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Deep Learning Enables Superior Photoacoustic Imaging at
Ultralow Laser Dosages

Huangxuan Zhao, Ziwen Ke, Fan Yang, Ke Li, Ningbo Chen, Liang Song,
Chuansheng Zheng,* Dong Liang,* and Chengbo Liu*

Optical-resolution photoacoustic microscopy (OR-PAM) is an excellent
modality for in vivo biomedical imaging as it noninvasively provides
high-resolution morphologic and functional information without the need for
exogenous contrast agents. However, the high excitation laser dosage, limited
imaging speed, and imperfect image quality still hinder the use of OR-PAM in
clinical applications. The laser dosage, imaging speed, and image quality are
mutually restrained by each other, and thus far, no methods have been
proposed to resolve this challenge. Here, a deep learning method called the
multitask residual dense network is proposed to overcome this challenge.
This method utilizes an innovative strategy of integrating multisupervised
learning, dual-channel sample collection, and a reasonable weight
distribution. The proposed deep learning method is combined with an
application-targeted modified OR-PAM system. Superior images under
ultralow laser dosage (32-fold reduced dosage) are obtained for the first time
in this study. Using this new technique, a high-quality, high-speed OR-PAM
system that meets clinical requirements is now conceivable.

1. Introduction

Photoacoustic imaging is a rapidly growing biomedical imag-
ing modality that images biological samples at multiple scales
from organelles to organs.[1,2] This technology achieves anatom-
ical, functional, and molecular imaging in situ and in real time
with endogenous and exogenous contrasts. In recent years, many
endogenous methods and exogenous contrast agents have been
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found and developed for photoacoustic
imaging, which have greatly expanded the
application range of this technology.[3–9]

Optical-resolution photoacoustic mi-
croscopy (OR-PAM) is a unique implemen-
tation of photoacoustic imaging where the
spatial resolution is as fine as a micrometer
or even sub-micrometer.[1,10–12] OR-PAM
is specifically suitable for observing mi-
crovascular level biological processes and
has been used in a wide range of preclin-
ical studies, such as tumor angiogenesis,
neurology, and ophthalmology.[1,13–18]

Over the past few years, the imaging
speed of OR-PAM has been improved by
multiple folds.[16,19,20] However, the max-
imum imaging speed achieved is still
not adequate for many applications, such
as brain-wide neuronal activity study,[21]

where the imaging speed must be a min-
imum of ten to several hundred times
faster than existing methods. Increasing the

speed of photoacoustic imaging has been a long-standing goal
for researchers. An increase in the imaging speed requires a
laser source that is capable of delivering laser pulses at high rep-
etition rates. However, when the laser is working at a higher
repetition rate, the per pulse energy of the laser pulse is re-
duced to maintain the laser dosage delivered to the biological
tissue within the safety standard limits. The reduced pulse en-
ergy leads to low resultant photoacoustic signals, which leads to
poor image quality. In addition, when multiple wavelengths are
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used for molecular or functional imaging, more restrictions are
imposed on the per pulse laser energy, leading to a reduction
of the signal-to-noise ratio (SNR) in the photoacoustic images.
Downsampling techniques, where images are acquired sparsely
over spatial distribution, are often used in photoacoustic imag-
ing to reduce the number of data acquisitions (i.e., number of
laser pulses) in exchange for a higher laser pulse energy to im-
prove the SNR. However, the downsampling process also re-
duces the image quality due to the compromised spatial resolu-
tion. Thus, new methods to improve image quality while increas-
ing the photoacoustic imaging speed and maintaining the safety
of biological tissues are needed to expand the scope of photoa-
coustic imaging applications in both the preclinical and clinical
worlds.

Due to hazard limitations placed on the laser dosage deposited
in biological tissues, the only currently plausible way to improve
the SNR while increasing the speed is through image and signal
processing, i.e., so-called information mining. Various image and
signal processing algorithms have been developed in OR-PAM to
improve the image quality, such as image denoising,[22,23] com-
pressed sensing,[24] and vascular filtering.[25,26] While these algo-
rithms have progressively improved the quality of OR-PAM imag-
ing successfully, the extent of the improvement using image-
based postprocessing methods has been limited. The image de-
noising algorithms[23] may work well in simulations or phan-
toms, but improving the imaging quality of living samples is ex-
tremely difficult due to the complexity of biological tissues. Com-
pressed sensing algorithms[24] have been demonstrated to obtain
superior reconstruction performance from undersampling data,
but the reconstructed image is often suboptimal. Vascular filter-
ing algorithms have been shown to improve the image quality
based on mathematical operations, but inevitably resulted in vas-
cular distortions.[27] Most importantly, each algorithm proposed
to improve one aspect of the image quality, but they all need to be
combined to achieve overall high-quality image reconstruction.
However, when multiple algorithms are combined, the image re-
construction speed becomes slow because of the predominantly
sequential operation, and the combined algorithm may not pro-
duce the desired improvement since each method makes its own
underlying assumption about the data.

