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A B S T R A C T

In silico research was executed on forty unsymmetrical aromatic disulfide derivatives as inhibitors of the SARS
Coronavirus (SARS-CoV-1). Density functional theory (DFT) calculation with B3LYP functional employing 6-311
þ G(d,p) basis set was used to calculate quantum chemical descriptors. Topological, physicochemical and ther-
modynamic parameters were calculated using ChemOffice software. The dataset was divided randomly into
training and test sets consisting of 32 and 8 compounds, respectively. In attempt to explore the structural re-
quirements for bioactives molecules with significant anti-SARS-CoV activity, we have built valid and robust
statistics models using QSAR approach. Hundred linear pentavariate and quadrivariate models were established
by changing training set compounds and further applied in test set to calculate predicted IC50 values of com-
pounds. Both built models were individually validated internally as well as externally along with Y-Randomi-
zation according to the OECD principles for the validation of QSAR model and the model acceptance criteria of
Golbraikh and Tropsha’s. Model 34 is chosen with higher values of R2, R2

test and Q2cv (R2 ¼ 0.838, R2
test ¼ 0.735,

Q2
cv ¼ 0.757).
It is very important to notice that anti-SARS-CoV main protease of these compounds appear to be mainly

governed by five descriptors, i.e. highest occupied molecular orbital energy (EHOMO), energy of molecular orbital
below HOMO energy (EHOMO-1), Balaban index (BI), bond length between the two sulfur atoms (S1S2) and bond
length between sulfur atom and benzene ring (S2Bnz). Here the possible action mechanism of these compounds
was analyzed and discussed, in particular, important structural requirements for great SARS-CoV main protease
inhibitor will be by substituting disulfides with smaller size electron withdrawing groups. Based on the best
proposed QSAR model, some new compounds with higher SARS-CoV inhibitors activities have been designed.
Further, in silico prediction studies on ADMET pharmacokinetics properties were conducted.
1. Introduction

Since its first appearance in Southern China in November 2002, the
SARS coronavirus has been recognized as a global threat [1,2]. It’s an
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epidemic caused by severe acute respiratory syndrome SARS-CoV-1 and
affected more than 8500 cases in 32 countries [3]. Symptoms are
influenza-like and include high fever, malaise, myalgia, headache,
non-productive cough, diarrhea, and shivering [4]. No individual
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symptom or cluster of symptoms has proved to be specific for a diagnosis
of SARS. Although fever is the most frequently reported symptom, it is
sometimes absent on initial measurement, especially in elderly and
immunosuppressed patients [5].

The SARS was successfully controlled in July 2003, however, the
potential reemergence of pandemic SARS-CoV is still posing a risk. In
fact, the new strain of SARS (SARS-CoV-2) is potentially more virulent
than the strain of 2003 outbreak [6]. SARS-CoV encodes a main protease
which plays a pivotal role in processing viral polyproteins and controlling
replicas complex activity. Main protease is an enzyme indispensable for
viral replication and infection processes, making it an ideal target for the
design of antiviral therapies [7].

In order to understand the chemical–biological interactions and
predict their activities toward SARS-CoV-1 and to open a new way in
SARS inhibitors drug research, in the current work, a series of 40 un-
symmetrical aromatic disulfides derivatives against SARS-CoV-1 were
collected and constructed with QSAR models.

Perusal of the literature reveals a variety of methods for synthesizing
disulfides and a great number of disulfide analogues had been designed
and synthesized. For example, Xu Qiu et al. [8] demonstrated a novel
carbonate salts catalyzed aerobic oxidative heterocoupling of thiols for
the efficient synthesis of unsymmetrical disulfides; D. Branowska et al.
[9] had described a series of new 1,2,4-triazine unsymmetrical disulfane
analogues that were prepared and evaluated as anticancer activity
compounds against MCF-7 human breast cancer cells with some of them
acting as low micromolar; J. K. Vandavasi et al. [10] have developed an
efficient ‘one pot’ method for the synthesis of unsymmetrical dithio
compounds directly from corresponding thiols and thiocarboxylic acids
in the presence of DDQ (2,3-Dichloro-5,6-dicyano-1,4-benzoquinone). In
addition, F. Yang et al. [11] have also developed one-pot synthesis of
aromatic-aromatic and aromatic-aliphatic disulfide unsymmetrical di-
sulfide using TCCA (Trichloroisocyanuric Acid). N. Stellenboom et al.
[12,13] prepared unsymmetrical glycosyl disulfides derived from sugar,
alkyl/aryl or thiols. M. Bao et al. [14] have developed the N-Tri-
fluoroacetyl arenesulfenamides effective precursors for the synthesis of
unsymmetrical disulfides.

Disulfides exist in many synthetic and natural products and have been
applied extensively in organic transformation and medicinal chemistry. As
example, ajoene and dysoxysulfone are found in garlic, onions and ma-
hogany trees and have shown promising antifungal [15,16], antibacterial
[17], antitumor [9,18], antimalarial [19] and analgesic properties [20].

On the other hand, a literature survey reveals that several published
papers describe the molecular modeling towards the main protease of
SARS-CoV-1 and SARS-CoV-2 viruses. Thus, Alves et al. have performed
QSAR studies to evaluate the ability of some known drugs to inhibit
SARS-CoV-2 [21]. Other studies were reported by Masand et al. which
describe the development of QSAR model from a dataset of peptide-type
compounds as SARS-CoV inhibitors [22,23].

The significance and novelty of findings presented in this work are
reflected from the fact that we have used quantum chemistry descriptors
which describe electron proprieties of the studied molecules. The use of
density functional theory (DFT) is justified for the reason that some our
previously QSAR studies have shown that the descriptors calculated
using the DFT method can improve the accuracy of the results and lead to
more reliable QSAR models [24–26].

2. Material and methods

2.1. Selection of dataset and generation of molecular descriptors

Dataset of the inhibitor activities toward SARS Coronavirus (SARS-
CoV) main protease of 40 unsymmetrical aromatic disulfides derivatives
was collected from the literature [27]. Structures of the studied mole-
cules with their activity IC50 (μM) values are presented in Table 1. The
inhibitory activity factor IC50 biochemical assays spectacles the required
concentration of an inhibitor to achieve 50% inhibition of replication of
2

SARS-CoV main protease.
To predict the correlation between the anti-SARS-CoV activity with

various quantum, topological, thermodynamic and physicochemical pa-
rameters, and to develop linear models, all the three-dimensional struc-
tures were drawn and built by GaussView 06 program [28], quantum
parameters were calculated by DFT approach performed with Gaussian
09 program package [29] using the hybrid functional B3LYP combining
the Becke’s three-parameter and the Lee-Yang-Parr exchange-correlation
functional employing the 6-31Gþ(d,p) basis set in gas phase and all
others parameters were calculated using Chem3D software [30]. The
geometry of the compounds was determined by optimizing all geomet-
rical variables with no symmetry constraints (Table S1).

