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Abstract
BACKGROUND 
The broader use of high-throughput technologies has led to improved molecular 
characterization of hepatocellular carcinoma (HCC).

AIM 
To comprehensively analyze and characterize all publicly available genomic, gene 
expression, methylation, miRNA and proteomic data in HCC, covering 85 studies 
and 3355 patient sample profiles, to identify the key dysregulated genes and 
pathways they affect.

METHODS 
We collected and curated all well-annotated and publicly available high-
throughput datasets from PubMed and Gene Expression Omnibus derived from 
human HCC tissue. Comprehensive pathway enrichment analysis was performed 
using pathDIP for each data type (genomic, gene expression, methylation, miRNA 
and proteomic), and the overlap of pathways was assessed to elucidate pathway 
dependencies in HCC.

RESULTS 
We identified a total of 8733 abstracts retrieved by the search on PubMed on HCC 
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for the different layers of data on human HCC samples, published until December 
2016. The common key dysregulated pathways in HCC tissue across different 
layers of data included epidermal growth factor (EGFR) and β1-integrin 
pathways. Genes along these pathways were significantly and consistently 
dysregulated across the different types of high-throughput data and had 
prognostic value with respect to overall survival. Using CTD database, estradiol 
would best modulate and revert these genes appropriately.

CONCLUSION 
By analyzing and integrating all available high-throughput genomic, 
transcriptomic, miRNA, methylation and proteomic data from human HCC 
tissue, we identified EGFR, β1-integrin and axon guidance as pathway 
dependencies in HCC. These are master regulators of key pathways in HCC, such 
as the mTOR, Ras/Raf/MAPK and p53 pathways. The genes implicated in these 
pathways had prognostic value in HCC, with Netrin and Slit3 being novel 
proteins of prognostic importance to HCC. Based on this integrative analysis, 
EGFR, and β1-integrin are master regulators that could serve as potential 
therapeutic targets in HCC.

Key Words: Hepatocellular carcinoma; Gene expression; miRNA; Methylation; 
Proteomics; High throughput data
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Core Tip: Analyzing all available high-throughput genomic, transcriptomic, miRNA, 
methylation and proteomic data from human hepatocellular carcinoma tissue, we 
identified master regulators of key pathways in hepatocellular carcinoma, such as the 
mTOR, Ras/Raf/MAPK and p53 pathways.
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INTRODUCTION
The molecular basis of hepatocellular carcinoma (HCC) has been elusive, given the 
significant heterogeneity of this tumor that arises in the context of various chronic liver 
diseases[1]. HCC remains a high-fatality cancer, despite large-scale efforts to better 
characterize and therapeutically target this malignancy. Since prevalence of cirrhosis 
due to hepatitis C and fatty liver disease is increasing in North America, HCC 
continues to rise[2]. Five-year survival remains poor at 18% due to late diagnosis and 
inability to tolerate chemotherapy in patients with cirrhosis[2]. Consequently, there is 
an urgent need to better understand the molecular basis of this highly fatal cancer.

Clinical management of HCC is optimized based on disease stage[3]. Curative 
treatment with resection, radiofrequency ablation or transplantation is possible in 
early stage disease[4]. When HCC is diagnosed at a later stage, sorafenib is the first-line 
chemotherapy, which is directed against the Ras/Raf/MAPK pathway[4]. This is 
associated with a very modest improvement in overall survival of 3 additional months 
as compared to placebo (10.7 mo vs 7.9 mo)[5].

The cancer genome atlas (TCGA) is a large-scale project that has enabled improved 
characterization of cancers with several layers of data. The TCGA multi-platform 
analysis of 196 HCC tumors described this cancer as highly heterogeneous and 
difficult to characterize, although certain key pathways did emerge including the 
Ras/Raf/MAPK, mTOR, Wnt/B-catenin, and Sonic Hedgehog pathways[1,6]. 
Integration of various types of data has previously been performed to map interaction 
networks. By integrating genomic, transcriptomic and proteomic data, one can 
understand potential interactions that contribute to a disease condition or process[7,8].
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 These interactions may otherwise not be uncovered, on the basis of a single type of 
data. This systems biology approach has been especially important in cancer, given 
that alterations in one gene can have a ripple effect on proteins in the rest of a protein-
protein interaction network. Therefore, elucidating the layers of data in a disease can 
provide additional insights into the pathways that drive cancer[9].

In the current study, we aim to characterize the landscape of high-throughput data 
profiling in HCC and determine the patterns in key dysregulated genes and pathways 
across these different layers of data. The patterns that emerge could help in better 
understanding the pathways that drive HCC and could be considered as therapeutic 
targets.

MATERIALS AND METHODS
Data collection, analysis and database compiling
We downloaded all available high-throughput genomic, transcriptomic, microRNA, 
methylation, and proteomic datasets related to human HCC samples from published 
datasets (PubMed, http://www.ncbi.nlm.nih.gov/PubMed and Gene Expression 
Omnibus (GEO), https://www.ncbi.nlm.nih.gov/geo).