Deep learning (DL) is a class of machine learning techniques
that uses multilayered artificial neural networks for the auto-
mated analysis of signals or data.[28–31] Convolutional neural net-
works (CNNs), composed of a convolution layer and a nonlin-
ear operator, are a popular embodiment of DL technique. The
CNN fits nonlinear equations by machine learning rather than
manually providing equations for the image processing meth-
ods. The results using CNN have exceeded the performance of
many traditional nonlinear image processing algorithms in pho-
toacoustic imaging.[32–34] These DL approaches are thus highly
suitable to meet the challenges encountered in high-speed pho-
toacoustic imaging, i.e., achieving a high image quality and high
SNR even at lower pulse laser energy. In this study, we propose a
multitask residual dense network (MT-RDN) to achieve superior
quality imaging. The MT-RDN has three subnetworks for multi-
supervised learning. Each subnetwork employs a residual dense
network (RDN), and the weights for each subnetwork are allo-
cated to achieve the best image reconstruction at each level. The
MT-RDN with three subnetworks achieves the required image

denoising, super-resolution, and vascular enhancement simulta-
neously for optimal photoacoustic imaging.

Currently, several DL methods exist for photoacoustic
imaging,[32–35] where each method implements just one func-
tion, such as image denoising or super-resolution. However,
no technique has successfully achieved high-quality imaging at
low pulse laser energy (i.e., a low laser dosage) for the purpose
of high-speed imaging. Our multitask DL method addresses
these issues and simultaneously realizes image denoising,
super-resolution, and vascular enhancement through multi-
supervised learning. The image denoising overcomes the low
image SNR caused by the low per pulse laser energy. The image
super-resolution ensures the resolution of the image when
downsampling is applied to reduce the overall laser dosage and
increase the imaging speed. The vascular enhancement further
improves the image quality without distorting the blood vessels.
Furthermore, we obtained two photoacoustic imaging datasets
with two different wavelengths, which were applied to the DL
process. Each wavelength is sensitive to specific information in
the imaging sample, and the information at each wavelength
complements each other. The algorithm integrates the outcomes
of the two datasets by a reasonable weight distribution to achieve
further improved image quality. To the best of our knowledge,
this improved result has never been achieved using other DL
imaging methods. The MT-RDN approach proposed in this
study achieves superior image reconstruction results compared
to the state-of-the-art DL networks employed in photoacoustic
imaging, such as U-net and RDN.[32,34]

In the next few subsections, we describe our DL technique for
enhancing photoacoustic imaging. We also present a new imag-
ing system that we have designed to take advantage of the pro-
posed technique, which is very different from traditional OR-
PAM. We present our results and compare them with the exist-
ing traditional image processing method, i.e., the photoacoustic
imaging vasculature enhancement filter (PAIVEF) method, and
the state-of-the-art DL methods, i.e., U-net and RDN. Armed with
the new technique, a high-quality high-speed OR-PAM system
that meets the needs in both preclinical and clinical imaging set-
tings is now conceivable.