2.2. Principal component analysis (PCA)

The pre-processing of the dataset is to eliminate the irrelevant de-
scriptors in order to avoid the phenomenon of over-fitting. Therefore, we
must reduce the variables (descriptors) that do not have or have little
influence on the studied activity. With the XLSTAT software [31], we
have used PCA to overview the examined compounds for similarities and
dissimilarities in order to eliminate descriptors that are highly correlated
and to select those that show a high correlation with the response ac-
tivity; this one gives extra weight because it will be more effective at
prediction. The most important result obtained by PCA is the correlation
matrix, a diagonal matrix which represents the correlation between the
activity and the descriptors retained. Descriptor with highest correlation
is taken and compared to other descriptors in the correlation matrix.

2.3. Data splits and model development

Dataset was randomly split into several training set and test set before
descriptors selection. It was recommended that analysis of the models
should be obtained from various splits into training set (80%) and test set
(20%). Then, all-subset regression for the whole dataset was obtained
from the training sets and was performed using multiple linear regression
(MLR) method with XLSTAT software.

We have used the stepwise MLR analysis based on the elimination of
aberrant descriptors one by one, which takes the following form: Y ¼
a0þi ¼ 1naixi.Where: Y: the studied activity, which is, the dependent
variable; a0a0 QUOTE a0 a0: the intercept of the equation; xi: the mo-
lecular descriptors; ai: the coefficients of those descriptors.

This method is one of the most popular methods of QSAR due to its
simplicity in operation, reproducibility and ability to allow easy inter-
pretation of the features used. The important advantage of the linear
regression analysis is its transparent nature, therefore, the algorithm is
accessible and predictions can be made easily [32].

2.4. Model validation

Statistical parameters for modeling, internal and external validation
metrics were adopted to evaluate the fit, stability and predicative power
of the QSAR model.

Quality validation parameters include Coefficient of determination
(R2), Adjusted coefficient of determination (R2

adj), Mean of Squared Er-
rors of model (MSE), Fischer’s value (Ftest), Variance Inflation Factor
(VIF), Coefficient of determination of Leave-One-Out Cross Validation
(Q2

CV), Coefficient of determination of external test (R2
test) and Y-

randomization parameters (R2
Rand and Q2

cv ðRandÞ) [33]. A model is valid
only within its training domain and newmolecules must be considered as
belonging to the applicability domain (AD) before the model is applied
(OECD Principle 3 [34]). (Supporting information).

2.4.1. Drug-likeness and ADMET properties
In drug discovery, the prediction of ADMET properties is an important

study to escape the failure of drugs in the clinical phases [35].



Table 1
Structures of 40 unsymmetrical aromatic Disulfides and their activities anti-SARS-CoV MPro.
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Table 2
Statistical parameters and model equations for the fifty splits of training and test
sets.

Model equations R2 R2
adj MSE R2

test Q2cv

1 IC50 ¼ �85.468 þ 1.0164
EHOMOþ 36.289 S1S2 þ
1.081 Log S - 0.860 HLC
þ0.042 BP

0.801 0.763 0.418 0.655 0.722

2 IC50 ¼ 98.914–1.813 EHOMO-

1 þ 3.652 EHOMO þ 44.737
S1S2 - 100.408 S2Bnz
þ5.382 10�06 BI

0.789 0.749 0.562 0.907 0.675

3 IC50 ¼ 87.944 þ 2.948
EHOMO þ 34.295 S1S2 -
76.116 S2Bnz þ5.487 10�06

BI -0.060C%

0.761 0.715 0.564 0.819 0.627

4 IC50 ¼ 85.852–1.272 EHOMO-

1 þ 3.355 EHOMO þ 40.557
S1S2 - 87.281 S2Bnzþ5.363
10�06 BI

0.763 0.718 0.632 0.907 0.641

5 IC50 ¼ 63.514 þ 1.828
EHOMO þ 0.927 ELUMOþ1 þ
42.783 S1S2 - 77.343 S2Bnz
þ5.680 10�06 BI

0.789 0.749 0.566 0.617 0.639

6 IC50 ¼ �0.265–0.616 ELUMO

þ 1.906 ELUMOþ1 þ 0.852
log P þ 3.537 10�06 BI
þ0.149 O%

0.752 0.704 0.522 0.617 0.602

7 IC50 ¼ 72.252–1.686 EHOMO-

1 þ 3.590 EHOMO þ 44.919
S1S2 - 85.554 S2Bnzþ5.202
10�06 BI

0.747 0.698 0.664 0.862 0.580

8 IC50 ¼ 119.399–1.573
EHOMO-1 þ 3.848 EHOMO þ
44.839 S1S2 - 110.400

�06

0.821 0.787 0.488 0.655 0.722
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Pharmacokinetic and bioavailability predictions are an essential tool in
drug discovery process and should be considered to develop a new drug.
Based on the pkCSM online tool [36], the physicochemical properties of
the active components were predicted, including molecular weight
(MW), Partition coefficient (log P), rotatable bonds count (RB), H-bond
acceptors and donors count (HBA and HBD) and polar surface area (PSA).

Lipinski’s rule (with MW � 500 g/mol, Log P � 5, NR � 10, HBA �
10, HBD � 5, PSA � 140) has been applied to evaluate the molecules
drug likeness [37]. Candidate violating no more than one of these criteria
is likely to be developed as a prospective oral drug [38].

Log S was also calculated to evaluate the water solubility of the
proposed compounds (compound is insoluble or poorly soluble if log S �
�6, moderately soluble if �6 < log S � �4, soluble if �4 < log S) [39].

Finally, different ADMET properties were predicted including, Ab-
sorption (Caco-2 cell permeability, P-glycoprotein (P-gp) and Human
Intestinal Absorption (HIA)), Distribution (blood-brain barrier (BBB)),
Metabolism (interaction of molecules with cytochrome enzyme system
P450 CYP2D6 and CYP3A4), Excretion (total clearance TC)) and Toxicity
(AMES toxicity, hERG I and hERG II inhibitors). These in silico pharma-
cokinetics parameters were evaluated to prevent the failure of those
compounds during clinical studies and enhance their chances to reach the
stage of being drug-candidates against the SARS-CoV-1.

