Status, the rate of homeless is 109% higher in active samples than random 

samples, and the rate of with others is 81% higher. The rate of alone is slightly lower in 

active samples, likely due to lower entropy associated with the limited vocabulary used to 

describe living alone (e.g. “alone” or “by herself”).

5. Event Extraction

This section introduces the Event Extractor, which jointly predicts all the phenomena in 

Table 1, and presents the initial extraction results for SHAC.

5.1. Methods

The Event Extractor generates sentence and token-level predictions that are assembled into 

events, similar to the SHAC annotation scheme. The Event Extractor builds on our previous 

state-of-the-art neural multi-task extractor for substance abuse information [43]. It is a 

generalized version of this previous work and is shown in Figure 10.

Shared layers: Individual sentences are encoded using Bio+Discharge Summary BERT 
[44], creating an n × d matrix, where n is the sentence length in tokens and d is the BERT 

embedding size. BERT parameters are frozen during training (no back propagation) to limit 

computational cost. Similar to other work [45], only the last word piece embedding for each 

token is used, to simplify the downstream sequence tagging. The BERT encoding feeds into 

a bi-LSTM. The forward and backward outputs states of the bi-LSTM are concatenated 

resulting in n × 2u matrix, V, where u is the hidden size. V feeds into event type and 

argument-specific output layers.

Trigger: The presence of each event type is predicted using separate self-attentive binary 

classifiers (not present/present). Positive predictions serve as the trigger for assembling 

events, and the token position with the maximum attention weight serves as the trigger span. 

During training, event type k is considered present, if the sentence contains one or more 

events of type k. The trigger probability for event type k ∈ {1, ..,m} is calculated as

Pk
t = softmax(W k

t (Ak
t V )T + bk

t ) (4)

where W k
t , is 2 × 2u weight matrix, bk

t  is a 2 × 1 bias vector, and Ak
t , is a 1 × n vector of 

attention weights

Ak
c = softmax(Y k

cV T) for k = 1, …, m (5)
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and Y k
c is another learned weight matrix. The trigger probabilities, Pk

t , are concatenated to 

form a 2 × m matrix, Pt, for the labeled argument prediction. An event is detected if it has 

probability greater than 50%.

Labeled arguments: Labeled argument prediction is also treated as a text-classification 

task, and utilizes separate self-attentive output layers for each labeled argument. The token 

position with the maximum attention weight serves as the argument span. The probability of 

labeled argument l for event type k is calculated as

Pk, l
s = softmax(W k, l

s [P t, (Ak, l
s V )T] + bk, l

s ) (6)

where W k, l
s  is a weight matrix, Ak, l

s  is a vector of attention weights, and bk, l
s  is a bias vector. 

The dimension of Pk, l
s  depends on the number of possible labels for that event-argument 

combination. The labeled argument probabilities, Pk, l
s , are concatenated to form a 2 × 6 

matrix, Ps, for use in span-only argument detection. Experimentation included six labeled 

arguments: Status for Alcohol, Drug, and Tobacco; Status for Employment; and Status and 

Type for Living status.

Span-only arguments: Span-only arguments are predicted using linear-chain Conditional 

Random Field (CRF) [46] output layers at the output of the bi-LSTM, which is a popular 

sequence tagging approach [47, 48]. The bi-LSTM network learns sequential word 

dependencies, and the CRF learns conditional dependencies between labels. A separate CRF 

extracts the span-only arguments for each event type (i.e. five CRF output layers), with input 

features V and Ps. Sequence labels are represented using the begin-inside-outside (BIO) 

approach. Experimentation included 20 span-only arguments: Duration, History, Type, 
Amount, and Frequency for Alcohol, Drug, and Tobacco; Duration, History, and Type for 

Employment; and Duration and History for Living status.

Training: The Event Extractor was trained on the entire SHAC train set to simultaneously 

extract substance abuse, living situation, and employment information. Similar to previous 

multitask work [49–54], the Event Extractor shares information across tasks (event types and 

arguments in this application). The Event Extractor hyperparameters were tuned on the 

development set, LD (parameter values in Table A4 of the Appendix).