2. Experimental Section

2.1. Experimental System

The schematic of the imaging system is shown in Figure 1a. The
560 nm optical parametric oscillator (OPO) pulsed laser (NT-242,
Ekspla, Vilnius, Lithuania) and a 532 nm pulsed laser (GKNQL-
532, Beijing Guoke Laser Co., Beijing, China), both with a repeti-
tion rate of 1 kHz, were used as the illumination sources. The two
output laser beams were each first reshaped by an iris (ID25SS,
Thorlabs; 2 mm aperture size) and then focused by a condenser
lens (LA1131, Thorlabs) before being spatially filtered by 50 µm
pinholes (P50C, Thorlabs). After filtering, the beams were trans-
formed into collimated beams using two condenser lenses, which
were converged by a dichroic mirror (HIM025-51-45, Daheng Op-
tics). The dichroic mirror reflected the 532 nm light and transmit-
ted the 560 nm light. The converged laser beam was launched
into a 1 × 2 multimode fiber beam splitter (Shenzhen IH Optics
Co., Ltd., Shenzhen, China) with a core diameter of 50 µm. One
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Figure 1. Schematic of the optical-resolution photoacoustic microscopy (OR-PAM) imaging system. CL: convex lens; FS: fiber beam splitter; FOA: fiber
optic attenuator; RM: reflection mirror; OBJ: objective; EA: electronic amplifier; UST: ultrasonic transducer; PD: photodiode detector.

output (Port 1) of the beam splitter’s light was directly connected
to one input of a 2 × 2 multimode fiber beam splitter (Shenzhen
IH Optics Co., Ltd., Shenzhen, China) for high-dosage photoa-
coustic imaging. The other output (Port 2) of the beam splitter’s
laser was attached to a fiber optic attenuator (FOA) to attenuate
laser energy to achieve low dosage photoacoustic imaging and
then was attached to an ≈150 m delay multimode fiber, which
acted as a delay (≈750 ns) to separate the photoacoustic signals
of both high and low dosages at the detection end. The delayed
laser pulse was then connected to the other input of the same
2 × 2 multimode fiber beam splitter. In addition to the delay of
the fiber, a 5 µs trigger delay was applied to the 532 nm laser
compared to the OPO laser to separate the photoacoustic signals
of the two wavelengths. The 5 µs delay was optimal to ensure
that the photoacoustic signals of the two wavelengths could be
separated while guaranteeing that the trigger delay would result
in the least changes in the blood oxygen level. Hence, accurate
blood oxygen saturation values could be measured. At the out-
put end of the 2 × 2 multimode fiber beam splitter, there were
four laser pulses spanning a time lapse of ∼5.5 µs (Figure 1b).
The four laser pulses were a 560 nm high laser energy, a 560 nm
low laser energy, a 532 nm high laser energy, and a 532 nm low
laser energy. One output of the 2 × 2 multimode fiber beam split-
ter was connected to the imaging head of OR-PAM for imaging
purposes, and the other output end of the 2 × 2 multimode fiber
beam splitter was connected to a photodiode detector for moni-
toring the pulse energy fluctuations. There were two causes for
using multimode fibers for OR-PAM illumination in this study:
1) poor quality of OPO laser spot; 2) four laser pulses (a 560 nm
high laser energy, a 560 nm low laser energy, a 532 nm high laser
energy, and a 532 nm low laser energy) must be coupled into the
fiber for every experiment. The use of single-mode fiber would

cause low system stability and low optical coupling efficiency.
Therefore, multimode fibers were employed in this study to en-
sure high system stability for obtaining training data. Multimode
fibers would affect the spatial resolution to a certain extent, but in
ref. [36] the authors had proven that OR-PAM imaging can still be
achieved: that is, optical focusing was much smaller than acoustic
focusing. In this study, the spatial resolution obtained was 19.8
µm (shown in Figure S1b in the Supporting Information), which
also proved it. The details of the supporting information of OR-
PAM and experimental operations can be found in Section S1
and Figure S1 (Supporting Information).

2.2. Establishment of Image Reconstruction

The overall framework of OR-PAM image reconstruction based
on the MT-RDN method is shown in Figure 2. This architec-
ture was designed to solve the deteriorated image quality chal-
lenge caused by the low per pulse laser energy and undersam-
pling during high-speed imaging. During training, the original
images (i.e., undersampling images obtained at low excitation
laser energy) were collected at 532 and 560 nm wavelengths and
were assigned to channel 1 and channel 2 in Figure 2, respec-
tively. In this study, 2× and 4× undersampling images at the half
per pulse laser energy of the ground truth (i.e., ANSI limit per
pulse laser energy[37]) were used as the original images for the
training. Next, the original images were cut into sectional pieces
and were used as the input into the MT-RDN network. The 2×
undersampling images were cut into 100 × 100 pixels per piece,
and the 4× undersampling images were cut into 50 × 50 pixels
per piece. The selection of maximal 100 × 100 pixels in one sec-
tional piece depended on the computing ability of the graphics
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Figure 2. The overall framework of the proposed multitask residual dense network (MT-RDN) method.

