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a b s t r a c t 

How to fast and accurately assess the severity level of COVID-19 is an essential problem, when millions of 

people are suffering from the pandemic around the world. Currently, the chest CT is regarded as a popular 

and informative imaging tool for COVID-19 diagnosis. However, we observe that there are two issues –

weak annotation and insufficient data that may obstruct automatic COVID-19 severity assessment with CT 

images. To address these challenges, we propose a novel three-component method, i.e. , 1) a deep multiple 

instance learning component with instance-level attention to jointly classify the bag and also weigh the 

instances, 2) a bag-level data augmentation component to generate virtual bags by reorganizing high 

confidential instances, and 3) a self-supervised pretext component to aid the learning process. We have 

systematically evaluated our method on the CT images of 229 COVID-19 cases, including 50 severe and 

179 non-severe cases. Our method could obtain an average accuracy of 95.8%, with 93.6% sensitivity and 

96.4% specificity, which outperformed previous works. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Recently, a new coronavirus, named by the World Health Or- 

anization (WHO) as COVID-19, has been rapidly spreading world- 

ide. As of 23 October 2020, there have been more than forty mil- 

ion confirmed COVID-19 cases globally. In view of its emergency 

nd severity, WHO has announced COVID-19 outbreak a pandemic. 

Due to the rapid spread, long incubation period and severe res- 

iratory symptoms of COVID-19, clinical systems around the world 

re under tremendous pressure in multiple aspects. In current 

tudy, how to fast and accurately diagnose COVID-19 and assess 

ts severity has become an important prerequisite for clinical treat- 
ent. 

∗ Corresponding authors. 

E-mail addresses: junliu123@csu.edu.cn (J. Liu), syh@nju.edu.cn (Y. Shi), 

inggang.Shen@gmail.com (D. Shen). 
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At present, for the diagnosis of COVID-19, traditional reverse 

ranscription polymerase chain reaction (RT-PCR) is widely em- 

loyed worldwide as a gold standard. However, due to its high 

alse negative rate, repeat testing might be needed to achieve an 

ccurate diagnosis of COVID-19. The chest computed tomography 

CT) has been an imaging tool frequently used for diagnosing other 

iseases, and because it is fast and easy to operate, it has become 

 widely used diagnosis tool for COVID-19 in China. However, not 

nly is manual diagnosis by CT images laborious, it is also prone 

o the influence of some subjective factors, e.g. , fatigue and care- 

essness. 

CT images are rather informative, with numbers of discrimina- 

ive imaging biomarkers, so they are useful in assessing the sever- 

ty of COVID-19. Based on the observation of Tang et al. (2020) , 

he CT images of severe cases usually have larger volume of con- 

olidation regions and ground glass opacity regions, than those 

f non-severe cases. Therefore, several computer-aided methods 

 Tang et al. (2020) ; Yang et al. (2020) ; Shan et al. (2020) ) have

https://doi.org/10.1016/j.media.2021.101978
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Fig. 1. Examples of chest CT images with severe infection (left) and non-severe in- 

fection (right) of COVID-19. The yellow arrows indicate representative infection re- 

gions. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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een recently proposed. However, we notice that current studies 

ave neglected two important issues. 

• Weak Annotation . Usually, it is rather time-consuming for 

physicians to precisely delineate the infection regions manually. 

Therefore, only the image-level annotation ( i.e. , label) for indi- 

cating the class of cases ( i.e. , severe or non-severe) is available, 

which could be regarded as a weakly-supervised learning set- 

ting. This inspires us to develop a model that works under 

weakly-supervised setting (merely with image-level annota- 

tion) . 
• Insufficient Data . According to current studies, it remains dif- 

ficult to collect and label a large set of COVID-19 data. Besides, 

given the prevalence rate, the number of non-severe cases is 

much larger than that of severe cases, bringing about a signifi- 

cant issue of class imbalance, that raises the challenge of learn- 

ing a stable model by avoiding overfitting. This motivates us 

to seek ways to ease the imbalance of different classes and 

make the most of the insufficient data. 

Therefore, aiming to achieve the fast and accurate COVID-19 

everity assessment with CT images, we propose a novel weakly 

upervised learning method via multiple-instance data augmenta- 

ion and self-supervised learning. Our method is designed to solve 

he problems of weak annotation and insufficient data in a unified 

ramework. 

On one side, the concept of weak annotation comes from weakly 

upervised learning paradigm, whose goal is to develop learning 

odels under three types of supervision: inexact supervision, in- 

omplete supervision, and inaccurate supervision. In the severity 

ssessment task, weak annotation is one type of inexact supervi- 

ion where only the image-level label is provided by physicians 

hereas the region-level label is unavailable. Formally, we model 

his weak annotation task under multiple instance setting: We di- 

ide a CT image into several patches ( i.e. , unannotated instances), 

o make it as a bag consisting of multiple instances. Similar to mul- 

iple instance learning setting, the image indicated with severe or 

on-severe infection is considered as the positive or negative bag, 

espectively. 

On the other side, the problem of insufficient data greatly chal- 

enges the robustness and stability of a learned model. We no- 

ice that in current studies on COVID-19, sizes of samples are of- 

en small. To tackle this challenge, we are motivated by two major 

spects: 1) to complement the original data by generating addi- 

ional “virtual” data by using data augmentation technique, and 

) to leverage the patch-level information to benefit the learn- 

ng process, since the quantity of patches is much larger than 

hat of images. In particular, 1) we develop a simple yet effective 

ultiple-instance data augmentation method to generate virtual 

ags to enrich the original data and guide stable training process; 

) Along with the bag-level labels for supervised training, there is 

lso abundant unsupervised information that we can mine from 

he sufficient unannotated instances, so we apply self-supervised 

earning, in the form of patch location tasks, to exploit character- 

stic information of the patches. 

In this paper, we propose a method consisting of three major 

omponents (see Fig. 2 ). Specifically, 1) we build a deep multi- 

le instance learning (MIL) model with instance-level attention to 

ointly classify the bag and weigh the instances in each bag, so as 

o find the positive key instances ( i.e. , instances with high confi- 

ence to the class of “severe”); 2) We develop an instance-level 

ugmentation technique to generate virtual positive bags by sam- 

ling from these key instances, which helps to ease the problem 

f class imbalance and strengthen the learning process; 3) We in- 

roduce an auxiliary self-supervised loss to render extracted fea- 

ures more discriminative, by including characteristic information 

f the patches. With extra information extracted from the unan- 
2 
otated instances, the performance of MIL model could be further 

mproved. These three components are logically integrated in a 

nified framework: 1) Three components are alternatively updated 

o benefit each other in an end-to-end manner; 2) Data augmen- 

ation could alleviate the label imbalance issue in training of the 

IL model, while the trained MIL model could guide data augmen- 

ation to produce more meaningful bags; 3) Self-supervised pre- 

ext task is able to benefit the MIL model to being location-aware, 

hich was ignored in traditional MIL setting. In our evaluation, we 

xtensively validated the efficacy of our three components. 

In the following four sections, we first introduce related litera- 

ure ( Section 2 ), then we present the technical details of the pro-

osed method ( Section 3 ), and finally report the qualitative and 

uantitative experimental results ( Section 4 ) before drawing a con- 

lusion ( Section 6 ). 

. Related work 

We would like to review related work on four aspects: 1) 

OVID-19 severity assessment, 2) multiple instance learning, 3) 

ata augmentation, and 4) self-supervised learning. 