3. Results and discussions

3.1. Molecular descriptors

From the results of DFT(B3LYP/6-31G(d,p)) calculations, 11 quantum
chemistry descriptors values were computed (Table S2). ChemOffice 3D
software was used to calculate 34 others descriptors (Table S3).
S2Bnz þ5.872 10 BI
9 IC50 ¼ �167.793 þ 1.726

ELUMOþ1 þ 58.021 S1S2 þ
26.914 S1Htr þ5.454 10�06

BI þ0.139 HLC

0.742 0.692 0.572 0.694 0.605

10 IC50 ¼ �174.066 þ 3.601
EHOMO þ 1.977 ELUMOþ1 þ
95.158 S1S2 - 0.330 O% þ
0.106 PSA

0.852 0.824 0.336 0.617 0.796

11 IC50 ¼ 105.697 þ 2.507
EHOMO þ 46.181 S1S2 -
103.286 S2Bnz þ0.039 GFE
- 0.885H%

0.772 0.728 0.453 0.735 0.640

12 IC50 ¼ �126.683 þ 3.235
EHOMO þ 67.333 S1S2 þ

0.741 0.691 0.545 0.862 0.552
3.2. Principal component analysis (PCA)

The 45 descriptors are competed for the 40 studied molecules; these
descriptors were subjected to a principal component analysis. The results
of this analysis are used to select the input data of multiple linear regres-
sion studies. Thus, at the beginning, we excluded all descriptors having a
low correlation coefficient value (r � 0.15) with respect to the dependent
variable (IC50). Instead, the descriptors with a correlation coefficient value
greater than 0.95 are omitted to reduce the uncertainty present in our data
matrix. The 25 descriptors presented in Tables S2 and S3 are selected by
the PCA analysis and used in MLR models development.
0.656 NHBA þ0.011 BP -
0.176 O%

13 IC50 ¼ 120.893–2.510
EHOMO-1 þ 4.299 EHOMO þ
45.514 S1S2 - 113.825
S2Bnz þ4.821 10�06 BI

0.743 0.694 0.508 0.953 0.584

14 IC50 ¼ 97.222–1.458 EHOMO-

1 þ 3.663 EHOMO þ 42.570
S1S2 - 95.527 S2Bnzþ4.692
10�06 BI

0.768 0.723 0.556 0.776 0.638

15 IC50 ¼ 64.336 þ 2.234
EHOMO þ 0.574 ELUMOþ1

þ39.641 S1S2 - 72.988
S2Bnz þ5.597 10�06 BI

0.800 0.761 0.545 0.655 0.680

16 IC50 ¼ 74.931 þ 2.538
EHOMO þ 37.952 S1S2 -
76.311 S2Bnzþ0.634 NHBD
þ5.498 10�06 BI

0.800 0.761 0.526 0.694 0.666

17 IC50 ¼ 83.018 þ 2.112
EHOMO þ 42.762 S1S2 -
87.785 S2Bnz þ6.665 10�06

BI - 0.013 PSA

0.762 0.716 0.505 0.735 0.582

18 IC50 ¼ 56.425 þ 2.848
EHOMO þ 41.4501 S1S2 -
67.856 S2Bnz þ4.983 10�06

BI - 0.039C%

0.750 0.702 0.459 0.655 0.593

19 0.755 0.708 0.507 0.776 0.566

(continued on next page)
3.3. Data splits and models development

QSAR analysis was performed using calculated molecular descriptors
and experimental values of anti-SARS-CoV activity for the forty disul-
fides. Therefore, the whole dataset was randomly split into training and
test sets by a good number of pentavariate and quadrivariate MLRmodels
with nearly similar statistical performance but encompassing different
descriptors (One hundred splits, 1–100) for the same size of training and
test sets. Of the chemicals in the dataset, 32 compounds were selected for
training set and remaining 8 compounds were considered as test set. The
models that do not satisfy OECD principles [34] and Golbraikh and
Tropsha’s criteria [33] were summarily excluded. Fifty MLR models with
highest coefficients of determination, explained variance in “leave
one-out” cross validation prediction and with good ability to predict IC50
values of test set compounds were selected for the whole dataset from all
splits. The splits into training and test sets results and the performances of
MLR models are shown in Tables 2 and S4.

All equations models presented in Table 2 with usual meaning of the
statistical symbols are statistically sound and predictive with adequate
values of statistical parameters used to judge for internal and external
validation of QSARmodels. High values of R2, R2

adj, Q
2
cv and R2

test and low
values of MSE point out that all these models are statistically satisfactory,
4



Table 2 (continued )