Using PubMed, the following search was performed for whole exome sequencing 
data on HCC: ("carcinoma, hepatocellular" [MeSH Terms] OR ("carcinoma" [All Fields] 
AND "hepatocellular" [All Fields]) OR "hepatocellular carcinoma" [All Fields] OR 
("hepatocellular" [All Fields] AND "carcinoma" [All Fields])) AND (whole [All Fields] 
AND ("exome" [MeSH Terms] OR "exome" [All Fields]) AND sequencing [All Fields]). 
The following MeSH terms were used to identify gene expression papers: ("carcinoma, 
hepatocellular" [MeSH Terms] OR ("carcinoma" [All Fields] AND "hepatocellular" [All 
Fields]) OR "hepatocellular carcinoma" [All Fields] OR ("hepatocellular" [All Fields] 
AND "carcinoma" [All Fields])) AND ("gene expression" [MeSH Terms] OR ("gene" 
[All Fields] AND "expression" [All Fields]) OR "gene expression" [All Fields]) AND 
("humans" [MeSH Terms] OR "humans" [All Fields]) AND English [All Fields] NOT 
("review" [Publication Type] OR "review literature as topic" [MeSH Terms] OR 
"reviews" [All Fields]). To identify suitable papers regarding methylation in HCC, we 
used the following terms: ("methylation" [MeSH Terms] OR "methylation"[All Fields]) 
AND ("carcinoma, hepatocellular" [MeSH Terms] OR ("carcinoma" [All Fields] AND 
"hepatocellular" [All Fields]) OR "hepatocellular carcinoma" [All Fields] OR 
("hepatocellular" [All Fields] AND "carcinoma" [All Fields]) AND ("humans" [MeSH 
Terms] AND English [lang]). Proteomics papers were retrieved using the following 
search: [("proteomics" [MeSH Terms] OR "proteomics" [All Fields]) AND high [All 
Fields] AND throughput [All Fields]] AND ("carcinoma, hepatocellular" [MeSH 
Terms]) OR ("carcinoma" [All Fields] AND "hepatocellular" [All Fields]) OR 
"hepatocellular carcinoma" [All Fields] OR ("hepatocellular"[All Fields] AND 
"carcinoma"[All Fields]). MicroRNAs reported in HCC were identified using these 
MeSH terms: ("micrornas" [MeSH Terms] OR "micrornas"[All Fields] OR "mirna" [All 
Fields]) AND profile [All Fields] AND ("carcinoma, hepatocellular" [MeSH Terms] OR 
("carcinoma" [All Fields] AND "hepatocellular" [All Fields]) OR "hepatocellular 
carcinoma" [All Fields] OR ("hepatocellular" [All Fields] AND "carcinoma" [All 
Fields]).

We considered for inclusion all datasets available in PubMed.
The datasets publicly available on the GEO, a public functional genomics data 

repository of high-throughput array data (https://www.ncbi.nlm.nih.gov/geo) were 
retrieved and analyzed using GEO2R (https://www.ncbi.nlm.nih.gov/geo/
info/geo2r.html), a web tool available on the portal, identifying genes differentially 
expressed between samples of HCC and the non-tumoral liver portion. GEO2R 
compares original submitter-supplied processed data tables using the GEOquery and 
limma R packages from the Bioconductor project. Following instructions available 
online at (https://www.ncbi.nlm.nih.gov/geo/info/geo2r.html), we retrieved all 
dysregulated genes. Only those with an adjusted P value < 0.05, and expression fold 
change value below ≤ 0.5 or above ≥ 1.5 were considered for further analysis (Table 1, 
Supplementary Table 1). The genes included in our list from WES papers were 
reported as affected by nonsynonymous mutations, and synonymous mutations were 
not considered. Putative microRNA gene targets were identified using an online 
database, mirDIP 4.1[10], (http://ophid.utoronto.ca/mirDIP). The most stringent 
predictive search option (top 1%) was used to obtain the list of putative targets of all 
differentially expressed miRNAs.

From the selected 11 methylation datasets, raw data from eight studies were 
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Table 1 List of the final 85 selected publications for each layer of data. For each publication the number of hepatocellular carcinoma 
samples and controls and the platform used for the analysis are reported

Gene expression

No. year PMID HCC (n) Controls (n) GEO dataset

1 2004 17393520 35 13 GSE6764

2 2008 18504433 11 2 GSE6222

3 2008 18923165 80 82 GSE10143

4 2009 19098997 47 58 GSE14323

5 2009 19861515 16 47 GSE17967

6 2011 21320499 34 34 GSE20140 (GSE10141, 
GSE10140)

7 2011 21712445 40 40 GSE28248

8 2013 23691139 15 15 GSE17548

9 2013 23800896 GSE36376_276; 
GSE25097_211

GSE36376_247; 
GSE25097_283

GSE36376, GSE25097

10 2014 24498002 46 46 GSE47595

11 2014 24564407 45 45 GSE45114

12 2014 25093504 39 40 GSE57958

13 2014 25141867 11 11 GSE55092

14 2014 25376302 18 18 GSE60502

15 2014 25536056 72 72 GSE39791

16 2015 25666192 132 132 GSE54236

17 2015 25645722 228 168 GSE63898

18 2016 27499918 60 60 GSE64041

19 2016 25964079 26 20 GSE54238

Proteomics

No. year PMID HCC (n) Controls (n)

1 2004 14726492 8 8

2 2008 19003864 12 12

3 2005 15759316 10 10

4 2005 16097030 14 14

5 2007 17627933 12 12

6 2014 23621634 3 3

7 2009 19562805 3 3

8 2016 26709725 24 12

9 2013 23589362 20 20

10 2012 22813877 10 10

11 2012 22082227 11 11

12 2011 21631109 69 123

13 2010 20230046 5 5

14 2010 19956837 20 20

15 2009 19715608 18 18

16 2009 19535095 3 3

17 2009 19161326 80 80
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18 2004 15221772 20 20

19 2003 14673798 21 21

20 2003 14654528 21 21

21 2002 12481271 11 11

22 2013 23462207 7 7

23 2005 16335951 8 8

24 2006 16342242 10 10

25 2011 22034872 3 3

26 2005 15852300 7 7

27 2011 21913717 3 3

28 2007 17203974 25 28

29 2007 17586277 10 10

Whole exome sequencing

No. year PMID HCC (n) Controls (n) GEO dataset

1 2013 23912677 3 3 N/A

2 2014 24055508 4 7 N/A

3 2017 28323123 5 5 N/A

4 2014 24798001 231 231 GSE54504

5 2012 22561517 24 24 N/A

Epigenetic_miRNAs

No. year PMID HCC (n) Controls (n) GEO dataset

1 2015 26190160 9 7 N/A

2 2014 24789420 10 9 GSE31383

3 2014 24564407 45 45 GSE10694

4 2011 21298008 73 73 GSE21362

5 2008 18649363 78 10 N/A

6 2012 22135159 20 20 N/A

7 2011 21319996 94 94 N/A

8 2009 19473441 20 20 N/A

9 2009 19173277 35 N/A

10 2007 18171346 10 10 N/A

11 2006 16331254 25 25 N/A

12 2015 26062888 30 30 N/A

13 2015 26046780 327 43 N/A

14 2015 25861255 66 66 GSE54751

15 2015 25500075 6 6 GSE54537

16 2014 24875649 24 24

17 2013 23812667 166 166 GSE31384

18 2013 23390000 9 17 GSE40744

19 2012 23082062 18 18 N/A

20 2014 24586785 29 29 N/A

21 2013 24417970 78 78 N/A

Epigenetic methylation
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No. year PMID HCC (n) Controls (n) GEO dataset