processing unit of the computer used in this study. The sectional
pieces in channel 1 and channel 2 were named Input 1 and In-
put 2, respectively, and were loaded into the MT-RDN to obtain
Output 1, Output 2, and Output 3. A detailed description of the
MT-RDN can be found in Section S2 (Supporting Information).
Overall, the MT-RDN had three subnetworks. The first subnet-
work was used to process the data of Input 1 (i.e., 532 nm data) to
obtain Output 1, and the second subnetwork was used to process
the data of Input 2 (i.e., 560 nm data) to obtain Output 2. Outputs
1 and 2 were further combined and processed by subnetwork 3
to obtain Output 3. Hence, Output 3 contained complementary
information of both 532 and 560 nm wavelengths. Finally, the
differences between the outputs and ground truths were com-
pared. The loss function was minimized, and the CNN-related
parameters were continuously updated to obtain the best train-
ing models. Corresponding to Outputs 1–3, Ground truths 1–3
were full sampling images obtained at the ANSI limit per pulse
laser energy at 532 nm, full sampling images obtained at ANSI
limit per pulse laser energy at 560 nm, and Ground truth 1 filtered

by the PAIVEF method,[26] respectively. Notably, Ground truth 3
was Ground truth 1 processed by the PAIVEF method to obtain
enhanced image quality with a conventional non-deep-learning
strategy. The PAIVEF method is an image processing algorithm
based on Frangi’s filter and is verified as an optimal vasculature
enhancement filter which significantly improves image quality
and causes less distortion in photoacoustic imaging.[26] Similar
to training, during testing, Input 1 and Input 2 were obtained by
sectioning the original images (532 and 560 nm) into small sub-
sections, which were then used as inputs into the MT-RDN to ob-
tain Output 1, Output 2, and Output 3. The subsections in each
output were stitched together to obtain Recon 1, Recon 2, and
Recon 3. The models were run on an Ubuntu 16.04 LTS (64-bit)
operating system equipped with a Xeon Silver 4110 central pro-
cessing unit (CPU), 32GB memory and NVIDIA Quadro P5000
GPU (16GB memory).

To evaluate the advantages of the MT-RDN over the existing
state-of-the-art supervised DL method, two state-of-the-art neu-
ral network frameworks, namely, U-net and RDN, were used
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for comparison. Among them, U-net is the most commonly
used CNN framework in general medical image reconstruc-
tion and segmentation,[32,38,39] while RDN is verified to have
a strong image reconstruction capability specifically in photoa-
coustic microscopy.[34] For training these two networks, Input 1
and Ground truth 3 used in the MT-RDN were used as the input
and ground truth, respectively.

2.3. Animal Experiment

Ten healthy Balb/c mice (8 weeks, named the "Training Group")
were selected to acquire 6696 training data (i.e., 6696 × 200 × 200
voxels of full sampling data were obtained), while one healthy
Balb/c mouse (8 weeks, named the "Testing Group") was se-
lected to acquire the testing data. For the ten mice in the Training
Group, brain imaging was performed at wavelengths of 532 and
560 nm, while for the one mouse in the Testing Group, both brain
and ear imaging experiments were performed at the two wave-
lengths. The acquired brain and ear imaging of the test mouse
were used to assess the efficacy and the universal applicability of
the proposed method.

The brain data in the Training Group included 1) 2× under-
sampling images using two wavelengths at 1/2 the ANSI limit
per pulse laser energy; 2) 4× undersampling images using two
wavelengths at 1/2 the ANSI limit per pulse laser energy; and 3)
full sampling images using two wavelengths at the ANSI limit
per pulse laser energy as ground truth.

The brain data in the Testing Group included 1) 2× undersam-
pling images using two wavelengths at 1/2 the ANSI limit per
pulse laser energy, named Data 1; 2) 4× undersampling images
using two wavelengths at 1/2 the ANSI limit per pulse laser en-
ergy, named Data 2; and 3) full sampling images using two wave-
lengths at the ANSI limit per pulse laser energy, named Data 3,
which were used as ground truth to compare with Recon data.