Model equations R2 R2
adj MSE R2

test Q2cv

IC50 ¼ 98.414–1.539 EHOMO-

1 þ 3.391 EHOMO þ 40.628
S1S2 - 95.249 S2Bnzþ5.368
10�06 BI

20 IC50 ¼ 106.474–1.800
EHOMO-1 þ 3.416 EHOMO þ
40.309 S1S2 - 100.234
S2Bnz þ5.211 10�06 BI

0.788 0.748 0.502 0.694 0.671

21 IC50 ¼ 30.182 þ 3.025
EHOMO þ 52.323 S1S2 -
66.486 S2Bnz þ0.040 GFE -
0.930H%

0.799 0.760 0.452 0.819 0.689

22 IC50 ¼ 126.976–2.222
EHOMO-1 þ 3.939 EHOMO þ
49.656 S1S2 - 122.318
S2Bnz þ4.992 10�06 BI

0.766 0.721 0.421 0.617 0.617

23 IC50 ¼ 48.294 þ 1.842
EHOMO þ 0.825 ELUMOþ1 þ
43.447 S1S2 - 69.770 S2Bnz
þ5.907 10�06 BI

0.765 0.719 0.633 0.862 0.599

24 IC50 ¼ 88.883 þ 2.481
EHOMO þ 28.980 S1S2 -
72.516 S2Bnz þ5.432 10�06

BI - 0.045C%

0.777 0.734 0.478 0.862 0.631

25 IC50 ¼ 97.940–1.322 EHOMO-

1 þ 3.469 EHOMO þ 44.105
S1S2 - 97.956 S2Bnzþ5.330
10�06 BI

0.727 0.675 0.553 0.776 0.572

26 IC50 ¼ �177.107 þ 3.565
EHOMO þ 2.450 ELUMOþ1 þ
96.952 S1S2 - 0.271 O% þ
0.090 PSA

0.706 0.649 0.535 0.907 0.519

27 IC50 ¼ 57.171 þ 1.561
EHOMO þ 40.099 S1S2 -
72.972 S2Bnz þ0.010 GFE
þ4.090 10�06 BI

0.773 0.729 0.512 0.735 0.645

28 IC50 ¼ 115.209–1.762
EHOMO-1 þ 3.428 EHOMO þ
43.393 S1S2 - 108.561
S2Bnz þ5.575 10�06 BI

0.820 0.785 0.459 0.735 0.727

29 IC50 ¼ 30.718 þ 2.616
EHOMO þ 43.359 S1S2 -
57.653 S2Bnzþ0.589 NHBD
þ4.666 10�06 BI

0.768 0.723 0.553 0.617 0.630

30 IC50 ¼ 111.463–1 .448
EHOMO-1 þ 3.393 EHOMO þ
45.060 S1S2 - 107.296
S2Bnz þ5.226 10�06 BI

0.839 0.808 0.389 0.776 0.753

31 IC50 ¼ 103.548–2.125
EHOMO-1 þ 4.035 EHOMO þ
49.253 S1S2 - 108.085
S2Bnz þ4.767 10�06 BI

0.748 0.700 0.528 0.819 0.603

32 IC50 ¼ 109.178–2.098
EHOMO-1 þ 3.915 EHOMO þ
46.178 S1S2 - 107.950
S2Bnz þ5.459 10�06 BI

0.798 0.759 0.559 0.776 0.682

33 IC50 ¼ 121.803–1.602
EHOMO-1 þ 3.553 EHOMO þ
48.317 S1S2 - 117.039
S2Bnz þ6.338 10�06 BI

0.848 0.819 0.408 0.655 0.748

34 IC50 ¼ 128.780–2.590
EHOMO-1 þ 4.855 EHOMO þ
51.701 S1S2 - 123.760
S2Bnz þ5.682 10�06 BI

0.838 0.807 0.453 0.735 0.757

35 IC50 ¼ 220.048 þ 0.734
EHOMO þ 0.938
ELUMOþ1–119.872 S2Bnz -
0.912 NHBD þ0.930 NRB

0.775 0.732 0.511 0.819 0.605

36 IC50 ¼ 114.995–2.281
EHOMO-1 þ 4.025 EHOMO þ
41.273 S1S2 - 105.704
S2Bnz þ5.359 10�06 BI

0.763 0.717 0.545 0.862 0.619

37 IC50 ¼ 6.687–0.936 EHOMO-1

þ 1.909 ELUMOþ1 þ 29.959
S1S2 - 40.320 S2Bnzþ7.103
10�06 BI

0.729 0.677 0.545 0.617 0.598

Table 2 (continued )

Model equations R2 R2
adj MSE R2

test Q2cv

38 IC50 ¼ 13.618 þ 1.525
ELUMOþ1 þ 30.697 S1S2 -
41.729 S2Bnz þ6.660 10�06

BI

0.716 0.674 0.550 0.617 0.595

39 IC50 ¼ 68.873 þ 2.072
EHOMO þ 41.201 S1S2 -
78.416 S2Bnz þ5.146 10�06

BI

0.756 0.720 0.589 0.694 0.642

40 IC50 ¼ 66.390 þ 1.954
EHOMO þ 39.051 S1S2 -
74.950 S2Bnz þ5.672 10�06

BI

0.762 0.727 0.515 0.735 0.640

41 IC50 ¼ 101.177 þ 2.167
EHOMO þ 40.756 S1S2 -
95.484 S2Bnz þ5.528 10�06

BI

0.794 0.764 0.504 0.735 0.699

42 IC50 ¼ 55.547 þ 2.600
EHOMO þ 47.887 S1S2 -
76.796 S2Bnz þ4.858 10�06

BI

0.743 0.705 0.590 0.735 0.608

43 IC50 ¼ 62.052 þ 2.510
EHOMO þ 37.292 S1S2 -
68.345 S2Bnz þ5.065 10�06

BI

0.776 0.743 0.583 0.776 0.682

44 IC50 ¼ 101.404 þ 2.313
EHOMO þ 42.408 S1S2 -
96.970 S2Bnz þ5.231 10�06

BI

0.820 0.793 0.420 0.694 0.734

45 IC50 ¼ 107.565 þ 2.328
EHOMO þ 46.599 S1S2 -
105.417 S2Bnz þ6.280
10�06 BI

0.827 0.801 0.447 0.617 0.728

46 IC50 ¼ 111.430 þ 2.796
EHOMO þ 48.125 S1S2 -
107.524 S2Bnz þ5.663
10�06 BI

0.796 0.766 0.549 0.819 0.705

47 IC50 ¼ 70.676 þ 2.205
EHOMO þ 40.127 S1S2 -
77.609 S2Bnz þ5.724 10�06

BI

0.791 0.760 0.521 0.694 0.696

48 IC50 ¼ 211.172 þ 1.308
ELUMOþ1 þ 0.990 NRB -
117.448 S2Bnz - 1.075
NHBD

0.762 0.727 0.520 0.735 0.656

49 IC50 ¼ 100.017 þ 2.555
EHOMO þ 39.880 S1S2 -
92.409 S2Bnz þ5.305 10�06

BI

0.707 0.664 0.541 0.694 0.585

50 IC50 ¼ 72.115 þ 2.348
EHOMO þ 41.353 S1S2 -
79.341 S2Bnz þ5.187 10�06

BI

0.751 0.714 0.685 0.819 0.645

S. Chtita et al. Chemometrics and Intelligent Laboratory Systems 210 (2021) 104266

5

robust and also possess good external predictive ability.
For all developed models, values of R2

adj are quite close to R2 sug-
gesting that number of descriptors in the models is not too high, thereby,
indicating that the models are free from over-fitting [40]. This is further
supported by the low MSE values. Values of Cross Validation parame-
ter Q2

cv, are high, thereby, indicating good statistical robustness of
models. High values of R2

test indicate that models possess high external
predictive ability. In short, the developed models satisfy the recom-
mended interrelations and threshold values for various statistical pa-
rameters suggested by different researchers.

According to the R2 and R2
adj values for the fifty proposed models in

Table 2, it’s clear that models 10, 33, 30, 34, 45, 8, 44, 28, 1, 15 and 16
are, in this order, the first-class MLR models (we chose models with R2 �
0:800 and R2

adj � 0:760). However, looking at the others statistical pa-
rameters (MSE, R2

test and Q2
cv) we can suggest models 28, 30 and 34 as

the most desirable three models. The three pentavariate MLR equations
are able to predict IC50 values for the disulfide derivatives.