1 2011 21500188 13 12 N/A

2 2014 24306662 45 45 N/A

3 2014 25376292 22 22 N/A

4 2015 25945129 8 8 GSE59260

5 2011 21747116 12 12 GSE29720

6 2010 20165882 20 20 GSE18081

7 2012 22234943 62 62 GSE37988

8 2013 24012984 20 8 GSE44970

9 2013 23208076 66 66 GSE54503

10 2014 25093504 59 59 GSE57956

11 2014 25294808 27 27 GSE60753

HCC: Hepatocellular carcinoma; GEO: Gene Expression Omnibus; N/A: Not applicable.

available on the GEO website (https://www.ncbi.nlm.nih.gov/geo/). We selected the 
CpG sites or genes reported to be hyper-or hypo- methylated in these publications. 
The genomic region was considered differentially methylated between HCC tissue and 
the adjacent non-tumoral sample, if the FDR corrected P value < 0.01. Furthermore, we 
filtered out everything that did not satisfy the criteria: ∆β ≥ 0.20 or ∆β ≤ -0.20, where 
∆β = βHCC - βadjacent was the difference in methylation between above specified 
groups. When the CpG sites were considered, the Illumina HumanMethylation450K 
and 27K platforms were used for mapping to the genes. When multiple sites or genes 
were found to have the same sense of differential methylation, the mean value of ∆β 
was calculated. Only the CpGs in the 5’UTR, 1st Exon, TSS200, TSS1500 or in CpG 
islands were considered in our analysis. Proteomic results were retrieved and included 
only if protein abundance was reported as different in HCC liver samples compared to 
control samples.

Figure 1 outlines our study workflow. Papers were excluded from each specific 
search for the following reasons: Data from cell lines, or animal models, studying 
efficacy or drugs, or the presence of long non-coding RNA, mechanistic studies not 
performing high-throughput or evaluating the role of one molecule, papers focused on 
liver diseases but not HCC or liver tissue, not original data such as review articles, or 
those studies using already selected datasets, not reporting the modulation of the 
molecules, and papers without data available.

Available patient data, including etiology of liver disease (hepatitis C, hepatitis B, 
alcohol, fatty liver disease) on the basis of which the HCC tumors developed, presence 
of cirrhosis, the Model for End-stage Liver Disease score (MELD score, an assessment 
of the severity of liver dysfunction), tumor histology, stage of cancer, alpha-fetoprotein 
level, overall and recurrence-free survival following treatment were also documented (
Supplementary Table 2).

Pathway enrichment analysis
The key dysregulated genes from each type of data (genomic, miRNA, methylation, 
transcriptomic, and proteomic) were fed into the Integrated Interactions Database[11] 
(IID, http://ophid.utoronto.ca/iid), to obtain a list of the protein-protein interactions. 
For the miRNA dataset, we determined the target genes of the differentially expressed 
miRNAs in tumors using the miRNA Data Integration Portal mirDIP v4.1[10]. The 
individual lists derived from each type of data were then fed into the pathway Data 
Integration Portal, pathDIP v3.0 (http://ophid.utoronto.ca/pathDIP)[12], in order to 
determine the significantly dysregulated pathways in HCC. pathDIP integrates data 
from 20 major pathway databases, and computationally predicts gene association to 
curated pathways using protein-protein interactions from IID significance of their 
connectivity[12]. We used this comprehensive pathway enrichment analysis portal to 
obtain a list of significantly enriched pathways using literature curated (core) pathway 
memberships P value (FDR: BH-method) less than 0.05.

The lists of pathways from each type of data were then assessed for overlap using 
Venny 2.1, an online tool for Venn diagram design (http://bioinfogp.cnb. 

https://www.ncbi.nlm.nih.gov/geo/
http://f6publishing.blob.core.windows.net/70723f8d-2a5c-4e23-97f2-715f3c8e9864/WJH-13-94-supplementary-material.pdf
http://ophid.utoronto.ca/iid),
http://ophid.utoronto.ca/pathDIP
http://bioinfogp.cnb.csic.es/tools/venny/index.html
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Figure 1  Flow chart showing the paper selection process and exclusion criteria for each data type: Gene expression, proteomics, whole 
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exome sequencing, microRNAs and methylation.

csic.es/tools/venny/index.html).

Retrospective validation on independent dataset
In order to determine whether key differentially expressed genes along the 
overlapping pathways had prognostic value, we used KMplotter, a web-based tool 
that enables survival analysis across multiple cancers and datasets[13]. Patient samples 
were split into two groups per autoselection of the best cutoff for each gene, in order to 
assess its prognostic value. We ran multivariate overall survival analysis based on the 
high vs low expression of each gene in HCC tumors. The two groups were compared 
by a Kaplan-Meier survival plot, and the hazard ratio with 95% confidence intervals 
and log-rank P value were calculated.

Drug identification by CTD
The identification of putative therapeutic agents able to revert the modulation of genes 
of interest based on their modulation associated with a worse prognosis was obtained 
using the online Comparative Toxicogenomics Database http://ctdbase.org[14]. This 
database provides manually curated information about chemical–gene/protein 
interactions, chemical–disease and gene–disease relationships.

RESULTS
We identified a total of 8733 abstracts retrieved by the search on PubMed on HCC for 
the different layers of data on human HCC samples, published until December 2016. 
The flow chart outlining the selection process is detailed in Figure 1.