.1. COVID-19 Severity assessment 

Along with diagnosis, severity assessment is another important 

actor for treatment planning. So far, there have been a few rele- 

ant attempts at predicting severity of COVID-19 with CT images. 

ang et al. (2020) proposed a random forest (RF)-based model 

o assess the severity of COVID-19 based on 63 quantitative fea- 

ures, e.g. , the infection volume/ratio of the whole lung and the 

olume of ground-glass opacity (GGO) regions. Besides, impor- 

ance of each quantitative feature is calculated from the RF model. 

ang et al. (2020) proposed to evaluate the value of chest com- 

uted tomography severity score (CT-SS) in differentiating clinical 

orms of COVID-19. The CT-SS was defined by summing up indi- 

idual scores from 20 lung regions. In Yang et al.’s work, these 

cores were assigned for each region based on parenchymal opaci- 

cation. Li et al. (2020) proposed a similar method depending on 

he total severity score (TSS), which was reached by summing 

he five lobe scores. Shan et al. (2020) developed a deep learn- 

ng based segmentation system, namely “VB-Net”, to automati- 
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Fig. 2. An overview of our method. In our method, the CT images are cropped into patches, which are then packed into MIL bags. In the k th epoch of training process, the 

data for supervised training consists of real bags ( i.e. , training CT images) and virtual bags generated in the (k − 1) th epoch. Besides, real bags are also used for the auxiliary 

self-supervised learning task (while virtual bags are not). After the training stage, the trained MIL model will take the testing CT images (also modeled as MIL bags) as input 

to predict their labels ( i.e. , severe or non-severe). 
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ally segment and quantify infection regions in CT scans of COVID- 

9 patients. To accelerate the manual delineation of CT scans for 

raining, a human-involved-model-iterations (HIMI) strategy was 

dopted to assist radiologists to refine automatic annotation of 

ach training case. Above existing methods all depended on man- 

ally defined scores or manual segmentations given by experts. 

hao et al. (2020) and Chassagnon et al. (2020) further extended 

he problem to patient outcome prediction, combining both imag- 

ng and non-imaging (clinical and biological) data. 

.2. Multiple instance learning 

Multiple instance learning is one paradigm of weakly su- 

ervised learning, which belongs to “inexact supervision”

 Zhou (2018) ). In terms of existing MIL methods for image 

lassification task, they can be roughly divided into two categories, 

.e. , instance-level methods and bag-level methods. Instance-level 

ethods assume that all instances in a bag contribute equally 

o the prediction of the bag label ( Amores (2013) ), under which 

ssumption, the prediction of bag-level label is conducted by ag- 

regating ( e.g. , voting or pooling) the prediction of instance-level 

abels in each bag. However, this type of approaches ( Pinheiro and 

ollobert (2015) ; Wu et al. (2015) ) suffer from a major limita- 

ion – the label of each instance is usually separately predicted 

ithout considering other instances (even those in the same bag), 

endering the label easily disrupted by incorrect instance-level 

redictions. However, different from instance-level methods, by 

onsidering the class information of all instances, bag-level meth- 

ds usually achieve higher accuracy and better time efficiency, 

s proved in Amores (2013) . In this sense, the promising prop- 

rty of MIL works quite well with our weakly supervised image 

lassification task, as indicated by many current studies working 

owards this direction ( Babenko et al. (2011) ; Sun et al. (2016) ;

u et al. (2015) ). 

As is known, medical images are usually infeasible to obtain 

ixel-level annotations because this demands enormous time and 

erfect accuracy from clinical experts. Therefore, there has been 

 great interest in applying MIL methods to medical imaging 

 Cheplygina et al. (2019) ). Quellec et al. (2017) attempted to divide 

he medical image into small-sized patches that can be considered 

s a bag with a single label. Sirinukunwattana et al. (2016) fur- 

her extended this application to the computational histopathology 

here patches correspond to cells to indicate malignant changes. 

lse et al. (2018) proposed an attention-based method that aims at 
3 
ncorporating interpretability to the MIL approach while increas- 

ng its flexibility at the same time. Han et al. (2020) innovatively 

ncorporated an automated deep 3D instances generator into the 

ttention-based MIL method, for accurate screening of COVID-19. 

here are also other different MIL approaches used in medical im- 

ge analysis tasks, e.g. , Gaussian processes ( Kandemir et al. (2016) ) 

nd a two-stage approach with neural networks and expectation 

aximization (EM) algorithm to determine the classes of the in- 

tances ( Hou et al. (2016) ). 

.3. Data augmentation 

Data augmentation is a data-space solution to the problem of 

imited data. To increase the amount and the diversity of data, 

here has been a great interest in data augmentation recently, since 

any applications, e.g. , medical image analysis, might not always 

ave sufficient labeled training data to train. So far, a number of 

echniques have been developed to enhance the size and quality 

f training sets to build better deep learning models. 

One type of data augmentation methods are designed by 

erforming the basic image processing operators. For example, 

aylor and Nitschke (2018) provided a comparative study of the 

ffectiveness of geometric transformations ( e.g. , flipping, rotating, 

nd cropping), and that of color space transformations ( e.g. , color 

ittering, edge enhancement and PCA). Zhang et al. (2017) proposed 

ixup , which trains the learning model on virtual examples con- 

tructed by a linear interpolation of two random examples from 

he training set. Zhong et al. (2020) developed random erasing 

nspired by the mechanisms of dropout regularization. Similarly, 

eVries and Taylor (2017) proposed a method named as Cutout 

egularization. 

Note that there are also several attempts at learning-based 

ata augmentation. Frid-Adar et al. (2018) tested the effective- 

ess of using DCGANs to generate liver lesion medical images. 

pplying meta learning concepts in neural architecture search 

NAS) to data augmentation, several methods such as Neural 

ugmentation ( Perez and Wang (2017) ), Smart Augmentation 

 Lemley et al. (2017) ), and Auto-Augment ( Cubuk et al. (2019) ),

ere further developed in recent literature. 

Unfortunately, under the MIL setting, the labels of instances are 

ot available during training, which means previous data augmen- 

ation methods cannot be directly borrowed. In order to relieve 

he data scarcity problem during COVID-19 severity assessment, we 
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Fig. 3. A brief illustration of the notions of CT slices, instances (patches) and bags. A 

CT image contains CT slices, and the slices are cropped to non-overlapping patches, 

which are considered as instances. The patches from the same CT image make up a 

MIL bag, with a bag-level label “severe” or “non-severe”. 
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ave to develop a novel augmentation technique that works for our 

IL setting. 

.4. Self-supervised learning 

In many recent studies of unsupervised learning, a common 

ethod is to define an annotation-free pretext task to provide a 

urrogate supervision signal for feature learning. By solving such 

retext tasks, the trained model is expected to extract high-level 

emantic features that are useful for other downstream tasks. So 

ar, a large number of pretext tasks for self-supervised learn- 

ng have been designed. For example, Larsson et al. (2016) and 

hang et al. (2016) predicted the colors of images by remov- 

ng its original color information. Doersch et al. (2015) and 

oroozi and Favaro (2016) predicted relative positions of different 

mage patches in the same image. Gidaris et al. (2018) predicted 

he random rotation applied to an image. Pathak et al. (2016) pre- 

icted the missing central part of an image by building the pre- 

iction model with context information. He et al. (2020) presented 

 contrastive learning method, called Momentum Contrast (MoCo), 

hich outperformed its supervised pre-training counterpart in sev- 

ral vision tasks. Zhou et al. (2021) proposed a set of models 

rained by a robust, scalable self-supervised learning framework, 

alled Models Genesis, for medical image analysis tasks. What 

hese works have in common is that they are all utilized to attain 

ell pre-trained networks on unannotated images. 