The ear data in the Testing Group included 1) 2× undersam-
pling images using two wavelengths at 1/2 the ANSI limit per
pulse laser energy, named Data 4; 2) 4× undersampling images
using two wavelengths at 1/2 the ANSI limit per pulse laser en-
ergy, named Data 5; and 3) full sampling images using two wave-
lengths at the ANSI limit per pulse laser energy, named Data 6,
which were used as ground truth to compare with the Recon data.
Furthermore, to verify the effectiveness of the MT-RDN with an
even lower laser dosage, the following data on ear were obtained:
1) 2× undersampling images using two wavelengths at 1/3 the
ANSI limit per pulse laser energy, named Data 7; 2) 2× under-
sampling images using two wavelengths at 1/4 the ANSI limit
per pulse laser energy, named Data 8; and 3) full sampling im-
ages using two wavelengths at the ANSI limit per pulse laser en-
ergy, named Data 9, which were used as ground truth to compare
with the Recon data.

2.4. Animal Handling

For brain imaging, a surgical procedure was performed to re-
move the scalp, while for ear imaging, no pretreatment was re-
quired. During imaging, the mice remained anesthetized us-
ing 1.5% isoflurane gas (Euthanex, Palmer, Pennsylvania) mixed

with oxygen. Coupling gel was applied to the imaging area, and
the imaging head of the OR-PAM system was placed directly
above it. All animal handling and experimental procedures con-
formed to a protocol approved by the Animal Study Committee of
Shenzhen Institutes of Advanced Technology, Chinese Academy
of Sciences.

2.5. Statistical Analysis

2.5.1. Preprocessing of Data

All data were normalized to (0,1) before training, testing, and sta-
tistical analysis. Data used as Ground truth 3 were preprocessed
by the PAIVEF method, as described in Subsection 2.2.

2.5.2. Statistical Analysis of Quantitative Information

A statistical analysis was performed to evaluate the performance
of MT-RDN. Peak signal to noise ratio (PSNR) and structural sim-
ilarity index (SSIM)[40] were measured on the complete test data
as follows

PSNR = 20log10
max (ref )

√
N

‖‖ref − rec2
2
‖‖

(1)

SSIM =
2𝜇ref𝜇rec + c1

𝜇
2
ref + 𝜇2

rec + c1

⋅
2𝜎ref _rec + c2

𝜎
2
ref + 𝜎2

rec + c2

⋅
𝜎ref _rec + c3

𝜎ref𝜎rec + c3
(2)

where rec is the reconstructed image, ref denotes the reference
image, and N is the total number of image pixels. The SSIM in-
dex is a multiplicative combination of the luminance term, the
contrast term, and the structural term. 𝜇ref, 𝜇rec are the mean val-
ues of reconstructed images and reference images, respectively.
𝜎ref, 𝜎rec are the standard deviations (SDs) of reconstructed im-
ages and reference images, respectively. 𝜎ref _rec is the covariance
of the reconstructed image and the reference image. c1, c2, c3 are
non-negative real numbers that specify the regularization con-
stants for the luminance, contrast, and structural terms.

The histogram of PSNR and SSIM statistical distribution over
the entire test dataset of brains (n = 720 pieces) and ears (n = 720
pieces) were presented to demonstrate the generalization perfor-
mance of the proposed method. Figures 3 and 4 show the his-
togram of PSNR and SSIM statistical distribution on brain and
ear test data, respectively. It could be seen that, even in the case
of 4× downsampling data, the PSNR values of MT-RDN method
had reached a high level (the PSNR values of brain and ear were
27.28 ± 0.018 and 24.22 ± 0.011 (mean ± SD)). SSIM was mainly
concentrated between 0.6 and 0.8. In 4× downsampling data, the
SSIM values had reached a high level (the SSIM results of brain
and ear were 0.77 ± 0.011 and 0.71 ± 0.020 (mean ± SD)). These
indicators showed that the reconstruction results of MT-RDN
had a high degree of image reconstruction ability with respect to
ground truth. The preprocessing and statistical analysis of data
were implemented on MATLAB software (R2017a, Mathworks,
Natick, MA).
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Figure 3. a–l) Quantitative analysis of peak signal to noise ratio (PSNR) of testing data: brain data are shown in the red dotted frame, and ear data are
shown in the green dotted frame. The x-coordinate represents the value of PSNR and the y-coordinate represents the number of samples. Sample size
= 720.