The number of samples included in our analysis are as follows: (1) Whole exome 
sequencing: 267 HCC and 270 control samples; (2) Gene expression: 870 HCC and 814 
control samples; (3) miRNA: 1172 HCC and 771 control samples; (4) Methylation: 354 
HCC and 341 control samples; and (5) Proteomics: 421 HCC and 473 control samples. 
The methodologies and platforms used to obtain these high-throughput data are 
reported by type of data (genomic, transcriptomic, miRNA, methylation and 
proteomic) in Table 1. Clinical data, regarding etiology of liver disease (hepatitis 
C, hepatitis B, alcohol, fatty liver disease) were frequently reported, on the other side 
serum levels of liver enzymes, AST and ALT, frequently used to assess liver functions 
were not available. Pathological details relative to differentiation or stage were 
frequently absent as well as other crucial variables in the clinic setting, such as Child 
Pugh/MELD score (Supplementary Table 2).

Integrative analysis reveals most important pathways in HCC
There were 188 overlapping dysregulated genes/proteins across the different types of 
data. Independently for each type of data, we obtained a list of pathways using 
pathDIP. We merged the list of dysregulated pathways in miRNA and methylation, 
given that these epigenetically regulate gene expression, in order to assess for 
overlapping pathways across the datasets.

This resulted in a list of 3 common, overlapping pathways among the different 
types of data: EGFR, β1-integrin, and axon guidance pathways, as depicted in Figure 2. 
From the previous list of 188 common dysregulated elements in all different layers of 
data (Figure 3), we were able to identify 35/188 genes that were involved in these 3 
shared pathways across the layers of data (Supplementary Table 1).

Prognostic value of pathways in HCC
We then examined the prognostic value of the deregulated genes associated to 
pathways of interest in HCC using TCGA RNA seq dataset, as listed in Table 2. 
Median survival of 364 patients in the TCGA, which was used for validation purposes 
regarding the prognostic value is reported. KMplotter HR results from TCGA RNA 
seq data reflected the altered modulation identified for these 9 genes in the 19 HCC 
papers relative to the gene expression data (Table 2). Among the five upregulated 
genes associated with positive HR values, CDK5, was reported with the highest HR 
value (1.85, P = 0.0035) and involved in cell cycle (Table 3). The other 4/9 genes 
reported as upregulated, COL2A1, LAMC1, RPS6KA3 and ITGB1 were identified with 

http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://ctdbase.org
http://f6publishing.blob.core.windows.net/70723f8d-2a5c-4e23-97f2-715f3c8e9864/WJH-13-94-supplementary-material.pdf
http://f6publishing.blob.core.windows.net/70723f8d-2a5c-4e23-97f2-715f3c8e9864/WJH-13-94-supplementary-material.pdf
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Table 2 Prognostic value of the 9 dysregulated genes associated with the 3 common dysregulated pathways (EGFR, epidermal growth 
factor, β1-integrin and axon guidance) among the 4 types of data in obtained with KMplotter

Gene Modulation in the 19 
HCC papers Probe-ID HR CI Log-Rank P 

value
Median survival 
low (mo)

Median survival 
high (mo)

Estradiol gene 
modulation predicted by 
CTD

COL2A1 Up 1280 1.49 1.05-2.11 0.0229 61.7 54.1 N/A

FGA Down 2243 0.52 0.35-0.77 0.0009 49.7 70.5 +

FGG Down 2266 0.56 0.39-0.79 0.0009 38.3 70.5 +

LAMC1 Up 3915 1.43 0.98-2.09 0.06 56.5 38.3 N/A

CDK5 Up 1020 1.85 1.22-2.81 0.0035 81.9 6.2 N/A

EPHB1 Down 2047 0.72 0.048-
1.08

0.1135 54.1 70.5 N/A

RPS6KA3 Up 6197 1.2 0.8-1.78 0.3743 54.1 56.5 -

EGFR Down 1956 0.61 0.43-0.89 0.0085 31 70.5 +

ITGB1 Up 3688 1.37 0.95-1.97 0.0924 82.9 49.7 N/A

CTD based prediction identified Estradiol to efficiently affect the expression of the 4/9 genes based on their hazard ratios values. HR: Hazard ratios; HCC: 
Hepatocellular carcinoma; CI: Confidence interval; N/A: Not applicable.

positive HR value by KM plotter analysis and involved in cellular migration (Table 2 
and Table 3).

Four out of 9 genes were reported as downmodulated in the 19 HCC gene 
expression papers. Among these four, two genes, FGA and FGG, were identified as the 
top statistically significantly (P = 0.0009) associated with a protective role in HCC (HR 
values 0.52 and 0.59, respectively). FGA and FGG were consistently reported as 
downmodulated in about 45% of our 19 selected gene expression papers (Table 3). The 
other two downmodulated genes, EPHB1 and EFGR with negative HR values (Table 2) 
are reported to be affected by missense mutation leading to a loss of their protective 
role against cell migration.

Estradiol is a therapeutic agent that appropriately targets HCC genes
Using CTD, we found that estradiol was able to appropriately down- or upmodulate 4 
out of 9 cancer-related genes (Table 2). Particularly, CTD reported estradiol capabilities 
to upregulated FGA, FGG and EGFR reported downmodulated in HCC (Table 2) and 
counteracting the upregulation of RPS6KA3 in HCC, suggesting a possible role for this 
hormone in HCC treatment.

DISCUSSION
In this study, we evaluate the molecular pathogenesis of HCC using a unique 
approach, that of combining all publicly available high-throughput data from patient 
HCC tumors. This encompasses all miRNA, methylation, genomic, transcriptomic and 
proteomic profiling data present in the literature, and represents the first effort to 
derive a consensus molecular model of HCC through analysis of these different types 
of data. Although these datasets originated from different patient cohorts, presented 
integrative analysis offers the opportunity to explore common key pathway 
dependencies of HCC. Starting with the initial generation of genomics and whole 
exome sequencing data, previous high-throughput studies have brought forth 
different lists of dysregulated genes, depending on the type of data evaluated. 
Dysregulated genes may affect different parts of a pathway. Therefore, a pathway-
based approach when evaluating different types of high-throughput data offers the 
ability to assess the pathways most commonly affected in a given cancer. Additionally, 
the integrative analysis in our study encompasses a large number of patient samples.