Unlike these works above aiming at pre-trained models, 

hen et al. (2018) aimed to improve the performance of genera- 

ive adversarial networks by leveraging the supervision of rotation 

rediction task. Similarly, Gidaris et al. (2019) used self-supervision 

s an auxiliary task and brought significant improvements to few- 

hot learning. 

Remark. As discussed above, both the weak supervision man- 

er and data scarcity in COVID-19 severity assessment pose a con- 

iderable challenge to our work. So our intuition includes the fol- 

owing two steps: 1) We found weak supervised prediction of 

OVID-19 naturally agrees with the setting of MIL; 2) Under the 

IL setting, we try to solve the challenge of data scarcity by con- 

idering the relation between bag and instance. In a nutshell, by 

onfronting the double challenges of weak supervision and data 

carcity, our solution for COVID-19 severity assessment is novel ac- 

ording to our best knowledge. 

. Method 

In this section, we first analyze the problem of COVID-19 sever- 

ty assessment and provide an overview of our method, then 

resent and discuss thoroughly the technical details of three major 

omponents, i.e. , bag-level prediction, instance-level augmentation 

nd auxiliary self-supervised loss. 

.1. Problem analysis 

In this part, we will first analyze the main challenges in COVID- 

9 severity assessment caused by weak supervision and data 

carcity, and then provide corresponding countermeasures. 

For the annotation of CT images, image-level labels directly 

ome from diagnosis results of corresponding patients, guided by 

he Diagnosis and Treatment Protocol for COVID-19 (Trial Version 

) from National Health Commission of the People’s Republic of 

hina. In this sense, infection regions in CT images of COVID-19 

atients remain unknown even when this image has already been 

abeled. This poses a great challenge for the utilization of tradi- 

ional supervised learning models. To address this challenge, we 

ntroduce the multiple instance learning (MIL) framework, a typical 
4 
eakly-supervised learning paradigm to deal with the image-level 

rediction without knowing any region-level annotation. 

In the MIL setting, each image could be regarded as a bag, and 

egions inside this image are thus regarded as instances in this bag. 

n our case, chest CT images are processed as bags. To be more 

pecific, each CT image consists of hundreds of slices that show 

ifferent cross sections of lung regions. Moreover, each slice can 

e further cropped into several non-overlapping patches. And the 

atches from the same CT image make up a bag. Note that the 

abel of a bag ( i.e. , the bag-level label) depends on the informa- 

ion provided by physicians on original CT images. These notions 

re illustrated in Fig. 3 . In this work, the MIL bags with the la-

el “severe” are called positive bags , whereas those with the label 

non-severe” are called negative bags . It is also worth mentioning 

hat the instances ( i.e. , patches) related to the infection regions in 

ositive bags are without any annotated information during train- 

ng. 

Another challenge is data scarcity, which usually makes stable 

earning model hard to realize, especially when the number of se- 

ere CT images is very limited. To address this issue, we first adopt 

he data augmentation technique during training by generating vir- 

ual samples. Though data augmentation has demonstrated its ef- 

ectiveness in several other learning tasks ( Shorten and Khoshgof- 

aar (2019) Qin et al. (2020) ), previous augmentation technique 

annot be directly applied to our MIL setting, because each bag 

onsists of several instances and the instance-level label is un- 

nown. In our work, we notice that compared to other instances, 

ome instances usually play a much more important role in de- 

ermining the label of a bag, which we name as key instances . This 

bservation further drives us to develop a novel instance-level aug- 

entation technique to generate “virtual” bags by gathering these 

ey instances. 

In addition to the data augmentation technique, we also lever- 

ge self-supervised learning, a popular unsupervised paradigm in 

ecent studies. We notice that, although supervised information of 

ag-level labels is limited due to data scarcity, there is a wealth of 

nsupervised information hidden in unannotated instances. Thanks 

o self-supervision, the patch-wise location can be further ex- 

loited so that the network can extract stronger instance features. 

s a result, the bag-level features of positive and negative samples 

an be further differentiated, further im proving the performance of 

he MIL model. 

In a word, to address the aforementioned challenges, our 

ethod has three major components: 1) bag-level prediction, 2) 

nstance-level augmentation and 3) auxiliary loss based on self- 

upervised learning. In particular, we build a deep multiple in- 

tance learning model with attention mechanism to predict the 

ag-level label ( i.e. , severe or non-severe). Instances with higher 
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Fig. 4. The framework of deep MIL model. Firstly, the instance features are extracted. Secondly, the attention weights of the instance features are determined by the network. 

Then, the MIL pooling layer combines the instance features to generate a bag feature. Finally, the bag feature is mapped by a fully connected (FC) layer to decide the label. 
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Fig. 5. An example of key instances in a positive bag. It indicates that the patches 

are likely to be related to the severe infection regions. Note that, we rescaled the 

attention weights of the patches in the same slice using a 
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ttention weights, that are expected to have larger influence on 

he bag-level label, can be regarded as key instances, while other 

nstances are considered to be regular instances. According to the 

earned attention, we randomly sample key instances and regular 

nstances to generate virtual bags to enrich current training sam- 

les. In the training stage, we incorporate self-supervision into MIL 

odel by adding an auxiliary self-supervised loss. 

.2. Bag-level prediction 

The first component of our method – bag-level prediction aims 

o predict the label of a CT image as either severe or non-severe. 

 chest CT image consisting of hundreds of slices can be divided 

nto smaller sized patches, making the CT image itself a bag with 

 single label (severe or non-severe) and the patches instances. In 

his work, Y = 1 indicates that the image is labeled as severe case 

hile Y = 0 indicates that it is non-severe. Since these patches are 

on-overlapping, we assume there is no dependency or sequential 

elationship among the instances within a bag. Furthermore, K de- 

otes the number of instances in a bag, and we assume K could 

ary from bag to bag. 

The framework of this component is shown in Fig. 4 . We use 

 convolutional neural network ( LeCun et al. (1998) ) to extract the 

eature embedding h k of each instance x k , where h k ∈ R 

M and M is

he dimensionality of instance features. Suppose H = { h 1 , . . . , h K } 
s a bag of K embeddings, the embedding of bag X is calculated by 

ttention-based MIL pooling proposed by Ilse et al. (2018) : 

 = 

K ∑ 

k =1 

a k h k , (1) 

here 

 k = 

exp 

(
w 

� tanh 

(
Vh 

� 
k 

))

∑ K 
j=1 exp 

(
w 

� tanh 

(
Vh 

� 
j 

)) , (2) 

 ∈ R 

L and V ∈ R 

L ×M are the parameters to learn. The hyperbolic

angent tanh (·) element-wise non-linearity is utilized to include 

oth negative and positive values for proper gradient. Finally, we 

se a fully connected layer to decide the label according to the 

ag feature. The categorical cross-entropy loss is used to optimize 

he MIL model dened as follows: 

 MIL = − 1 

N b 

N b ∑ 

i =1 

1 ∑ 

c=0 

δ( Y i = c ) log 

(
P ( Y i = c ) 

)
, (3) 

here N b is the number of bags. δ( y i = c ) is the indicator func- 

ion ( i.e. , δ( y i = c ) = 1 when y i = c and 0 otherwise) and P (Y i = c)

enotes the predicted probability. 

It is worth mentioning that large weights refer to key instances 

ith relatively high confidence, that are most relevant to the bag- 

evel label. This means that not only can the MIL model provide 
5 
nal diagnostic results, it can also help physicians to identify possi- 

le severe infection regions, which has a great clinical significance 

or COVID-19 severity assessment. 