5.2. Results

Figure 11 and Table 3 present the trigger and argument performance of the Event Extractor 

on the MIMIC and UW Dataset test sets. As described in Section 3.4, the argument 

extraction performance accounts for the alignment of the event triggers (i.e. only arguments 

with equivalent triggers can be equivalent). Overall, performance is higher on MIMIC, even 

though there are more UW Dataset training samples, including more active samples. The 

UW Dataset portion of SHAC includes four different note types, whereas the MIMIC 

portion includes only one note type, which likely contributes to the lower performance on 

the UW Dataset.
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Table 3 presents detailed results for the same Event Extractor model and data configuration 

as Figure 11. Trigger performance is greater than 0.89 F1 for all event types in both data 

sets. Labeled argument performance is similar in both data sets for Alcohol and Tobacco 
Status; however, there are performance differences for Drug, Employment, and Living status 
labeled arguments. In substance use Status prediction, the none label is typically less 

confusable and easier to predict than past and current. In the test set, the relative frequency 

of none Status labels for Drug events is higher in MIMIC samples (80%) than UW Dataset 

samples (57%), which contributes to the higher performance on MIMIC. Living status Status 
performance is lower in the UW Dataset, even though the distribution of Status labels is 

similar in both data sets. Living status Type performance is 0.12 F1 higher in MIMIC than 

the UW Dataset. In the test set, the distribution of Living status Type labels differs greatly 

between the data sets with the UW Dataset at 37% with family, 22% with others, 26% 

homeless, and 15% alone and MIMIC at 57% with family, 16% with others, 2% homeless, 

and 25% alone. For the span-only arguments, the performance is calculated at the token-

level and micro averaged across the arguments for each event type. Span-only argument 

performance is comparable for Alcohol, Tobacco, and Employment. However, it is higher 

for Drug span-only arguments in MIMIC than the UW Dataset. Living status span-only 

argument performance is very low for both data sets, primarily due to sparsity in the training 

set (only 167 Duration and History arguments among 3,267 Living status events).

5.3. Limitations

Although the Event Extractor achieved high performance for most target phenomena, the 

extraction framework has several limitations. The Event Extractor treats trigger and labeled 

argument prediction as a text classification task and can only represent a single event of a 

given type per sentence. Figure 12a presents predicted labels for a sentence with multiple 

gold Drug events describing current marijuana use and previous cocaine use. While the Type 
predictions in this example are correct, the Status prediction of past is incorrectly associated 

with both marijuana and cocaine. Of the sentences with at least one event in SHAC, 6% 

contain multiple events of the same type. Span-only arguments for each event type are 

extracted using a single CRF, which cannot accommodate overlapping spans. Figure 12b 

presents predictions for a sentence where the gold span-only argument spans overlap. The 

Amount is correctly labeled as “about 1 pint of vodka,” but there should also be a Type 
argument of “vodka.” Approximately 6% of span-only arguments in events of the same type 

overlap in SHAC. The Event Extractor treats sentences independently. It does not 

incorporate context from the preceding sentences and cannot generate events that span 

multiple sentences. Figure 12c presents predictions for an example where past tobacco use is 

described in concurrent sentences. The first sentence includes a strong cue for past Status, 

“quit”; however, the Status in the second sentence is less clear without previous context. 

Fewer than 2% of SHAC events span multiple sentences.

6. Conclusions

We present a new clinical corpus, SHAC, with detailed event-based annotations for 12 

SDOH. SHAC includes approximately 4.5K social history sections from multiple 

institutions and note types and contains frequent descriptions of alcohol, drug, and tobacco 
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use, employment, and living status. Approximately 71% of the SHAC training set was 

selected using a novel active learning framework that utilizes a surrogate task for assessing 

sample uncertainty, which increased the prevalence of critical risk factors in the annotated 

training data, including positive substance use, unemployment, disability, and homelessness, 

aM increased event extraction performance, relative to using only randomly selected 

samples. The actively selected samples improve performance in both the surrogate task and 

the target event extraction task, validating the surrogate task approach. A neural multi-task 

model is presented for characterizing substance use, employment, and living status across 

multiple dimensions, including status, extent, and temporal fields. The event extractor model 

achieves high performance on the MIMIC and UW Dataset: 0.89-0.98 F1 in identifying 

distinct SDOH events, 0.82-0.93 F1 for substance use status, 0.81-0.86 F1 for employment 

status, and 0.81-0.93 F1 for living status type. The annotation guidelines and source code 

will be made available online5.
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Appendix

Table A1:

Annotation guideline summary for all event types.