Figure 4. a–l) Quantitative analysis of structural similarity index (SSIM) of testing data: brain data are shown in the red dotted frame, and ear data are
shown in the green dotted frame. The x-coordinate represents the value of SSIM and the y-coordinate represents the number of samples. Sample size
= 720.
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Figure 5. Comparison of the image quality before and after MT-RDN. a) Input 1 of Data 2, b) Ground truth 1 of Data 2, c) Ground truth 3 of Data 2, d)
Recon 3 of Data 2, scale bar = 0.5 mm.

3. Results and Discussion

The reconstruction results of Data 2 after using the MT-RDN are
shown in Figure 5. Figure 5a–d shows the depth-encoded images
of Input 1, Ground truth 1, Ground truth 3, and Recon 3 of Data
2, respectively. Figures S3.1 and S3.2 (Supporting Information)
show the complete results for comparison of all Input data, Re-
con data, and Ground truths for Data 1 and 2, respectively. The
reconstructed blood vessels in Figure 5d have a high accuracy,
as analyzed in Section S3 (Supporting Information). A distinct
graininess can be seen in Figure 5a due to the low per pulse laser
energy and downsampling. The reconstructed image in Figure 5d
is significantly better than that in Figure 5a and is even better
than the ground truth images (both Ground truth 1 and Ground
truth 3), as shown in Figure 5b–d and Figure S3.2j,k (Supporting
Information). The improved image quality of Recon 3 compared
to Ground truth 1 and Ground truth 3 is presumably due to two
reasons: 1) to obtain Recon 3, images without vascular distortion
(i.e., Inputs 1 and 2) were used as inputs, and high SNR images
were used as ground truth during the training process, which re-
sulted in Recon 3 having a higher SNR than Ground truth 1 and
significantly less vascular distortion compared to Ground truth
3; 2) the integration of complementary information between In-
put 2 (i.e., 560 nm data) and Input 1 during the MT-RDN pro-
cess added to the superiority of the algorithm. More descriptions
and discussions can be found in Section S3 and Figures S3.1 and
S3.2 (Supporting Information). Movie S1 (Supporting Informa-
tion) provides an intuitional visualization of the image quality
enhancement before and after the MT-RDN process. Since the
training data come from the map images, the map images dur-
ing the entire training process of Data 2 are shown in Figure S3.3
(Supporting Information) to intuitively reflect the success of our
training and testing. Furthermore, two key metrics, PSNR and
SSIM, are used to further quantify and analyze the differences be-
tween Ground truth 3 and other images (Input 1, Input 2, Recon
1, Recon 2, Recon 3, and Ground truth 1). These two key metrics
are shown in Tables S2 and S3 (Supporting Information).

The training of the MT-RDN was completed using the brain
data in this study. Hence, the ear data, the vascular structure
of which is quite different from the brain, were used to ver-
ify the universal applicability of the proposed method. Figure 6
shows the key end points of the MT-RDN when using Data 5
as the input. Figure S3.4 (Supporting Information) shows the
same results for Data 4. Figure 6a–i shows Input 1, Ground truth

1, Recon 1, Input 2, Ground truth 2, Recon 2, Input 1 filtered
by PAIVEF, Ground truth 3 (reconstructed by another personal
computer (PC) with a 128 GB CPU), and Recon 3, respectively.
All the images are depth-encoded to show the 3D information.
The two areas indicated by the white dotted frames in the im-
ages are enlarged and shown in two separate figures. The image
quality is significantly reduced in the undersampling images ob-
tained by 1/2 the ANSI limit per pulse laser energy (Figure 6a,d).
However, images reconstructed with the MT-RDN demonstrate
superior quality (Figure 6i). Compared to the PAIVEF method
(Figure 6g), the MT-RDN has the following advantages. 1) The
PAIVEF algorithm causes image distortions when enhancing
vascular signals. Consequently, the adjacent arteries and veins in
the ear in Figure 6g cannot be separated. For the MT-RDN, the
arteries and veins can be easily distinguished, as shown in Fig-
ure 6i, and more importantly, significantly improved image qual-
ity, which is even better than Ground truth 1 and Ground truth
2, was obtained. 2) The PAIVEF method is computationally very
expensive, and the memory requirement to reconstruct the full
sampling image is very large. To reconstruct 4× the undersam-
pling data (the size of the data is only 1/16 of the full sampling),
PAIVEF took 94.5 s, and the memory requirement to reconstruct
the full sampling image was beyond the maximum limit of the
PC used in this study. The MT-RDN has no such computation re-
quirements and can perform image reconstruction in real time
(≈0.45 s).