With the trained MIL model, we are able to automatically assess 

he severity of the disease with CT images. In the testing stages, we 

ivide the CT image into non-overlapping patches in the same way 

s in training. Along with the assessment, the model also outputs 

he attention weights, that can help find the regions relevant to 

evere infection. 

.3. Instance-level augmentation 

For severity assessment, scare data significantly deteriorates the 

verall performance. What’s more, the imbalance of class, i.e. , the 

umber of non-severe cases is much larger than that of severe 

ases, is also harmful for learning a stable model. 

To confront these problems, we propose a novel data augmen- 

ation technique to generate “virtual bags” on original bags to en- 

ich current training process. By rethinking the attention mecha- 

ism in multiple instance learning, we notice that the patch with 

igher responses in attention usually indicates a higher relation to 

ts current class label. In positive bags, there are some instances 

ith significantly higher weights, as shown in Fig. 5 . We consider 

hem (positive) key instances while other instances regular instances . 

owever, according to the experiments, in negative bags, all in- 

tances have similar low weights, roughly confirming the rule in 

raditional MIL. Therefore, we only take positive bags and corre- 

ponding key instances in them into consideration. 

In the training process, when a positive bag is correctly pre- 

icted to be severe, instances with top- � αK� highest weights in 

his bag will be appended to the list of key instances, where K

s the number of instances in the bag. In the meantime, other 

nstances are treated as regular instances. Considering time cost 

nd memory usage, we only append instances with top- � γ N� low- 

st weights to the list of regular instances. In our observation, 

e notice that different positive bags may have different propor- 

ion of positive key instances. Therefore, in order to prevent reg- 
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Fig. 6. A sketch map of generating virtual bags. For positive bags, instances with 

high weights are appended to the list of key instances while instances with low 

weights to the list of regular instances. Virtual bags are generated by randomly 

sampling key instances and regular instances. 
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Fig. 7. A CT slice is divided to 12 patches. For the relative patch location task, we 

are able to create 16 pairs of patches: (a 0 , a 1 ) , . . . , (a 0 , a 8 ) and (b 0 , b 1 ) , . . . , (b 0 , b 8 ) . 

For the absolute patch location task, we directly predict each patch’s location 

among l 1 , . . . l 12 . 
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lar instances from being mistaken as key instances, the proper 

arameter α should be set to a relatively small value as a strict 

ule to judge the key instance. In practice, the value is set to no 

arger than each positive bag’s actual proportion. For the genera- 

ion of virtual positive bags, assuming the average number of in- 

tances per bag is K̄ , we randomly sample � αK̄ � key instances and 

 (1 − α) ̄K � regular instances, then pack them into a virtual bag. 

mong the parameters above, K and K̄ are easy to obtain, while 

and γ need to be set before training. The process of generating 

irtual bags is visualized in Fig. 6 . 

With the help of attention mechanism, this process can be 

lugged in the training phase. In each training epoch, the model 

enerates virtual bags based on attention weights and these vir- 

ual bags generated are further used as a part of training data in 

he next epoch. 

.4. Auxiliary self-supervised loss 

We also incorporate self-supervision into the MIL model by 

dding an auxiliary self-supervised loss. By optimizing the self- 

upervised loss, the model learns to exploit more information from 

nannotated instances. 

In this work, we consider the following two pretext tasks for 

he self-supervised loss: 1) to predict the relative location of two 

atches from the same slice, which is a seminal task in self- 

upervised learning as originally proposed in Doersch et al. (2015) ; 

nd 2) to predict the absolute location of a single patch, which is 

imilar to the former task, but more suitable under the MIL prob- 

em setting. 

SSL task 1: Relative Location Prediction. Predicting the rela- 

ive location of a pair of patches from the same image is a semi-

al task in self-supervised learning. More specifically, given a pair 

f patches, the task is to predict the location of the second patch 

ith regard to the first one, among eight possible positions, e.g. , 

on the bottom left” or “on the top right”. This task is particu- 

arly suitable for the MIL setting, because there are many pairs of 

atches in a bag, that we can predict the relative location of. To 

e more specific, for one slice, we are able to create 16 pairs of 

atches: (a 0 , a 1 ) , . . . , (a 0 , a 8 ) and (b 0 , b 1 ) , . . . , (b 0 , b 8 ) , as shown in

ig. 7 . We extract the representation of each patch and then gen- 

rate pair features by concatenation. We train a fully connected 

etwork G 

r 
φ
(·, ·) with parameters φ to predict the relative patch 

ocation of each pair. 
6 
The self-supervised loss of this relative location prediction task 

s defined as: 

 

r 
SSL = 

1 

N s 

N s ∑ 

s =1 

16 ∑ 

i =1 

L CE 

(
G 

r 
φ(p i ) , rloc (p i ) 

)
, (4) 

here N s is the number of slices. p i stands for the pair of patches, 

pecifically p 1 , . . . , p 8 for (a 0 , a 1 ) , . . . , (a 0 , a 8 ) and p 9 , . . . , p 16 for

b 0 , b 1 ) , . . . , (b 0 , b 8 ) . There are 16 pairs in total. L CE (·, ·) is the

ross-entropy loss function and rloc (p i ) is the ground truth of the 

elative patch location. 

SSL Task 2: Absolute Location Prediction. Under the MIL set- 

ing of COVID-19 severity assessment, the CT slices containing two 

ungs are quite similar. This has made us to realize that the task 

an be designed in a more straightforward way, i.e. , to predict the 

bsolute location of a single patch in an entire CT slice, or more 

pecifically, to predict the location of a patch among 12 possi- 

le positions l 1 , . . . l 12 as shown in Fig. 7 . We also train a fully-

onnected network G 

a 
φ
(·) with parameters φ to predict the abso- 

ute patch location. 

The self-supervised loss of this absolute location prediction task 

s defined as: 

 

a 
SSL = 

1 

N s 

N s ∑ 

s =1 

12 ∑ 

i =1 

L CE 

(
G 

a 
φ(x i ) , aloc (x i ) 

)
, (5) 

here N s is the number of slices. x i stands for the patch in the 

osition of l i . aloc (x i ) = l i is the ground truth of the absolute patch

ocation. There are 12 patches per slice. 

Formally, let L SSL be the either kind of self-supervised loss, the 

otal loss of the training stage can be written as 

 total = 

L MIL + μL SSL 

1 + μ
, (6) 

here L MIL stands for the loss of MIL model ( i.e. , the bag-level pre-

iction task), as defined previously. The positive hyperparameter 

controls the weight of self-supervised loss. By optimizing self- 

upervised loss, the instance feature extractor can learn more in- 

ormative features, further improving the performance of the MIL 

odel. Note that, only real bags will be used for self-supervised 

earning tasks. 

. Experiment 

In the section, we will report the quantitative and qualitative 

esults of our method. First, we present the details of our COVID-19 

ataset and the process of data preprocessing. Then, we discuss the 

xperimental setup in our evaluation and provide the implementa- 

ion details of our method. After that, we conduct ablation studies, 

nd compare our method with existing methods, while analyzing 

he interpretability of our method. Finally, we discuss some of the 
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Table 1 

The Gender Distribution in our study. 

Gender Severe Non-severe Total 

Male 32 92 124 

Female 18 87 105 

Total 50 179 229 

Fig. 8. The age distribution of the patients in our dataset. 
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Table 2 

The details of our Network Architec- 

ture. 