Using this integrative approach, we confirm the importance of EGFR, β1-
integrin and axon guidance as pathways critical in hepatocarcinogenesis. EGFR 
activates the signaling cascades of the Ras/Raf/MAPK and mTOR pathways, two 
pathways that were identified as key to HCC pathogenesis in the TCGA study[6]. The 
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Table 3 Modulation of the 9 dysregulated genes associated with the 3 common dysregulated pathways (EGFR, epidermal growth 
factor, β1-integrin and axon guidance) identified in the 19 hepatocellular carcinoma gene expression papers. Their genetic alteration in 
hepatocellular carcinoma and their mechanism in cancer are reported

Gene
Modulation in 
the 19 HCC 
papers

PMID Mutation in HCC 
(PMID) Role in cancer (PMID)

COL2A1 Up (2/19) 23800896/25666192 (rs3917) polymorphism is 
associated with higher 
risk of HCC (21665180)

COL2A1 promotes migration in 
HCC (29858962)

FGA Down (9/19) 21320499/23800896/25093504/25536056/25141867/ 
25376302/25666192/25645722/25666192

Deleted in HCC patients 
(27511114)

FGA is a positive predictor of 
survival in gastric cancer 
patients (15756001)

FGG Down 8/19 21320499/23800896/25093504/25536056/25141867/ 
25376302/25645722/24498002

Allelic loss (16980951) FGG is involved in amino acid 
and redox metabolism pathway 
in HCC (28089356)

LAMC1 Up (4/19) 23800896/25536056/25141867/25645722 Not identified LAMC1 promotes tumor cell 
invasion and migration in HCC 
(28928891)

CDK5 Up (2/19) 25141867/25376302 Not identified CDK5 promotes proliferation in 
HCC (29312535)

EPHB1 Down (2/19) 23800896/25141867 Missense mutation 
(19469653)

EPHB1 inhibits cell 
migration(22242939)

RPS6KA3 Up 1/19 25141867 Somatic mutation and 
copy number variations 
(22561517)

RPS6KA3 increases cell 
proliferation (15833840)

EGFR Down (2/19) 19098997/25141867 Missense mutation 
(26436086)

EGFR promotes cell adhesion 
(31465839)

ITGB1 Up (1/19) 25141867 Somatic number 
variations (24512821)

ITGB1 promotes migration 
(30664185)

HCC: Hepatocellular carcinoma.

identification of β1-integrin as being commonly dysregulated in HCC is novel, and its 
significance is confirmed through its consistent dysregulation across types of data. β1-
integrin is a cell surface receptor that senses the extracellular matrix, thereby 
modulating the hallmarks of cancer such as proliferative signaling with continuous 
activated cell replication, evasion of growth suppressors, resistance to angiogenesis as 
well as cancer cell invasion and metastasis[14]. Ras/Raf/MAPK and mTOR are 
established pathways in hepatocarcinogenesis, and are integrin-dependent signaling 
pathways[15]. Additionally, β1-integrin is known to crosstalk with EGFR. In fact, the 
downregulation of β1-integrin was found to decrease phosphorylation of EGFR and c-
Met in hepatocytes during liver regeneration[16]. A synergistic relationship between 
integrins and EGFR has also been demonstrated in tumor progression[17]. The finding 
of axon guidance pathway-related proteins as being dysregulated across types of data, 
thereby establishing consistent dysregulation of this pathway in HCC, is also novel. 
Netrin-1 is the best studied protein in the axon guidance pathway, and is known to be 
overexpressed in various cancers[13]. It is responsible for regulation of apoptosis, with 
increased presence of netrin-1 leading to inhibition of apoptosis. The tumor suppressor 
p53, frequently mutated in the TCGA HCC study, regulates the cell cycle through 
netrin-1. The axon guidance pathway has previously been identified as a pathway that 
is significantly mutated in HCC based on integration of all genomic data in HCC[18]. 
This analysis revealed mutations along the axon guidance pathway as being 
prognostic of a higher rate of HCC metastasis. We were able to additionally validate 
the prognostic importance of dysregulated proteins in these pathways proteins using 
TCGA data.

HCC is a cancer that develops in the context of various chronic liver diseases, which 
may influence the molecular characteristics of HCC. Additionally, the underlying 
cirrhosis and liver dysfunction that are often concurrent may influence HCC 
development and behavior[2]. Patients are often diagnosed at an advanced stage of 
disease, when it is too late for curative treatment. A unique consideration in HCC is 
the inability to tolerate hepatotoxic chemotherapy in patients with liver dysfunction, 
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Figure 2  Venn diagram shows the three common pathways (EGFR, epidermal growth factor, β1-integrin, and axon guidance pathways) 
across the four different types of data.

as it is often patients with cirrhosis who develop HCC[19,20]. Therefore, liver function 
must be considered prior to, during, and after any form of treatment for HCC.

Thus, especially for HCC, it has been suggested that a multi-pronged approach to 
HCC therapy jointly targeting different pathways be adopted.

Omics technologies are essential in the progress towards elucidating the molecular 
basis of HCC. The current study represents the largest integration of all publicly 
available genomic, gene expression, methylation, miRNA and proteomic data in HCC, 
covering 85 studies and 3355 patient sample profiles. We identified consistently 
deregulated pathways associated with hepatocarcinogenesis across different types of 
data using integrative analysis tools, thereby confirming the importance of these genes 
in HCC pathogenesis. EGFR (activator of Ras/Raf/MAPK and mTOR) and β1-integrin 
(also modulator of the aforementioned pathways) were clearly identified as pivotal to 
HCC[5,21-23]. This is in keeping with the efficacy of the Ras/Raf/MAPK inhibitors 
sorafenib and regorafenib in HCC[24].