In addition, evaluation of applicability domains of these top three
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models shows that only model 34 that have no responses outside or outlier
inWilliams plots (Fig. 1). Applicability domains were evaluated by leverage
analysis expressed asWilliams plot, inwhich standardized residuals and the
leverage threshold values h* ¼ 0.563 (h* ¼ 3*(kþ1)/n); k ¼ 5, n ¼ 32)
were plotted. Any new value of predicted pIC50 data must be considered
reliable only for those compounds that fall within this AD on which the
model was constructed. Compounds with hi>h* or with standardized re-
sidual greater than y ¼ �3 can be considered as chemically different from
the data set compounds and, thus, outside or outline the AD. From Fig. 1, it
is obvious that all compounds in training and test sets satisfy outlier/
outside criteria for model 34. There is no response outlier in training set
and no response outside in test set; only one compound (N� 14) has a re-
sidual out of the �3 times standard deviation interval.
3.4. Y-randomization test for model 34

In this step, all calculations were repeated with randomized activities
of the training set compounds as well to evaluate model robustness (y-
randomization test). In the present case, 100 random trials were run for
the MLR model. None of the random trials could match the original
model (Table S5). The standalone QSAR-tools, available online at http:
//teqip.jdvu.ac.in/QSAR_Tools, were employed in the y-randomization.

The average value of RRand, R2
Rand and Q2

cv ðRandÞ are 0.413, 0.183 and

�0.272 respectively, the cR2
p value equal a 0.847, and all the new QSAR

models having significantly low R2
Rand and Q2

cv ðRandÞvalues for the 100
trials, which confirm that the developed QSAR models are robust.

The p-value is lower than 0.0001, it means that we would be taking a
lower than 0.01% risk in assuming that the null hypothesis is wrong. The
high correlation coefficient R (0.915) indicates the susceptibility of de-
scriptors (EHOMO, EHOMO-1, BI, S2Bnz and S1S2) to form the above model
and do bring a significant amount of information.

Further, the generated model has achieved high activity-descriptor
relationship efficiency of 84% as shown by the regression-coefficient
(R2 ¼ 0.838). The large adjusted regression-coefficient R2 (R2

adj) value
presented in the generated MLR model and its closeness to the value of
regression-coefficient (R2) indicates that the developedmodel has perfect
descriptive ability to descriptors in it and it further illustrates the true
impact of used descriptors on the IC50. Cross-validated square correlation
coefficient (Q2

cv) by LOO approach was 0.757 which showed a good in-
ternal predictive ability of the model. The low R2 andQ2

cv values obtained
Fig. 1. Williams plot of standardized residual versus leverage for the best MLR mod
train samples in black color and test samples in red color). (For interpretation of the r
of this article.)
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for all the random models by shown in Table 2 indicate that there is no
chance of correlation or structural dependency in the proposed model.
The high R2

test as shown in the developed model (R2
test¼ 0.735) explains

that the generated model can provide a good and valid prediction for the
new compounds. Consequently, we can conclude with confidence that
model 34 can be considered as a perfect model with both high statistical
significance and excellent predictive ability and thus, can be used as a
reliable tool for discovering anti-SARS-CoV with novel disulfides.

The activity values and the correlation diagram with calculated IC50
versus experimental IC50 of the best model (model 34) of training and test
sets are shown in Table 3 and Fig. 2. VIF values of the five descriptors are
smaller than 5.0 (4.785, 3.794, 1.217, 1.266 and 1.492 for EHOMO,
EHOMO-1, BI, S2Bnz and S1S2, respectively) indicating that there is no
multicollinearity among selected descriptors and resulting model has
good stability [41].

3.5. Golbraikh and Tropsha’s criteria

The results of model 34 were compared with threshold values of the
Golbraikh and Tropsha’s acceptable limit. The results in Table 4 reflected
the reliability and acceptability of our proposed model.

3.6. Design of new compounds

In the equation of model 34, Balaban index (BI), highest occupied
molecular orbital energy (EHOMO) and bond length between the two
sulfur atoms (S1S2) promote activity, while molecular orbital energy
below HOMO energy (EHOMO-1) and bond length between sulfur atom
and the benzene ring (S2Bnz) increases activity.

Comparing the significance of each descriptor on IC50 activity, one
must know the standardized coefficient or t-test values in the model
equation. The bigger absolute value of t-test value is, the greater influence
of descriptor is. T-test values for our model descriptors are 5.031,�2.595,
8.162, �5.080 and 5.425 for EHOMO, EHOMO-1, BI, S2Bnz and S1S2,
respectively.

Our best MLRmodel clearly show that the most relevant factors to the
anti-SARS-CoV activity of disulfide derivatives are steric characteristics
(71% of the variance in IC50) related, on one hand, with the size and
volume of the substituent described by Balaban index and, on the other
hand, with the distances parameter described by the bond length be-
tween the two sulfur atoms and between sulfur atom and benzene ring,
el (model 34) (
eferences to color in this figure legend, the reader is referred to the Web version

http://teqip.jdvu.ac.in/QSAR_Tools
http://teqip.jdvu.ac.in/QSAR_Tools


Table 3
Observed and predicted activities by model 34.

N� Observed IC50 Predicted IC50 Error N� Observed IC50 Predicted IC50 Error

1 1.871 2.163 �0.292 21* 1.250 2.648 �1.398
2 2.803 2.675 0.128 22 2.211 2.203 0.008
3 3.675 3.660 0.015 23 3.321 2.285 1.036
4 3.130 1.997 1.133 24 2.555 2.263 0.292
5* 1.506 1.837 �0.331 25 2.452 2.365 0.087
6 4.344 3.617 0.727 26* 1.679 1.776 �0.097
7 4.100 5.465 �1.365 27 1.557 1.999 �0.442
8* 1.762 3.258 �1.496 28 1.713 1.338 0.375
9* 5.654 4.685 0.969 29* 1.118 1.217 �0.099
10 4.511 4.475 0.036 30 1.264 1.907 �0.643
11 5.794 5.547 0.247 31 0.516 1.139 �0.623
12 2.626 2.176 0.450 32 0.921 1.696 �0.775
13 1.651 2.211 �0.560 33 1.437 1.529 �0.092
14* 2.075 3.905 �1.830 34 1.121 1.657 �0.536
15 5.954 4.786 1.168 35 1.991 1.322 0.669
16 3.957 4.395 �0.438 36 1.495 1.725 �0.230
17* 4.126 3.437 0.689 37 0.883 1.154 �0.271
18 2.565 2.372 0.193 38 0.684 0.657 0.027
19 1.947 2.448 �0.501 39 0.697 0.518 0.179
20 2.029 2.273 �0.244 40 1.522 1.283 0.239

* refer to test set compounds.

Fig. 2. Correlations of observed and predicted activities values calculated using model 34
(training set in blue and test set in red). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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and by electronic characteristics (29% of the variance in IC50) related
with the EHOMO and EHOMO-1.