Layer Type 

1 conv(5,1,0)-36 + ReLU 

2 maxpool (2,2) 

3 conv(5,1,0)-36 + ReLU 

4 maxpool (2,2) 

5 conv(5,1,0)-48 + ReLU 

6 maxpool (2,2) 

7 fc-512 + ReLU 

8 MIL-attention-128 

9 fc-1 + Sigm 

o

p

t

4

s

f

t

a

s

t

m

A

S

S

F

w

T

4

c

4

M

w  

t

i

f

c

a

a  

T  

p

t

(

p

hoices we have made in network structures, parameter values and 

retext tasks. 

.1. Dataset 

We collect a dataset, that contains chest CT images of 229 pa- 

ients with confirmed COVID-19. For each patient, the severity of 

OVID-19 is determined according to Diagnosis and Treatment Pro- 

ocol for COVID-19 (Trial Version 7) issued by National Health Com- 

ission of the People’s Republic of China. The severity includes 

our types: mild, common, severe and critical. We categorize pa- 

ients into two groups: non-severe group (mild and common) and 

evere group (severe and critical), because the number of patients 

ith mild or critical types is extremely small. Among these pa- 

ients, 179 are non-severe cases while 50 severe cases. The cat- 

gories of patients are used as image-level labels of their corre- 

ponding CT images. Moreover, the gender distribution of the pa- 

ients is shown in Table 1 and their age distribution is shown in 

ig. 8 . 

All chest CT images were acquired at the Second Xiangya Hospi- 

al of Central South University and its collaborating hospitals with 

ifferent types of CT scanners, including Anke (ANATOM 16HD), 

E (Bright speed S), Hitachi (ECLOS), Philips (Ingenuity CT iDOSE4) 

nd Siemens (Somatom perspective). The scanning parameters are 

s follows: 120 kVp, 10 0–20 0 mAs, pitch 0.75-1.5 and collimation 

–5 mm. 

.2. Data preprocessing 

Though in the previous section, we have introduced how to 

rocess the CT images as MIL bags briefly, when it comes to the 

mplementation, we give more details. The CT images are originally 

tored in DICOM files and converted to PNG file format for further 

rocessing. Each PNG file corresponds to a CT slice. After the CT 

mages have been sliced, those slices with few lung tissues are re- 

oved. For each slice, we locate the bounding box of two lungs 

nd crop the region containing two lungs. The cropping region 

s then resized to 240 × 180 and divided into 12 non-overlapping 

atches of size 60 × 60 . To remove inter-subject variation, we fur- 

her perform min-max normalization on each patch individually. 
7 
Eventually, we obtained a dataset consisting of 229 bags, 179 

f which are negative ( i.e. , non-severe cases) and 50 of which are 

ositive ( i.e. , severe cases). There are 49,632 instances (patches) in 

otal, with around 217 instances per bag on average. 

.3. Experimental setup 

We employ the standard 10-fold cross-validation, where each 

ample would be tested at least once. Each experiment is per- 

ormed 5 times and an average ( ± a standard deviation) is reported 

o avoid possible data-split bias. 

In our experiments, we use the following metrics to evalu- 

te the performance: accuracy, sensitivity (true positive rate, TPR), 

pecificity (true negative rate, TNR), F1-Score and the area under 

he receiver operating characteristic curve (AUC). Specifically, these 

etrics are defined as: 

ccuracy = 

TP + TN 

TP + FP + FN + TN 

, (7) 

ensitivity = 

TP 

TP + FN 

, (8) 

pecificity = 

TN 

TN + FP 

, (9) 

1-score = 

TP 

TP + 

1 
2 
( FP + FN ) 

, (10) 

here TP, FP, TN, and FN represent the True Positive, False Positive, 

rue Negative and False Negative, respectively. 

.4. Implementation details 

In this part, we provide the implementation details of the three 

omponents of our method. 

.4.1. Bag-level prediction 

For bag-level prediction, we construct a deep attention-based 

IL model. In order to keep the consistency with the previous 

ork ( Ilse et al. (2018) ), we choose LeNet ( LeCun et al. (1998) ) as

he instance feature extractor and the dimensionality of features 

s 512. In attention mechanism, the parameter L is set as 128. A 

ully connected (FC) layer with Sigmoid function works as a linear 

lassifier and the classification threshold is set as 0.5. All layers 

re initialized according to Glorot and Bengio (2010) and biases 

re set as zero. The network architecture is shown in Table 2 . In

able 2 , conv (5,1,0)-36 means the size of kernel as 5, stride as 1,

adding as 0 and the number of output channels as 36, respec- 

ively. The model is trained with the Adam optimization algorithm 

 Kingma and Ba (2014) ). The hyperparameters of the optimization 

rocedure are given in Table 3 . 
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Table 3 

The setting of parameters in our 

experiments. 

Hyperparameters Value 

β1 , β2 0.9, 0.999 

Learning rate 0.0001 

Weight decay 0.0005 

Batch Size 1 

Epoch 50 
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Fig. 9. Visualization of the bag-level features extracted in different configurations. 

The left corresponds to (A), while the right corresponds to (D). Red and green points 

stand for severe and non-severe cases, respectively. (For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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.4.2. Instance-level augmentation 

In virtual-bag generation, the value of parameter α is very im- 

ortant. As aforementioned in Section IV.C, in our setting, α should 

e smaller than the actual proportion to prevent regular instances 

rom being mistaken for key instances. So we set α as 0.025, be- 

ause it shows the greatest accuracy on the validation set. On the 

ontrary, since regular instances are not useful to identify the pos- 

tive bag, the parameter γ just need to be relatively small, to make 

ure that no key instance gets into the list of regular instances in- 

orrectly. In our experiments, γ is fixed as 0.2, which shows good 

erformance according to our evaluation. Besides, in the beginning 

f the training phase, the MIL model is under-fitting so it cannot 

rovide very accurate weights. Therefore, in our experiment, the 

odel starts to generate virtual bags from the 26 th epoch to the 

ast epoch. 

.4.3. Self-supervised loss 

For the relative patch location task, given two patches, the net- 

ork G 

r 
φ
(·) gets the concatenation of their feature vectors as in- 

ut to two fully connected layers. For the absolute patch location 

ask, another network G 

a 
φ
(·) consisting of two fully connected lay- 

rs gets as input the feature of a single patch and predicts its loca- 

ion. For both tasks, we set μ as 0.3. We also optimize the auxiliary 

oss with the Adam algorithm ( Kingma and Ba (2014) ). The hyper- 

arameters of the optimization algorithm are consistent with those 

hown in Table 3 . 

.5. Ablation study 

To evaluate the effectiveness of different components of the 

roposed method, we have conducted ablation studies. We have 

xperimented on the following configurations: 

• (A) MIL Only: our method without data augmentation and self- 

supervised learning; 
• (B) MIL + Augmentation: our method without self-supervised 

learning; 
• (C) MIL + Self-supervised: our method without data augmenta- 

tion; 
• (D) MIL + Both: our method . 

The values of hyperparameters involved have already been de- 

cribed above. For self-supervised learning, we choose the absolute 

atch location task as the pretext task, because experimental evi- 

ence shows that it outperforms the relative patch location task in 

ur problem setting. See further discussion for details. 

The results of all these congurations are illustrated in Table 4 . 

he statistical comparison ( i.e. , two-sample t -test) on AUC met- 

ics is conducted and p-values are reported below. Comparing (B) 

ith (A), we find that the proposed data augmentation technique 

ignificantly improves the overall performance of the MIL model 

 p = . 015 < 0 . 05 ), especially the sensitivity criteria important for

OVID-19 diagnosis. Similarly, the comparison between (C) and 

A) shows the auxiliary self-supervision loss also results in perfor- 

ance gain ( p = . 028 < 0 . 05 ). Comparing (D) with other configura-

ions (A, B and C), the MIL model incorporating both data augmen- 
8 
ation and self-supervised learning achieves the best performance 

 p = . 006 , 0 . 027 , 0 . 007 < 0 . 05 ). 