Event type, e Argument type, a Argument subtypes, yl Span examples

Substance use (Alcohol, Drug, & 
Tobacco)

Status* {none, current, past} “denies,” “smokes”

Duration – “for the past 8 years”

History – “seven years ago”

Type – “beer,” “cocaine”

Amount – “2 packs,” “3 drinks”

Frequency – “daily,” “monthly”

Employment Status* {employed, unemployed, 
retired, on disability, student, 
homemaker}

“works,” “unemployed”

Duration – “for five years”

History – “15 years ago”

Type – “nurse,” “office work”

Living status Status* {current, past, future} “lives,” “lived”

Type* {alone, with family, with 
others, homeless}

“with husband”

Duration – “for the past 6 months”

History – “until a month ago”

Insurance Status {yes, no} “has been off”’

Sexual orientation Status {current, past} “participated in”

5https://github.com/uw-bionlp
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Event type, e Argument type, a Argument subtypes, yl Span examples

Type {heterosexual, homosexual, 
bisexual}

“homosexual”

Gender identity Status {current, past} “identifies as”

Type {cisgender, transgender} “transgender”

Country of origin Type – “England”

Race Type – “African American”

Physical activity

Status {none, current, past} “currently jogs”

Duration – “for several years”

History – “10 years ago”

Type – “walks”

Amount – “4 miles”

Frequency – “every evening”

Environmental exposure

Status {none, current, past} “no history”

Duration – “since 2001”

History – “until a month ago”

Type – “asbestos”

Amount – “significant”

Frequency – “daily”

*
indicates the argument is required.

Table A2:

Annotation round summary, including selection type (andom versus active) and training data 

used in active selection.

Round Source Selection Active learning training set Train Dev Test Total

1 MIMIC Random – 100 – – 100

2 MIMIC Random – 144 56 – 200

3 MIMIC Random – 288 112 – 400

4 UW Dataset Random – 84 140 280 504

5 MIMIC Active 572 samples (Round 3 train + 284 YVnotes) 400 – – 400

6 UW Dataset Random – 168 120 240 528

7 MIMIC Random – – 20 280 300

8 UW Dataset Random – 112 – – 112

9 UW Dataset Active 1336 samples (Rounds 3-8 train + 284 
YVnotes)

728 – – 728

10 UW Dataset Active 2064 samples (Rounds 3-9 train + 284 
YVnotes)

728 – – 728

11 MIMIC Active 3036 samples (Rounds 1-10 train + 284 
YVnotes)

384 – – 384

12 MIMIC Random – – – 96 96

TOTAL 3136 448 896 4480
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Table A3:

Active learning query function tuning performance.

Uncertainty Similarity α F1

loop average 1.0 0.788*

loop maximum 0.1 0.776*

sum average 2.0 0.788*

sum maximum 0.1 0.794*

*
indicates statistical significance (p < 0.05) relative to a random baseline of 0.752 F1.

Table A4:

Surrogate Classifier hyperparameters

Parameter Query function selection in Table A3 Active learning evaluation in Figure 7

batch size 20 100

learning rate 0.001 0.005

maximum gradient L2 norm 1.0 1.0

maximum length 200 200

number of epochs 500 500

LSTM hidden size 100 100

dropout, input to LSTM 0.7 0.4

dropout, output of LSTM 0.0 0.4

dropout, self-attention 0.7 0.4

Table A5:

Event Extractor hyperparameters

Parameter Figure 8, Figure 11, and Table 3

batch size 50

learning rate 0.005

maximum gradient L2 norm 0.5

maximum length 30

number of epochs 250

LSTM hidden size 100

dropout, input to LSTM 0.6

dropout, output of LSTM 0.4

dropout, self-attention 0.4
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Highlights

We present a corpus with annotations for 12 social determinants of health (SDOH).