By interpreting the descriptors contained in QSAR model, it is
possible to gain some insights into factors, which are related to anti-
SARS-CoV activity. For this reason, an acceptable interpretation of the
selected descriptors is provided below:

- Balaban index (BI) of a molecular graph calculates the average
distance sum connectivity index. It is describes very well the degree of
ramification of non-cyclic molecules [42]. In the model equation, BI
mean effect has a positive sign in the model and variation in BI accounts
for 31% of the variance in IC50, which suggests that increased activity
(decreased IC50) can be achieved by decreasing the ramification of mo-
lecular skeleton.

- The bond length between the two sulfur atoms (S1S2) has a positive
sign in the model and variation in S1S2 accounts for 21% of the variance
in IC50, which suggests that increased activity can be achieved by sub-
stitute the molecular skeleton with stronger electron withdrawing ability
group decrease S–S bond lengths. A relatively neutral or electron-
withdrawing group in only one ortho position of phenyl (or any sub-
stituents at any more distant positions) allows the S–S bond to be short
[43].

- The bond length between sulfur atom and benzene ring (S2Bnz) has
7

a negative sign in the model and variation in S2Bnz accounts for 19% of
the variance in IC50, suggesting that increased activity can be achieved by
substitute the molecular skeleton with weaker donating electron ability
group that can decrease the S2Bnz bond length. The bigger the bond
length between sulfur atom and benzene ring is, the weaker conjugated π
system via mesomerism or inductive effects, and higher the activity is.

- The energy of HOMO is directly related to the ionization potential
and characterizes the susceptibility of the molecule toward attack by



Table 4
Comparison of the statistical parameters of model 34 and Golbraikh and Tropsha’s criteria.

Parameter Equation Model score Threshold Comment

R2

R2 ¼ 1�
P ðYobs � YcalcÞ2P ðYobs � YobsÞ2

0:832 > 0:600 Passed

R2
adj R2

adj ¼ ðN � 1ÞR2 � p
N � p� 1

0:802 > 0:600 Passed

R2
test R2

test ¼ 1�
P ðYcalc ðtestÞ � YobsðtestÞÞ2P ðYobs ðtestÞ � YobsðtrainÞÞ2

0:737 > 0:600 Passed

Q2
cv Q2

cv ¼ 1�
P ðYCalc � YObsÞ2P ðYObs � YobsÞ2

0:740 > 0:500 Passed

MSE
MSE ¼

PðYObs � YCalcÞ
N

0:483 A low value Passed

Ftest
Ftest ¼

P ðYcalc � YCalcÞ2P ðYObs � YCalcÞ2
N � p� 1

p

27:654 a high value Passed

R2
Rand Average of the 100 R2

Rand (i) 0:142 < R2 Passed

Q2
cv LOO ðRandÞ Average of the 100 Q2

cv LOO ðRandÞ (i) � 0:270 < Q2
cv Passed

cR2
p cR2

p ¼ R*
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � ðAverage RrandÞ2Þ

q
0:764 > 0:500 Passed

Yobs and Ycalc: refer to the observed and calculated/predicted response values.
Yobs and Ycalc: refer to the mean of the observed and calculated/predicted response values.
N and p refer to the number of data points (compounds) and descriptors.
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electrophiles. Hard nucleophiles have a low-energy HOMO, soft nucle-
ophiles have a high energy HOMO. Hence, molecule with high energy
HOMOwill give up electrons more easily because it does not cost much to
donate these electrons toward making a new bond [32,44]. The contri-
bution of EHOMO in describing anti-SARS-CoV activity may be attributed
to the interaction of disulfide derivatives with nucleophilic amino acid
residue of microorganisms. EHOMO has a positive sign in the model and
variation in BI accounts for 19% of the variance in IC50, which suggests
that the higher of EHOMO, the weaker donating electron ability, is
showing the fact that the nucleophilic reaction occurs more easily and the
activity of the compound is higher [45]. Consequently, if we want to
decrease the value of IC50, we will decrease EHOMO for which we must
substitute the disulfide derivatives for a weaker donating electron ability
group that removes electron density (don’t donates density) from the
conjugated π system via mesomerism effect, making it less reactive.

- EHOMO-1 has a negative sign in the model. This sign suggests that the
anti-SARS-CoV activity is inversely related to this descriptor. Whereas,
the significance of this descriptor in the activity when its compared to the
other descriptors is very weak and account for only 10% of the variance
in IC50.

In the conclusion, these results illustrates that to increase the anti-
SARS-CoV, decrease IC50, we will substitute the disulfide derivatives
with smaller size electron withdrawing groups such as Nitro (NO2),
Sulfonic acid (SO3H), Cyano (CN), Trifluoromethyl (CX3), Haloformyl
(COX), Carboxyl (CO2H), alkoxycarbonyl (CO2R), Acyl (COR), Formyl
(CHO), halogens (X) …

The results obtained by the best MLR model (model 34) are very
sufficient to conclude the performance of the models. Consequently, we
can design new compounds with improved values of activity than the
studied compounds using this model. The in-silico screening method was
achieved by deletion, insertion, and substitution of various substitutes at
different positions on the original templates of molecules and the results
of the structural adjustments on the biological activity were studied.
Therefore, the in-silico screening was employed to design novel com-
pounds with good IC50 based on the built model and was validated by the
proposed model equation:

IC50 ¼ 128.780–2.590 EHOMO-1 þ 4.855 EHOMO þ 51.701 S1S2 – 123.760
S2Bnz þ5.682 10�06 BI

Therefore, this suggested model will reduce the time and the cost of
synthesis as well as the determination of the anti-SARS-CoV activity for
the unsymmetrical aromatic disulfide derivatives.

The proposed model using 2D-QSAR suggests that the studied activity
8

study is highly affected by steric and electrostatic. These outcomes were
supported by those obtained by L. Wang et al. [27] using CoMFA analysis.

According to the above discussions, our proposed model could be
applied to other unsymmetrical aromatic disulfide derivatives accord-
ingly to Table 1 and could add further knowledge in the improvement of
newway in anti-SARS-CoV drug research. If we develop a new compound
with better values than the existing ones, it may give rise to the devel-
opment of more active compounds than those currently in use.

For this purpose, compounds 31 and 38 was selected as templates
because they had relatively highest anti-SARS-CoV activity (IC50 ¼ 0.516
and 0.684, respectively). The molecules were adjusted in such a way that
their synthesis was experimentally achievable. Next, in-silico screen was
employed by replacing various groups in R1 to R4 sites of the benzene
ring; which lead to compounds with improved predicted anti-SARS-CoV
activity values as shown in Table 5.

From the predicted activities, it has been observed that all the
designed compounds (X1 to X12, and Y1 to Y10) have good IC50 values
compared to the 40 studied compounds in Table 1.