The visualization in Fig. 9 indicates that our method can learn 

ore discriminative feature representations than the original MIL 

odel. 

.6. Comparison with existing methods 

We have compared our method with the existing works by 

ang et al. (2020) and Yang et al. (2020) , which share the same 

roblem setting with ours. For the size of datasets, compared with 

hest CT images of 179 patients in Tang et al.’s work and those 

f 102 patients in Yang et al.’s work, our work includes a larger 

ataset of 229 patients. In terms of data annotation, our method 

orks under weak annotation setting, with only image-level labels 

severe or non-severe) available. However, their works need addi- 

ional manual annotation besides image-level labels. Tang et al.’s 

ork depends on 63 quantitative features calculated from accu- 

ate segmentation results of infection regions. The segmentation 

etwork needs manual delineations for training. Yang et al.’s work 

epends on manually defined severity scores of lung regions pro- 

ided by chest radiologists. 

Table 5 displays the comparison between our proposed method 

nd the existing methods. Because their data and codes are not ac- 

essible, the results in the first two lines are directly reported from 

heir papers. The third line shows that our MIL model itself has 

chieved better performance in terms of accuracy and AUC metrics. 

s shown in the last line, our proposed method with data augmen- 

ation and self-supervised learning reveals a superior performance 

n a larger dataset when compared with these two state-of-the- 

rts methods. 

.7. Efficiency of MIL method 

We implemented our experiments on one Nvidia GeForce RTX 

080 Ti GPU. In 10-fold cross-validation, for each data split, train- 

ng our MIL model (with data augmentation and auxiliary self- 

upervised loss) on 206 samples would take 213 . 7 ± 5 . 1 seconds in

verage, and testing on 23 samples would take less than 1 second. 

t is shown that the proposed method is quite efficient in compu- 

ation. 

.8. Interpretability of MIL method 

Along with a predicted label, the MIL model also outputs atten- 

ion weights for each patch. Although the model is not designed 

o accurately segment the lesions, it can still help to indicate the 

egions relevant to severe infection. In Fig. 10 , we show that the at- 

ention weights can be useful for finding severe infection regions. 

.9. Method designing details 

Now we would like to discuss some of the choices we made 

n designing our method. Experiments on the validation set show 
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Table 4 

The Results of The Ablation Study. 

Method Accuracy Sensitivity Specificity F1-Score AUC 

(A) MIL Only 0 . 908 ± 0 . 029 0 . 740 ± 0 . 084 0 . 954 ± 0 . 031 0 . 776 ± 0 . 064 0 . 932 ± 0 . 022 

(B) MIL + Augmentation 0 . 942 ± 0 . 025 0 . 916 ± 0 . 022 0 . 949 ± 0 . 036 0 . 874 ± 0 . 045 0 . 971 ± 0 . 004 

(C) MIL + Self-supervision 0 . 937 ± 0 . 029 0 . 844 ± 0 . 129 0 . 963 ± 0 . 009 0 . 850 ± 0 . 079 0 . 964 ± 0 . 030 

(D) MIL + Both 0.958 ±0.015 0.936 ±0.032 0.964 ±0.024 0.895 ±0.029 0.981 ±0.006 

Table 5 

Comparisons between Our Proposed Method and The Existing Approaches. Note that our method requires no 

addition annotation other than image-level labels, while Tang et al.’s work requires accurate segmentation of 

infection region and Yang et al.’s work depends on manually defined severity scores. 

Method Accuracy Sensitivity Specificity F1-Score AUC 

Tang et al. (2020) 0.875 0.933 0.745 - 0.910 

Yang et al. (2020) 0.833 0.940 - 0.892 

MIL Only (Ours) 0 . 908 ± 0 . 029 0 . 740 ± 0 . 084 0 . 954 ± 0 . 031 0 . 776 ± 0 . 064 0 . 932 ± 0 . 022 

MIL + Both (Ours) 0.958 ±0.015 0.936 ±0.032 0.964 ±0.024 0.895 ±0.029 0.981 ±0.006 

Fig. 10. Visualization of the attention mechanism in our method. Presented above are some examples of the (slice-wise rescaled) attention weights of patches. Severe 

infection regions identified by experts are marked with yellow boxes. It can be seen that the patches with high weights are probably relevant to severe infection. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 11. Performance of different α. The best α is 0.025. 
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hat the values of parameters α and μ, as well as the selection of 

retext task, can affect the performance of our method. 

.9.1. Bag-level prediction 

For the instance feature extractor, we do not use deeper ResNet 

 He et al. (2016) ) or DenseNet ( Huang et al. (2017) ), because the

xperiment shows that deeper networks cannot significantly im- 

rove the performance, but rather increase the time consumed in- 

tead. For MIL attention pooling, we test the following dimensions 

L): 64, 128 and 256. The differences in dimensions only result in 

inor changes of the models performance. 

.9.2. Instance-level augmentation 

For the data augmentation technique, we evaluate the perfor- 

ance for different α, the results of which are illustrated in Fig. 11 .

ur experiment shows that different γ doesn’t bring great varia- 

ion on the model’s performance. 

.9.3. Self-supervised loss 

We have evaluated the performance of two pretext tasks, and 

he results on are shown in Table 6 . According to the results, uti-

izing the absolute patch location task can approach better perfor- 

ance than utilizing the relative patch location task ( p = . 041 < 
9 
 . 05 ). The reason could be that different lung regions play differ- 

nt roles in COVID-19 severity assessment as shown by an exist- 

ng study Tang et al. (2020) , while the absolute patch location task 

ay help to extract both high-level semantics and spatial infor- 

ation. For the absolute patch location task, we further conduct 
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Table 6 

Performance of Different Pretext Tasks. 

Method Accuracy Sensitivity Specificity F1-Score AUC 

Baseline 0 . 908 ± 0 . 029 0 . 740 ± 0 . 084 0 . 954 ± 0 . 031 0 . 776 ± 0 . 064 0 . 932 ± 0 . 022 

Relative Patch Location 0 . 916 ± 0 . 004 0 . 796 ± 0 . 114 0 . 949 ± 0 . 032 0 . 801 ± 0 . 024 0 . 951 ± 0 . 014 

Absolute Patch Location 0.937 ±0.029 0.844 ±0.129 0.963 ±0.009 0.850 ±0.079 0.964 ±0.030 

Fig. 12. Performance of different μ. The best μ is 0.3. 
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xperiments to find the best value of μ, and the results are illus- 

rated in Fig. 12 . 

There exist some other pretext tasks in self-supervised 

earning, such as colorization ( Ross et al. (2018) ), denoising 

 Alex et al. (2017) ), image restoration ( Chen et al. (2019) ) and

o on. However, we argue that the patch location prediction is 

pplicable for our method, because it is patch-oriented pretext 

ask. Considering that patches have been previously defined and 

ropped in the MIL setting, no more image transformation is re- 

uired. Besides, in our preliminary experiments, we noted that 

ther pretext tasks might not be applicable in severity assessment 

f COVID-19 due to the property of strong spatial relation and low 

T contrast. 