Even beyond this, we found these consistently deregulated genes across pathways 
to be appropriately modulated by estradiol. HCC is less common in women, and there 
have been clinical studies demonstrating that hormone therapy and female sex are 
protective against HCC as described earlier in this thesis.

Other integrative multi-omics studies have been recently performed for other 
tumors with high mortality such as breast and ovarian cancer[6,25]. Several breast cancer 
studies emphasizing how data integration of genomic/transcriptomic and proteomic 
has improved the molecular characterization of subtypes of breast cancer and 
elucidate its heterogeneity and its interaction with the microenvironment and 
aggressiveness[26,27]. A single source of data was used in the ovarian cancer multi-omics 
mathematical integration performed by Bhardwaj et al[25]. Copy number variation gene 
expression and methylation data from TCGA data portal were integrated using 
mathematical algorithm and identified 32 co-expressed genes and 6 pathways 
associated with survival.

The main limitation of our study is the different patient samples represented by the 
various types of data. Nonetheless, there is a large amount of high-throughput data, 
which allowed us to detect pathway dependency patterns that are compatible with the 
current HCC literature. Additionally, HCC tumors arise in the setting of various 
chronic liver diseases. We could not assess for etiology-specific genes and pathways in 
this study, given that the clinical and genetic data to evaluate these differences were 
not fully available for all the studies. Therefore, we could only evaluate gene 
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Figure 3 From the previous list of 188 common dysregulated elements in all different layers of data. A: Number of genes/proteins identified in 
each data type; B: Venn diagram showing the 188 genes identified as commonly deregulated across the 4 different type of data.

differences over whole datasets, rather than individual patients, due not complete 
individual annotation of the samples available on GEO for each specific dataset. The 
HCC samples in this integrative analysis all came from patients who had undergone 
hepatectomy. There were no specimens from patients who were candidates for 
ablation therapy (early stage), those who were undergoing liver transplantation, or 
those with advanced HCC. One might anticipate that the molecular features of such 
tumors differ, given the different stages of HCC captured, but there is unfortunately 
scarcity of data in this regard.

CONCLUSION
In conclusion, our study represents the largest integrative analysis of all publicly 
available data in HCC, spanning different types of high-throughput data. Pathway 
enrichment analysis elucidated EGFR, β1-integrin and axon guidance as pathway 
dependencies in HCC. These are proteins known to serve as master regulators of key 



Bhat M et al. HCC layers of data

WJH https://www.wjgnet.com 106 January 27, 2021 Volume 13 Issue 1

pathways in HCC such as Ras/Raf/MAPK, Wnt/β-catenin and mTOR[28], and may 
serve as potential overarching therapeutic targets in HCC. The axon guidance 
pathway was identified as being of potential importance to HCC for the first time, 
with prognostic value suggested in patient sample validation with TCGA. Estradiol 
affects a large number of deregulated genes across data with appropriate modulation 
and may be a therapeutic agent that helps in HCC. A combined therapeutic approach 
conjointly targeting different pathways may be more optimal in the treatment of HCC, 
especially when underlying hepatic dysfunction compromises the ability to tolerate 
optimal chemotherapeutic doses.

ARTICLE HIGHLIGHTS
Research background
Hepatocellular carcinoma (HCC) is highly heterogeneous, difficult to characterize and 
the molecular basis of HCC has been elusive.

Research motivation
The Cancer Genome Atlas is a large-scale project that has enabled improved 
characterization of cancers with several layers of data. Elucidating the layers of data in 
a disease can provide additional insights into the pathways that drive cancer.

Research objectives
A novel integrative approach of all publicly available high-throughput data from 
patient HCC tumors was used to delineate critical pathway dependencies in HCC.

Research methods
A comprehensive analysis and characterization of all publicly available genomic, gene 
expression, methylation, miRNA and proteomic data in HCC covered 85 studies and 
3355 patient sample profiles and identified the key overlapping dysregulated genes 
and pathways affected.

Research results
We identified the prognostic value of these genes in HCC genes, specifically with 
Netrin and Slit3 being novel proteins of prognostic importance to HCC.

Research conclusions
Our large integrative analysis of all publicly available data in HCC and our pathway 
enrichment analysis has elucidated epidermal growth factor, β1-integrin, and axon 
guidance as pathway dependencies in HCC.

Research perspectives
Based on our integrative analysis, epidermal growth factor, and β1-integrin are master 
regulators that could be considered as potential therapeutic targets in HCC.

ACKNOWLEDGEMENTS
The authors thank undergraduate students Sujitha Srinathan, Emily Chen, Bishoy 
Lawendy, Nangi Suo and Amira Abdallah for their help in data curation.

REFERENCES
Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of 
hepatocellular carcinoma. Oncogene 2010; 29: 4989-5005 [PMID: 20639898 DOI: 
10.1038/onc.2010.236]

1     

El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. 
Gastroenterology 2007; 132: 2557-2576 [PMID: 17570226 DOI: 10.1053/j.gastro.2007.04.061]

2     

Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, Zhu AX, Murad MH, 
Marrero JA. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67: 
358-380 [PMID: 28130846 DOI: 10.1002/hep.29086]

3     

Bruix J, Sherman M; American Association for the Study of Liver Diseases. Management of 4     

http://www.ncbi.nlm.nih.gov/pubmed/20639898
https://dx.doi.org/10.1038/onc.2010.236
http://www.ncbi.nlm.nih.gov/pubmed/17570226
https://dx.doi.org/10.1053/j.gastro.2007.04.061
http://www.ncbi.nlm.nih.gov/pubmed/28130846
https://dx.doi.org/10.1002/hep.29086