Compounds X3 and X6 are defined as outliers and consequently they
are not be considered, because they have higher leverage which is greater
than h* ¼ 0.563; we suggest all other twenty compounds for a drug-
likeness and an ADMET studies.

3.7. Drug-likeness

The eminent Rule of Five by Lipinski helps to evaluate the drug-
likeness of a chemical compound or determine if a compound has the
properties that would make it a potential orally active drug for humans
[46]. As reported by Lipinski, an orally active drug should not breach
more than one of the following rules: hydrogen bond acceptor �10,
octanol-water partition coefficient <5, hydrogen bond donor �5, mo-
lecular weight <500Da and topological polar surface area <140. The
results of the Lipinski’s calculations using pkCSM online software are
depicted in Table 6.

These results suggest that all proposed compounds show good result
and are in agreement with this rule.

Hence, it suggests that all proposed compounds present acceptable
bioavailability of oral medications. In addition, all these compounds
show moderate to good water solubility, the log S value being between
�6 and �2 and thus could facilitate good oral adsorption.



Table 5
Values of descriptors, calculated anti-SARS-CoV activity and leverages (h) for the new designed unsymmetrical aromatic disulfide derivatives.

Xi

Yi

R2 R3 R5 R6 BI S1S2 S2Bnz EHOMO EHOMO�1 IC50 hi
31 H H H H 47752 2.130 1.791 �7.433 �7.484 0.815 0.148
X1 H NO2 H H 114215 2.127 1.793 �7.684 �7.684 0.069 0.496
X2 CN H H H 87155 2.131 1,791 �7.717 �7.759 0.413 0.500
X3 H CN H H 87155 2.128 1,793 �7.718 �7.899 0.322 0.575
X4 CHO H H H 84981 2.131 1,800 �7.560 �7.737 0.049 0.376
X5 H CHO H H 87155 2.128 1,794 �7.542 �7.725 0.593 0.374
X6 COOH H H H 110547 2.108 1,814 �6.962 �7.733 0.150 0.707
X7 H F H H 64575 2.128 1,793 �7.516 �7.603 0.543 0.319
X8 H Cl H H 64575 2.129 1,792 �7.535 �7.568 0.379 0.331
X9 H Br H H 64575 2.128 1,792 �7.464 �7.568 0.707 0.278
X10 H F F H 85224 2.127 1,793 �7.685 �7.778 0.119 0.500
X11 H Cl Cl H 85224 2.127 1,794 �7.653 �7.710 0.069 0.457
X12 H Br Br H 85224 2.127 1,794 �7.581 �7.626 0.194 0.384

R2 R3 R5 R6 BI S1S2 S2Bnz EHOMO EHOMO�1 IC50 hi

38 H H H H 66628 2.101 1.796 �6.843 �6.973 0.346 0.112
Y1 H CN H H 117275 2.100 1.797 �7.089 �7.316 0.140 0.128
Y2 H NO2 H H 151406 2.099 1.796 �7.135 �7.259 0.043 0.093
Y3 H H COOH H 151406 2.099 1.796 �6.976 �7.021 0.222 0.149
Y4 H H F H 88474 2.100 1.796 �6.946 �7.146 0.301 0.014
Y5 H Cl H H 88474 2.100 1.796 �6.933 �7.104 0.274 0.209
Y6 H Br H H 88474 2.100 1.796 �6.951 �7.037 0.004 0.101
Y7 H H COCl H 151406 2.099 1.796 �7.090 �7.256 0.205 0.099
Y8 H H COCH3 H 151406 2.099 1.797 �6.955 �6.994 0.149 0.425
Y9 H H COOCH3 H 195234 2.100 1.796 �6.911 �7.019 0.787 0.128
Y10 H H H COCH3 146622 2.102 1.799 �7.023 �7.141 0.017 0.093

Table 6
Prediction of molecular properties of descriptors for the new designed compounds.

Compound Lipinski’s parameters Number of violations Water solubility

MW Log P RB HBA HBD PSA Log S Class

X1 289.725 3.431 4 7 0 108.293 0 �4.255 Moderately
X2 269.738 3.394 3 6 0 104.398 0 �4.248 Moderately
X4 272.738 3.335 4 6 0 104.166 0 �3.979 Soluble
X5 272.738 3.335 4 6 0 104.166 0 �3.991 Soluble
X7 262.718 3.662 3 5 0 97.806 0 �3.798 Soluble
X8 279.173 4.176 3 5 0 103.943 0 �4.509 Moderately
X9 323.624 4.285 3 5 0 107.508 0 �4.652 Moderately
X10 280.708 3.801 3 5 0 101.971 0 �3.987 Soluble
X11 313.618 4.829 3 5 0 114.247 0 �5.340 Moderately
X12 402.520 5.047 3 5 0 121.375 1 �5.613 Moderately
Y1 279.777 3.801 3 5 0 111.635 0 �4.633 Moderately
Y2 299.764 3.838 4 6 0 115.530 0 �4.743 Moderately
Y3 298.776 3.628 4 5 1 116.198 0 �4.154 Moderately
Y4 272.757 4.069 3 4 0 105.043 0 �4.281 Moderately
Y5 289.212 4.583 3 4 0 111.181 0 �4.979 Moderately
Y6 333.663 4.692 3 4 0 114.745 0 �5.121 Moderately
Y7 317.222 4.308 4 5 0 121.707 0 �5.170 Moderately
Y8 296.804 4.132 4 5 0 117.769 0 �4.469 Moderately
Y9 312.803 3.716 4 6 0 122.882 0 �4.481 Moderately
Y10 296.804 4.132 4 5 0 117.769 0 �4.474 Moderately
Threshold MW � 500 Log P � 5 RB � 10 HBA �10 HBD �5 PSA �140 N. Viol �1 Log S � �6
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3.8. ADMET properties

Absorption, distribution, metabolism, excretion and toxicity
(ADMET) properties of designed sulfide derivatives were predicted using
pkCSM (Table 7).
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The blood-brain barrier (BBB) permeation is a prominent property in
the pharmaceutical field, it helps to determine whether or not a com-
pound can or not cross the BBB and thus exert its therapeutic effect on the
brain [47]. Based on BBB report, it is clear that all proposed compounds,
except X1, are capable of crossing the BBB through by passive diffusion,



Table 7
Prediction of ADMET properties for the new designed compounds.