To quantitatively assess the advantages of the MT-RDN, we
plotted the signal intensity curves for the same region indicated
by the color lines in Figure 6a3,b3,c3,i3, and the results are shown
in Figure 6j. The different colors of the curves in Figure 6j corre-
spond to the colors of the lines in Figure 6a3,b3,c3,i3. The upper
right corner in Figure 6j indicates the SNR values of the color
lines in Input 1, Ground truth 1, Recon 1, and Recon 3, which
are 3.95, 7.93, 7.44, and 8.06, respectively. The SNR value of Re-
con 1 is significantly better than Input 1. However, the SNR value
of Recon 3 is even higher, which is better than Ground truth 1.
These results show the superior performance of the MT-RDN,
which improves the image quality even when the training sam-
ples are different from the testing samples. PSNR and SSIM are
employed to quantify and analyze the difference between Ground
truth 3 and other images (Input 1, Input 2, Recon 1, Recon 2,
Recon 3, and Ground truth 1). Tables 1 and 2 show PSNR and
SSIM values of each image, respectively. It can be determined
from these tables that Recon 3 is superior in both two areas as
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Figure 6. Validation of the universal applicability of the MT-RDN by showing the key endpoints of the network when using Data 5 as the input. a–c)
Input 1, Ground truth 1, and Recon 1, respectively; d–f) Input 2, Ground truth 2, and Recon 2, respectively; g–i) filtered image of Inputs 1 by PAIVEF,
Ground truth 3, and Recon 3, respectively; and j) quantitative analysis of SNR of the selected area, where the selected areas are indicated by the solid
lines in (a3), (b3), (c3), and (i3). Scale bar = 0.5 mm.

Table 1. Quantitative comparisons of PSNR between Ground truth 3 and
other images of Data 5. The best-performing value in each group is bolded.

PSNR Input 1 Input 2 Recon 1 Recon 2 Recon 3 Ground truth 1

Area 1 17.21 17.06 23.03 18.41 25.15 23.11

Area 2 18.54 18.70 24.01 20.12 26.12 25.09

compared to the other images, since both quantitative indicators
of Recon 3 are better than others. The vascular morphology of
the brain is quite different from that of the ear, thus establish-
ing the universal applicability of the proposed MT-RDN method.
Movie S2 (Supporting Information) provides an intuitional visu-

Table 2. Quantitative comparisons of SSIM between Ground truth 3 and
other images of Data 5. The best-performing value in each group is bolded.

SSIM Input 1 Input 2 Recon 1 Recon 2 Recon 3 Ground truth 1

Area 1 0.5200 0.5038 0.7140 0.5690 0.7556 0.7061

Area 2 0.5318 0.5305 0.7061 0.5954 0.7381 0.7233

alization of the image quality enhancement before and after the
MT-RDN.

To compare the quality of the reconstructed images between
the state-of-the-art DL techniques (U-net and RDN) popular in
photoacoustic imaging and our method, we provided an error
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Figure 7. a) U-net reconstruction results of the ear imaging data. b) RDN reconstruction results of the ear imaging data. c) Recon 3 of the MT-RDN
reconstruction results of the ear imaging data. d–f) The error maps of (a)–(c), respectively, with Ground truth 1. Scale bar = 1 mm.

Figure 8. a–c) The sO2 maps use the original image, Frangi’s filtered filter image, and Recon3 of MT-RDN as the mask. Scale bar = 1 mm.

map (i.e., residuals map), which is an intuitive and popular
method used for evaluating the quality and distortion of the re-
constructed images using CNN methods.[41–43] When distortions
increase, the patterns in the error maps become richer. The U-
net, RDN, and MT-RDN reconstruction images of the ear data
(Data 5) are shown in Figure 5a–c, respectively. Figure 5d–f shows
the errors of full Figure 5a–c, respectively, when compared to
Ground truth 1. The error map in Figure 7f shows obvious advan-
tages over Figure 7d,e. The error vascular signal in Figure 7f is
significantly weaker than the error signal intensity in Figure 7d,e,
which implies extremely small distortions in Figure 7c. Further-
more, the background noise signals in Figure 7f are at an ultralow
level, indicating minimal fault extraction during reconstruction.
Our method achieves high performance due to three main rea-
sons: 1) it removes random noise using multiple channels; 2) it
learns through a multisupervised learning strategy, thus avoid-
ing the problem of gradient dispersion and making the data con-
verge more easily and better; and 3) it has a reasonable weight
distribution among the subnetworks, thus retaining more com-
pleted information when merging images of 532 and 560 nm
wavelengths.