. Discussion 

For future directions of our current study, we consider four fol- 

owing aspects to improve our work: 

• Data preprocessing. We will consider a better way of data pre- 

processing. In the current study, we mainly focus on design- 

ing the learning method, thus implementing the data prepro- 

cessing in a simple way. In our future work, we will incor- 

porate automatic segmentation methods to obtain more fine- 

grained patches, for further performance improvement. In the 

meanwhile, we can also reduce a large number of irrelevant 

patches to further improve the effectiveness and efficiency of 

our method. 
• Self-supervised representation. In this study, the efficacy of 

self-supervise learning has been evaluated. In our future work, 

we will further incorporate more advanced methods of self- 

supervised contrastive learning. In this way, we can exploit in- 

formative representation from unsupervised manner. 
• Longitudial information. Longitudial information could bene- 

fit the prediction of changing trend for better severity assess- 

ment. In our future work, we will also incorporate longitudinal 

CT scans for severity assessment, to provide better treatment 

and follow-up of COVID-19 patients. 
10 
• Manual delineation. Since manual annotation is laborious, we 

will investigate semi-supervised learning model to further alle- 

viate the requirement of amount of annotation. 

For possible clinical applications, we believe that our proposed 

ethod has great potential. First, by training with a small num- 

er of weak-annotated CT images, our proposed method can pre- 

ict the severity of COVID-19 in a high accuracy. Second, our pro- 

osed method provides a powerful feature extractor for CT images. 

pecifically, the bag features are actually features of CT image, and 

an act as imaging attributes, which can be combined with clini- 

al/biological attributes for other tasks ( e.g. , patients outcome pre- 

iction). Moreover, our proposed method can be extended to other 

roblems, in which the challenges of weak annotation and insuffi- 

ient data also exist, besides COVID-19 severity assessment. 

. Conclusion 

In this paper, we investigate a challenging clinical task of fast 

nd accurately predicting the severity level of COVID-19. We ob- 

erve two issues that may obstruct the COVID-19 severity assess- 

ent: weak annotation and insufficient data. To meet these chal- 

enges, we develop a deep attention-based MIL method combined 

ith data augmentation and self-supervised learning. Experimental 

esults successfully demonstrate the effectiveness of our proposed 

omponents, including 1) the MIL model for bag-level prediction, 

) the instance-level augmentation technique by generating vir- 

ual positive bags, and 3) the auxiliary self-supervised loss for ex- 

racting more discriminative features. Also, our approach shows 

emarkably better performance when compared with the existing 

ethods. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 

Zekun Li: Methodology, Software, Investigation, Writing - orig- 

nal draft. Wei Zhao: Conceptualization, Resources, Data curation. 

eng Shi: Writing - review & editing. Lei Qi: Methodology, Writ- 

ng - review & editing. Xingzhi Xie: Data curation. Ying Wei: Data 

uration. Zhongxiang Ding: Data curation. Yang Gao: Validation. 

hangjie Wu: Data curation. Jun Liu: Methodology, Writing - re- 

iew & editing. Yinghuan Shi: Methodology, Writing - review & 

diting. Dinggang Shen: Validation, Resources, Data curation. 

cknowledgment 

The work was supported by the National Key Research and 

evelopment Program of China (2019YFC0118300), National Natu- 

al Science Foundation of China (61673203, 81927808). The work 

as also supported by the Key Emergency Project of Pneumonia 

pidemic of novel coronavirus infection (2020SK3006), Emergency 

roject of Prevention and Control for COVID-19 of Central South 

niversity (160260 0 05) and Foundation from Changsha Scientific 

nd Technical Bureau, China (kq20 010 01). 



Z. Li, W. Zhao, F. Shi et al. Medical Image Analysis 69 (2021) 101978 

R

A  

A

B  

C  

 

C  

 

C  

C  

C

C  

D

D  

F  

G  

G

G

H  

H  

H  

H  

H  

I

K  

K  

L

L  

L  

L  

N

P  

P  

P

Q  

Q  

R  

 

S  

S  

S  

S  

T  

T

W  

Y  

Z  

Z  

Z  

Z  

Z  
eferences 

lex, V. , Vaidhya, K. , Thirunavukkarasu, S. , Kesavadas, C. , Krishnamurthi, G. , 2017.

Semisupervised learning using denoising autoencoders for brain lesion detec- 

tion and segmentation. J. Med. Imaging 4 (4), 041311 . 
mores, J. , 2013. Multiple instance classification: review, taxonomy and comparative 

study. Artif Intell 201, 81–105 . 
abenko, B. , Verma, N. , Dollár, P. , Belongie, S.J. , 2011. Multiple instance learning with

manifold bags. ICML . 
hao, H. , Fang, X. , Zhang, J. , Homayounieh, F. , Arru, C.D. , Digumarthy, S.R. , Babaei, R. ,

Mobin, H.K. , Mohseni, I. , Saba, L. , et al. , 2020. Integrative analysis for covid-19

patient outcome prediction. Med Image Anal 67, 101844 . 
hassagnon, G. , Vakalopoulou, M. , Battistella, E. , Christodoulidis, S. , Hoang-Thi, T.-N. ,

Dangeard, S. , Deutsch, E. , Andre, F. , Guillo, E. , Halm, N. , et al. , 2020. Ai-driven
quantification, staging and outcome prediction of covid-19 pneumonia. Med Im- 

age Anal 67, 101860 . 
hen, L. , Bentley, P. , Mori, K. , Misawa, K. , Fujiwara, M. , Rueckert, D. , 2019. Self-su-

pervised learning for medical image analysis using image context restoration. 
Med Image Anal 58, 101539 . 

hen, T. , Zhai, X. , Ritter, M. , Lucic, M. , Houlsby, N. , 2018. Self-supervised generative

adversarial networks. arXiv preprint arXiv:1811.11212 . 
heplygina, V. , de Bruijne, M. , Pluim, J.P. , 2019. Not-so-supervised: a survey of semi–

supervised, multi-instance, and transfer learning in medical image analysis. Med 
Image Anal 54, 280–296 . 

ubuk, E.D. , Zoph, B. , Mane, D. , Vasudevan, V. , Le, Q.V. , 2019. Autoaugment: Learning
augmentation strategies from data. In: CVPR, pp. 113–123 . 

eVries, T. , Taylor, G.W. , 2017. Improved regularization of convolutional neural net- 

works with cutout. arXiv preprint arXiv:1708.04552 . 
oersch, C. , Gupta, A. , Efros, A .A . , 2015. Unsupervised visual representation learning

by context prediction. In: ICCV, pp. 1422–1430 . 
rid-Adar, M. , Klang, E. , Amitai, M. , Goldberger, J. , Greenspan, H. , 2018. Synthetic

data augmentation using gan for improved liver lesion classification. In: 2018 
IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE, 

pp. 289–293 . 

idaris, S. , Bursuc, A. , Komodakis, N. , Pérez, P. , Cord, M. , 2019. Boosting few-shot
visual learning with self-supervision. In: ICCV, pp. 8059–8068 . 

idaris, S. , Singh, P. , Komodakis, N. , 2018. Unsupervised representation learning by 
predicting image rotations. arXiv preprint arXiv:1803.07728 . 

lorot, X. , Bengio, Y. , 2010. Understanding the difficulty of training deep feedfor- 
ward neural networks. In: Proceedings of the international conference on artifi- 

cial intelligence and statistics, pp. 249–256 . 

an, Z. , Wei, B. , Hong, Y. , Li, T. , Cong, J. , Zhu, X. , Wei, H. , Zhang, W. , 2020. Accurate
screening of covid-19 using attention-based deep 3d multiple instance learning. 

IEEE Trans Med Imaging 39 (8), 2584–2594 . 
e, K. , Fan, H. , Wu, Y. , Xie, S. , Girshick, R. , 2020. Momentum contrast for unsuper-

vised visual representation learning. In: Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition, pp. 9729–9738 . 

e, K. , Zhang, X. , Ren, S. , Sun, J. , 2016. Deep residual learning for image recognition.