Bhat M et al. HCC layers of data

WJH https://www.wjgnet.com 107 January 27, 2021 Volume 13 Issue 1

hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020-1022 [PMID: 21374666 DOI: 
10.1002/hep.24199]
Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul 
JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Greten TF, Galle PR, Seitz JF, Borbath I, 
Häussinger D, Giannaris T, Shan M, Moscovici M, Voliotis D, Bruix J; SHARP Investigators Study 
Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378-390 [PMID: 
18650514 DOI: 10.1056/NEJMoa0708857]

5     

Cancer Genome Atlas Research Network. Comprehensive and Integrative Genomic 
Characterization of Hepatocellular Carcinoma. Cell 2017; 169: 1327-1341. e23 [PMID: 28622513 
DOI: 10.1016/j.cell.2017.05.046]

6     

Wilk G, Braun R. Integrative analysis reveals disrupted pathways regulated by microRNAs in cancer. 
Nucleic Acids Res 2018; 46: 1089-1101 [PMID: 29294105 DOI: 10.1093/nar/gkx1250]

7     

Srivastava A, Kumar S, Ramaswamy R. Two-layer modular analysis of gene and protein networks in 
breast cancer. BMC Syst Biol 2014; 8: 81 [PMID: 24997799 DOI: 10.1186/1752-0509-8-81]

8     

Zhang H, Liu T, Zhang Z, Payne SH, Zhang B, McDermott JE, Zhou JY, Petyuk VA, Chen L, Ray 
D, Sun S, Yang F, Chen L, Wang J, Shah P, Cha SW, Aiyetan P, Woo S, Tian Y, Gritsenko MA, 
Clauss TR, Choi C, Monroe ME, Thomas S, Nie S, Wu C, Moore RJ, Yu KH, Tabb DL, Fenyö D, 
Bafna V, Wang Y, Rodriguez H, Boja ES, Hiltke T, Rivers RC, Sokoll L, Zhu H, Shih IM, Cope L, 
Pandey A, Zhang B, Snyder MP, Levine DA, Smith RD, Chan DW, Rodland KD; CPTAC 
Investigators. Integrated Proteogenomic Characterization of Human High-Grade Serous Ovarian 
Cancer. Cell 2016; 166: 755-765 [PMID: 27372738 DOI: 10.1016/j.cell.2016.05.069]

9     

Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, Lu R, Jurisica I. mirDIP 
4.1-integrative database of human microRNA target predictions. Nucleic Acids Res 2018; 46: D360-
D370 [PMID: 29194489 DOI: 10.1093/nar/gkx1144]

10     

Kotlyar M, Pastrello C, Sheahan N, Jurisica I. Integrated interactions database: tissue-specific view 
of the human and model organism interactomes. Nucleic Acids Res 2016; 44: D536-D541 [PMID: 
26516188 DOI: 10.1093/nar/gkv1115]

11     

Rahmati S, Abovsky M, Pastrello C, Jurisica I. pathDIP: an annotated resource for known and 
predicted human gene-pathway associations and pathway enrichment analysis. Nucleic Acids Res 
2017; 45: D419-D426 [PMID: 27899558 DOI: 10.1093/nar/gkw1082]

12     

Arakawa H. Netrin-1 and its receptors in tumorigenesis. Nat Rev Cancer 2004; 4: 978-987 [PMID: 
15573119 DOI: 10.1038/nrc1504]

13     

Davis AP, Grondin CJ, Johnson RJ, Sciaky D, King BL, McMorran R, Wiegers J, Wiegers TC, 
Mattingly CJ. The Comparative Toxicogenomics Database: update 2017. Nucleic Acids Res 2017; 45: 
D972-D978 [PMID: 27651457 DOI: 10.1093/nar/gkw838]

14     

Griffiths GS, Grundl M, Leychenko A, Reiter S, Young-Robbins SS, Sulzmaier FJ, Caliva MJ, 
Ramos JW, Matter ML. Bit-1 mediates integrin-dependent cell survival through activation of the 
NFkappaB pathway. J Biol Chem 2011; 286: 14713-14723 [PMID: 21383007 DOI: 
10.1074/jbc.M111.228387]

15     

Speicher T, Siegenthaler B, Bogorad RL, Ruppert R, Petzold T, Padrissa-Altes S, Bachofner M, 
Anderson DG, Koteliansky V, Fässler R, Werner S. Knockdown and knockout of β1-integrin in 
hepatocytes impairs liver regeneration through inhibition of growth factor signalling. Nat Commun 
2014; 5: 3862 [PMID: 24844558 DOI: 10.1038/ncomms4862]

16     

Ivaska J, Heino J. Cooperation between integrins and growth factor receptors in signaling and 
endocytosis. Annu Rev Cell Dev Biol 2011; 27: 291-320 [PMID: 21663443 DOI: 
10.1146/annurev-cellbio-092910-154017]

17     

Zhang Y, Qiu Z, Wei L, Tang R, Lian B, Zhao Y, He X, Xie L. Integrated analysis of mutation data 
from various sources identifies key genes and signaling pathways in hepatocellular carcinoma. PLoS 
One 2014; 9: e100854 [PMID: 24988079 DOI: 10.1371/journal.pone.0100854]

18     

Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin 
Gastroenterol 2013; 47 Suppl: S2-S6 [PMID: 23632345 DOI: 10.1097/MCG.0b013e3182872f29]

19     

Fitzmorris P, Shoreibah M, Anand BS, Singal AK. Management of hepatocellular carcinoma. J 
Cancer Res Clin Oncol 2015; 141: 861-876 [PMID: 25158999 DOI: 10.1007/s00432-014-1806-0]

20     

Zhu AX, Abrams TA, Miksad R, Blaszkowsky LS, Meyerhardt JA, Zheng H, Muzikansky A, Clark 
JW, Kwak EL, Schrag D, Jors KR, Fuchs CS, Iafrate AJ, Borger DR, Ryan DP. Phase 1/2 study of 
everolimus in advanced hepatocellular carcinoma. Cancer 2011; 117: 5094-5102 [PMID: 21538343 
DOI: 10.1002/cncr.26165]

21     

Zhou Q, Lui VW, Yeo W. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. 
Future Oncol 2011; 7: 1149-1167 [PMID: 21992728 DOI: 10.2217/fon.11.95]