To explore the performance of the trained models at even lower
per pulse laser energy, we imaged the mouse ear at 1/3 and 1/4 of
the ANSI limit pulse energy. The results show the consistently ac-
curate image reconstruction ability of the proposed method (see
Section S4 and Figure S4 in the Supporting Information).

Vascular functional imaging is very important in disease man-
agement. For example, changes in the blood oxygen saturation of
microvessels are key indicators of kidney disease. The poor qual-

ity visualization of the vascular structure caused by fast-scanning
OR-PAM will inevitably affect the vascular functional imaging.
Currently, two methods are used to improve imaging. 1) Reduc-
ing the sampling step size and averaging multiple data at the
same time. Although this method greatly improves the image
quality, it increases imaging time by multiple folds and is difficult
to apply to real clinical cases. 2) Applying a filtered mask to sO2
images, as described in ref. [44]. The filtered mask is obtained by
processing the raw data of the blood vessel structures through a
filtering algorithm. The commonly used filtering algorithms are
a class of algorithms based on Frangi’s filter. However, we believe
that the images reconstructed by our proposed method are more
suitable for deployment as masks. Figure 6a–c shows the sO2
maps of the original image, Frangi’s filtered image, and the MT-
RDN reconstructed image (i.e., Recon 3 used as masks), respec-
tively. Similar to the imaging results shown previously (Figure 6),
our method in Figure 8c shows an image without blood vessel dis-
tortion and no change in the sO2 value compared to the original
image. A poor SNR and distinct graininess exist in Figure 8a, and
although the vascular signals are smoothed in Figure 8b, several
defects exist, including vascular distortion and changes in sO2
values compared to the original image. The results show that the
MT-RDN method can improve the image quality without affect-
ing the calculation accuracy of sO2 values, which may provide a
new method for the visualization of sO2.

The high-quality images reconstructed by the proposed
method address two key issues hindering the wide application
of OR-PAM, i.e., an excessive laser dosage and a low imaging
speed. The DL method proposed in this paper overcomes both
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these challenges by achieving high-quality image reconstruction
even under the conditions of undersampling and ultralow per
pulse laser energy, thus providing new insights into OR-PAM
imaging using low laser dosage. Furthermore, the experiments
used brain data for training and ear data for testing, and did not
make any assumptions about the correlation between the data
while reconstructing them. Hence, the universal applicability of
the algorithm was established, and the algorithm can be easily
extended to other imaging samples. This is very important for
certain applications such as brain and eye imaging. In these ap-
plications, the laser dosage permitted is further restrained due to
the particularity of these organs compared to other organs such
as skin. With our method, training can be performed first in other
organs with higher laser dosages, while testing can be performed
on the brain and eye with much lower laser dosages.

4. Conclusion

In photoacoustic imaging, the proposed MT-RDN based on DL
achieves high-performance image reconstruction in terms of de-
noising, super-resolution, and vascular enhancement. This net-
work also has strong universal applicability, e.g., a model trained
for the brain showed high performance for ear imaging. This
method surpasses the most commonly used single-supervised
learning CNNs and hence has applications in not only pho-
toacoustic imaging but also the general imaging field. Com-
pared to ground truth, superior quality images with 16-fold (1/4
ANSI limit per pulse energy, 2× undersampling) and 32-fold (1/2
ANSI limit per pulse energy, 4× undersampling) reduced laser
dosages were obtained when using MT-RDN. The MT-RDN is
complemented in this study by a newly proposed OR-PAM de-
sign, which scans samples quickly under ultralow laser dosages.
These efforts bring photoacoustic imaging one step closer to clin-
ical use. The trained models can be used to reconstruct high-
quality images in real time from undersampling images obtained
at ultralow per pulse laser energy. This method effectively solves
the image quality problem in high-speed structure and functional
OR-PAM. Even though the MT-RDN was trained on a custom-
made OR-PAM system, the well-trained MT-RDN can be used on
any OR-PAM system. We believe the proposed method, which
achieves high-quality imaging within the ANSI power limit for
OR-PAM, will provide new insights in imaging diseased samples
in the near future.
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Supporting Information is available from the Wiley Online Library or from
the author.
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