In: CVPR, pp. 770–778 . 
ou, L. , Samaras, D. , Kurc, T.M. , Gao, Y. , Davis, J.E. , Saltz, J.H. , 2016. Patch-based con-

volutional neural network for whole slide tissue image classification. In: CVPR, 
pp. 2424–2433 . 

uang, G. , Liu, Z. , Van Der Maaten, L. , Weinberger, K.Q. , 2017. Densely connected
convolutional networks. In: CVPR, pp. 4700–4708 . 

lse, M. , Tomczak, J. , Welling, M. , 2018. Attention-based deep multiple instance 

learning. In: International Conference on Machine Learning, pp. 2127–2136 . 
andemir, M. , Haussmann, M. , Diego, F. , Rajamani, K.T. , Van Der Laak, J. , Ham-

precht, F.A. , 2016. Variational weakly supervised gaussian processes.. In: BMVC, 
pp. 71.1–71.12 . 

ingma, D.P. , Ba, J. , 2014. Adam: a method for stochastic optimization. arXiv
preprint arXiv:1412.6980 . 
11 
arsson, G. , Maire, M. , Shakhnarovich, G. , 2016. Learning representations for au- 
tomatic colorization. In: European conference on computer vision. Springer, 

pp. 577–593 . 
eCun, Y. , Bottou, L. , Bengio, Y. , Haffner, P. , 1998. Gradient-based learning applied to

document recognition. Proc. IEEE 86 (11), 2278–2324 . 
emley, J. , Bazrafkan, S. , Corcoran, P. , 2017. Smart augmentation learning an optimal

data augmentation strategy. IEEE Access 5, 5858–5869 . 
i, K. , Fang, Y. , Li, W. , Pan, C. , Qin, P. , Zhong, Y. , Liu, X. , Huang, M. , Liao, Y. , Li, S. , 2020.

Ct image visual quantitative evaluation and clinical classification of coronavirus 

disease (covid-19). Eur Radiol 1–10 . 
oroozi, M. , Favaro, P. , 2016. Unsupervised learning of visual representations by 

solving jigsaw puzzles. In: European Conference on Computer Vision. Springer, 
pp. 69–84 . 

athak, D. , Krahenbuhl, P. , Donahue, J. , Darrell, T. , Efros, A .A . , 2016. Context en-
coders: Feature learning by inpainting. In: CVPR, pp. 2536–2544 . 

erez, L. , Wang, J. , 2017. The effectiveness of data augmentation in image classifica-

tion using deep learning. arXiv preprint arXiv:1712.04621 . 
inheiro, P.O. , Collobert, R. , 2015. From image-level to pixel-level labeling with con- 

volutional networks. In: CVPR, pp. 1713–1721 . 
in, T. , Li, W. , Shi, Y. , Gao, Y. , 2020. Unsupervised few-shot learning via distribution

shift-based augmentation. arXiv preprint arXiv:2004.05805 . 
uellec, G. , Cazuguel, G. , Cochener, B. , Lamard, M. , 2017. Multiple-instance learning

for medical image and video analysis. IEEE Rev Biomed Eng 10, 213–234 . 

oss, T. , Zimmerer, D. , Vemuri, A. , Isensee, F. , Wiesenfarth, M. , Bodenstedt, S. ,
Both, F. , Kessler, P. , Wagner, M. , Müller, B. , et al. , 2018. Exploiting the potential

of unlabeled endoscopic video data with self-supervised learning. Int J Comput 
Assist Radiol Surg 13 (6), 925–933 . 

han, F. , Gao, Y. , Wang, J. , Shi, W. , Shi, N. , Han, M. , Xue, Z. , Shen, D. , Shi, Y. , 2020.
Abnormal lung quantification in chest ct images of covid-19 patients with deep 

learning and its application to severity prediction. Med. Phys. . 

horten, C. , Khoshgoftaar, T.M. , 2019. A survey on image data augmentation for deep
learning. J Big Data 6 (1), 60 . 

irinukunwattana, K. , Raza, S.E.A. , Tsang, Y.-W. , Snead, D.R. , Cree, I.A. , Rajpoot, N.M. ,
2016. Locality sensitive deep learning for detection and classification of nu- 

clei in routine colon cancer histology images. IEEE Trans Med Imaging 35 (5), 
1196–1206 . 

un, M. , Han, T.X. , Liu, M.-C. , Khodayari-Rostamabad, A. , 2016. Multiple instance

learning convolutional neural networks for object recognition. In: 2016 23rd In- 
ternational Conference on Pattern Recognition (ICPR). IEEE, pp. 3270–3275 . 

ang, Z. , Zhao, W. , Xie, X. , Zhong, Z. , Shi, F. , Liu, J. , Shen, D. , 2020. Severity assess-
ment of coronavirus disease 2019 (covid-19) using quantitative features from 

chest ct images. arXiv preprint arXiv:2003.11988 . 
aylor, L. , Nitschke, G. , 2018. Improving deep learning with generic data augmenta- 

tion. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 

pp. 1542–1547 . 
u, J. , Yu, Y. , Huang, C. , Yu, K. , 2015. Deep multiple instance learning for image

classification and auto-annotation. In: CVPR, pp. 3460–3469 . 
ang, R. , Li, X. , Liu, H. , Zhen, Y. , Zhang, X. , Xiong, Q. , Luo, Y. , Gao, C. , Zeng, W. , 2020.

Chest ct severity score: an imaging tool for assessing severe covid-19. Radiol- 
ogy: Cardiothoracic Imaging 2 (2), e20 0 047 . 

hang, H. , Cisse, M. , Dauphin, Y.N. , Lopez-Paz, D. , 2017. Mixup: beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412 . 

hang, R. , Isola, P. , Efros, A .A . , 2016. Colorful image colorization. In: European con-

ference on computer vision. Springer, pp. 649–666 . 
hong, Z. , Zheng, L. , Kang, G. , Li, S. , Yang, Y. , 2020. Random erasing data augmenta-

tion.. In: AAAI, pp. 13001–13008 . 
hou, Z. , Sodha, V. , Pang, J. , Gotway, M.B. , Liang, J. , 2021. Models genesis. Med Image

Anal 67, 101840 . 
hou, Z.-H. , 2018. A brief introduction to weakly supervised learning. Natl Sci Rev 5

(1), 44–53 . 

http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0023
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0029
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0032
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0046
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00024-4/sbref0047

	A novel multiple instance learning framework for COVID-19 severity assessment via data augmentation and self-supervised learning
	1 Introduction
	2 Related work
	2.1 COVID-19 Severity assessment
	2.2 Multiple instance learning
	2.3 Data augmentation
	2.4 Self-supervised learning

	3 Method
	3.1 Problem analysis
	3.2 Bag-level prediction
	3.3 Instance-level augmentation
	3.4 Auxiliary self-supervised loss

	4 Experiment
	4.1 Dataset
	4.2 Data preprocessing
	4.3 Experimental setup
	4.4 Implementation details
	4.4.1 Bag-level prediction
	4.4.2 Instance-level augmentation
	4.4.3 Self-supervised loss

	4.5 Ablation study
	4.6 Comparison with existing methods
	4.7 Efficiency of MIL method
	4.8 Interpretability of MIL method
	4.9 Method designing details
	4.9.1 Bag-level prediction
	4.9.2 Instance-level augmentation
	4.9.3 Self-supervised loss


	5 Discussion
	6 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	References