22     

Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for 
hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol 2015; 12: 436 [PMID: 26099984 
DOI: 10.1038/nrclinonc.2015.121]

23     

Bruix J, Qin S, Merle P, Granito A, Huang YH, Bodoky G, Pracht M, Yokosuka O, Rosmorduc O, 
Breder V, Gerolami R, Masi G, Ross PJ, Song T, Bronowicki JP, Ollivier-Hourmand I, Kudo M, 
Cheng AL, Llovet JM, Finn RS, LeBerre MA, Baumhauer A, Meinhardt G, Han G; RESORCE 
Investigators. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib 
treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 
389: 56-66 [PMID: 27932229 DOI: 10.1016/S0140-6736(16)32453-9]

24     

Bhardwaj A, Van Steen K. Multi-omics Data and Analytics Integration in Ovarian Cancer. In: 25     

http://www.ncbi.nlm.nih.gov/pubmed/21374666
https://dx.doi.org/10.1002/hep.24199
http://www.ncbi.nlm.nih.gov/pubmed/18650514
https://dx.doi.org/10.1056/NEJMoa0708857
http://www.ncbi.nlm.nih.gov/pubmed/28622513
https://dx.doi.org/10.1016/j.cell.2017.05.046
http://www.ncbi.nlm.nih.gov/pubmed/29294105
https://dx.doi.org/10.1093/nar/gkx1250
http://www.ncbi.nlm.nih.gov/pubmed/24997799
https://dx.doi.org/10.1186/1752-0509-8-81
http://www.ncbi.nlm.nih.gov/pubmed/27372738
https://dx.doi.org/10.1016/j.cell.2016.05.069
http://www.ncbi.nlm.nih.gov/pubmed/29194489
https://dx.doi.org/10.1093/nar/gkx1144
http://www.ncbi.nlm.nih.gov/pubmed/26516188
https://dx.doi.org/10.1093/nar/gkv1115
http://www.ncbi.nlm.nih.gov/pubmed/27899558
https://dx.doi.org/10.1093/nar/gkw1082
http://www.ncbi.nlm.nih.gov/pubmed/15573119
https://dx.doi.org/10.1038/nrc1504
http://www.ncbi.nlm.nih.gov/pubmed/27651457
https://dx.doi.org/10.1093/nar/gkw838
http://www.ncbi.nlm.nih.gov/pubmed/21383007
https://dx.doi.org/10.1074/jbc.M111.228387
http://www.ncbi.nlm.nih.gov/pubmed/24844558
https://dx.doi.org/10.1038/ncomms4862
http://www.ncbi.nlm.nih.gov/pubmed/21663443
https://dx.doi.org/10.1146/annurev-cellbio-092910-154017
http://www.ncbi.nlm.nih.gov/pubmed/24988079
https://dx.doi.org/10.1371/journal.pone.0100854
http://www.ncbi.nlm.nih.gov/pubmed/23632345
https://dx.doi.org/10.1097/MCG.0b013e3182872f29
http://www.ncbi.nlm.nih.gov/pubmed/25158999
https://dx.doi.org/10.1007/s00432-014-1806-0
http://www.ncbi.nlm.nih.gov/pubmed/21538343
https://dx.doi.org/10.1002/cncr.26165
http://www.ncbi.nlm.nih.gov/pubmed/21992728
https://dx.doi.org/10.2217/fon.11.95
http://www.ncbi.nlm.nih.gov/pubmed/26099984
https://dx.doi.org/10.1038/nrclinonc.2015.121
http://www.ncbi.nlm.nih.gov/pubmed/27932229
https://dx.doi.org/10.1016/S0140-6736(16)32453-9


Bhat M et al. HCC layers of data

WJH https://www.wjgnet.com 108 January 27, 2021 Volume 13 Issue 1

Maglogiannis I, Iliadis L, Pimenidis E, editors. Artificial Intelligence Applications and Innovations  
2020; 347-57 [DOI: 10.1007/978-3-030-49186-4_29]
Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, Rees M, 
Ramaswamy A, Muenst S, Soysal SD, Jacobs A, Windhager J, Silina K, van den Broek M, Dedes KJ, 
Rodríguez Martínez M, Weber WP, Bodenmiller B. A Single-Cell Atlas of the Tumor and Immune 
Ecosystem of Human Breast Cancer. Cell 2019; 177: 1330-1345. e18 [PMID: 30982598 DOI: 
10.1016/j.cell.2019.03.005]

26     

Bhatia S, Monkman J, Blick T, Duijf PH, Nagaraj SH, Thompson EW. Multi-Omics Characterization 
of the Spontaneous Mesenchymal-Epithelial Transition in the PMC42 Breast Cancer Cell Lines. J 
Clin Med 2019; 8 [PMID: 31430931 DOI: 10.3390/jcm8081253]

27     

Bhat M, Sonenberg N, Gores GJ. The mTOR pathway in hepatic malignancies. Hepatology 2013; 58: 
810-818 [PMID: 23408390 DOI: 10.1002/hep.26323]

28     

https://dx.doi.org/10.1007/978-3-030-49186-4_29
http://www.ncbi.nlm.nih.gov/pubmed/30982598
https://dx.doi.org/10.1016/j.cell.2019.03.005
http://www.ncbi.nlm.nih.gov/pubmed/31430931
https://dx.doi.org/10.3390/jcm8081253
http://www.ncbi.nlm.nih.gov/pubmed/23408390
https://dx.doi.org/10.1002/hep.26323


Published by Baishideng Publishing Group Inc 

7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA 

Telephone: +1-925-3991568 

E-mail: bpgoffice@wjgnet.com 

Help Desk: https://www.f6publishing.com/helpdesk 

https://www.wjgnet.com

© 2021 Baishideng Publishing Group Inc. All rights reserved.

mailto:bpgoffice@wjgnet.com
https://www.f6publishing.com/helpdesk
https://www.wjgnet.com