Annotations benefit from active learning using a surrogate classification task.

A neural multi-task event extractor achieves high performance extracting SDOH.

Lybarger et al. Page 20

J Biomed Inform. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
BRAT annotation example
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Figure 2: 
Annotation examples describing event extraction as a slot filling task
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Figure 3: 
Event type distribution
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Figure 4: 
Annotator agreement for 300 doubly annotated MIMIC samples
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Figure 5: 
Active learning annotation cycle
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Figure 6: 
Surrogate Classifier used to assess sample uncertainty in active learning
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Figure 7: 
Surrogate Classifier performance with random and active samples, evaluated on MIMIC test 

samples.
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Figure 8: 
Event Extractor performance with random and active samples, evaluated on MIMIC test 

samples.
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Figure 9: 
Label frequency per social history section, comparing random and active sampling
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Figure 10: 
Event Extractor model
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Figure 11: 
Event Extractor average trigger and argument performance, comparing the MIMIC and UW 

Dataset test
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Figure 12: 
Error analysis examples
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Table 1:

Annotation guideline summary for the most frequent event types.

Event type, e Argument type, a Argument subtypes, yl Span examples

Substance use (Alcohol, Drug, & Tobacco)

Status* {none, current, past} “denies,” “smokes”

Duration – “for the past 8 years”

History – “seven years ago”

Type – “beer,” “cocaine”

Amount – “2 packs,” “3 drinks”

Frequency – “daily,” “monthly”

Employment Status* {employed, unemployed, retired, on disability, 
student, homemaker}

“works,” “unemployed”

Duration – “for five years”

History – “15 years ago”

Type – “nurse,” “office work”

Living status Status* {current, past, future} “lives,” “lived”

Type* {alone, with family, with others, homeless} “with husband,” “alone”

Duration – “for the past 6 months”

History – “until a month ago”

*
indicates the argument is required.
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Table 2:

Corpus composition by source

Source Train Dev Test

MIMIC 1,316 188 376

UW Dataset 1,820 260 520

TOTAL 3,136 448 896
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Table 3:

Event Extractor trigger and argument role performance trained on the entire SHAC train set, evaluated on the 

MIMIC and UW Dataset test sets.

Field Event type Argument
MIMIC UW

# P R F1 # P R F1

Trigger

Alcohol – 314 0.99 0.96 0.97 404 0.97 0.99 0.98

Drug – 194 0.96 0.95 0.96 481 0.97 0.92 0.94

Tobacco – 324 0.98 0.95 0.97 432 0.97 0.97 0.97

Employment – 169 0.93 0.96 0.94 148 0.86 0.91 0.89

Living status – 244 0.96 0.97 0.97 343 0.93 0.88 0.90

Labeled argument

Alcohol Status 314 0.92 0.89 0.90 404 0.92 0.94 0.93

Drug Status 194 0.91 0.89 0.90 481 0.85 0.80 0.82

Tobacco Status 324 0.91 0.89 0.90 432 0.91 0.90 0.90

Employment Status 169 0.84 0.88 0.86 148 0.79 0.83 0.81

Living status
Status 244 0.96 0.95 0.96 343 0.92 0.86 0.89

Type 244 0.93 0.93 0.93 343 0.85 0.78 0.81

Span-only argument

Alcohol Amount, Duration, Frequency, History, 
Type

396 0.70 0.74 0.72 420 0.67 0.80 0.73

Drug 219 0.67 0.75 0.71 583 0.62 0.63 0.62

Tobacco 799 0.81 0.83 0.82 880 0.78 0.81 0.79

Employment Duration, History, Type 441 0.80 0.74 0.77 261 0.77 0.77 0.77

Living status Duration, History 21 0.21 0.57 0.31 57 0.19 0.26 0.22
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