Absorption and Distribution Metabolism Excretion and Toxicity

BBB Caco-2 HIA Skin
log (Kp)

P-gp
Substrate

P-gp
Inhibitor

CYP2D6 Substrate CYP3A4
Substrate

CYP2D6
Inhibitor

CYP3A4
Inhibitor

TC AMES
Tox

hERG I/II

X1 ¡1.108 0.810 90.416 �2.583 No No No Yes No No 0.088 Yes No
X2 0.098 0.940 93.261 �2.683 No No No No No No 0.015 No No
X4 �0.102 1.393 93.773 �2.725 No No No No No No �0.011 No No
X5 �0.100 1.392 92.855 �2.683 No No No No No No 0.054 No No
X7 0.772 1.965 91.218 �2.244 No No No No No No 0.045 No No
X8 0.466 1.836 90.623 �2.172 No No No No No No 0.122 No No
X9 0.465 1.835 90.556 �2.175 No No No No No No �0.120 No No
X10 0.406 2.070 90.571 �2.421 No No No No No No 0.002 No No
X11 0.466 1.846 88.962 �2.264 No No No Yes No No 0.227 No No
X12 0.463 1.844 88.828 �2.277 No No No Yes No No �0.261 No No
Y1 0.321 1.450 94.802 �2.335 No No No No No No �0.083 No No
Y2 �0.940 0.824 91.269 �2.572 No Yes No Yes No No �0.077 Yes No
Y3 0.077 1.171 95.056 �2.73 No No No No No No �0.054 No No
Y4 0.099 2.014 92.117 �2.178 No No No No No No �0.120 No No
Y5 0.011 1.890 91.522 �2.105 No No No Yes No No �0.043 No No
Y6 �0.006 1.889 91.455 �2.112 No No No Yes No No �0.285 No No
Y7 0.238 1.645 93.740 �2.613 No No No No No No �0.189 No No
Y8 0.332 1.992 93.037 �2.354 No No No Yes No No �0.165 No No
Y9 0.159 1.433 94.910 �2.734 No No No Yes No No 0.064 No No
Y10 0.332 1.976 93.148 �2.361 No No No Yes No No �0.233 No No
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without upsetting the normal central nervous system (CNS) functions.
P-glycoprotein (P-gp) is a trans-membrane efflux pump that transport

drugs away from the cytoplasm and cell membrane causing compounds
to undergo farther metabolism and clearance, thereby limiting cellular
uptake of drugs resulting in therapeutic failure because the drug con-
centration would be lower than expected [46,48].

The study showed that only compound Y2 can be an inhibitor for P-
glycoprotein, responsible for drug effluxes and various compounds to
undergo further metabolism and clearance.

The intestine is normally the primary site of a drug being absorbed
from an orally administered solution. This method is constructed to
predict the proportion of compounds that have been absorbed through
the small intestine of humans. It estimates the percentage for a given
compound that will be consumed in the human intestine. A molecule
with less than 30% absorbance is considered poorly absorbed [48]. Based
on the predicted values of HIA, all the proposed compounds can be
absorbed through human intestines.

The skin permeability, expressed as the skin permeability constant log
(Kp), (A compound is considered to have relatively low skin permeability
if it has kog Kp(cm/h)) is also an important parameter in the pharma-
ceutical industry to determine the risk of compounds in case there is
direct contact with skin. The more negative the log (Kp) value, the less
skin permeate is the molecule [49]. Hence, all proposed compounds are
found to be poorly permeable to skin and accidental contact will not have
any effect on the skin.

The cell line Caco-2 is composed of cells of human epithelial adeno-
carcinoma. The cell monolayer Caco-2 is commonly used to predict the
absorption of orally administered drugs through an in vitro model of the
human intestinal mucosa [48]. A compound is considered to be
extremely permeable to Caco-2 should translate into expected val-
ues>0.90. It is obvious from the Caco-2 values in Table 7 that all pro-
posed compounds, except for X1 and Y2, can be considered to be highly
permeable to Caco-2.

Drug clearance is measured by the proportionality constant CLtot
(Low value of total clearance (logCLtot) means high drug half lifetime),
and occurs primarily as a combination of hepatic clearance (metabolism
in the liver and biliary clearance) and renal clearance (excretion via the
kidneys). It is related to bioavailability, and is important for determining
dosing rates to achieve steady-state concentrations. All compounds have
a low value of total clearance which means high drug half lifetime of
these compounds.

The Ames toxicity test is a tool commonly used to determine
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mutagenic ability of a compound using bacteria. A positive test indicates
the compound is mutagenic, and can therefore act as a carcinogen. Most
proposed new compounds, except for X1 and Y2, are likely to be AMES-
negative and thus non-mutagenic.

hERG of the potassium channels encoded by hERG (Human ether-a-
go-go gene) are the principal causes for the development of squire long
QT syndrome - leading to fatal ventricular arrhythmia. Inhibition of
hERG channels has resulted in the withdrawal of many substances from
the pharmaceutical market. All proposed compounds are likely to be non-
hERG I/II inhibitor as shown in Table 7.

In conclusion, based on the Drug-likeness and ADMET studies, we
suggest thirteen compounds, including X2, X3, X4, X5, X6, X7, X8, X9,
X10, Y1, Y3, Y4 and Y7, which present good absorption, distribution and
metabolism properties, and they present low total clearance property and
show no AMES mutagenicity or hERG inhibition properties, as promising
inhibitors candidates for the main protease of SARS-CoV-1 that will be
synthesized and evaluated as SARS-CoV inhibitory drugs.

4. Conclusion

In this study, we have used multi-MLR approaches as linear feature
QSAR method to interpret the relationship between SARS-CoV inhibitory
activity for forty unsymmetrical aromatic Disulfide derivatives and their
chemical structural descriptors.

The above QSARs study describing the anti-SARS-CoV activity of
disulfides revealed that the most relevant factors to the anti-SARS-CoV
activity of disulfide derivatives are steric characteristics (71% of the
variance in IC50) related, firstly, with the size and volume of the sub-
stituent described by Balaban index and, secondly, with the distances
parameter described by the bond length between the two sulfur atoms
and between sulfur atom and benzene ring, and finally by electronic
characteristics (29% of the variance in IC50) related with the EHOMO and
EHOMO-1.

The results suggest that derivatives of unsymmetrical aromatic Di-
sulfide with the following structural feature may exhibit great anti-SARS-
CoV activity by substituting disulfides with smaller size electron with-
drawing groups. According to the developed model, the most important
findings of this research are that we have designed and suggest some new
compounds with possible great activities. Consequently, the proposed
models can be used in anti-SARS-CoV drug research for the unsymmet-
rical aromatic Disulfide derivatives.

ADMET evaluation shows that 13 compounds passed the stringent
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lead-like criteria and in silico drug-likeness test, which are excellent
candidates for drug discovery and are expected to be developed as pro-
spective oral drugs.

These results encourage the collaboration with pharmacologists, ac-
ademic or industrial, because the last ones many times are groping new
drugs.

CRediT authorship contribution statement

Samir Chtita: Resources, Conceptualization, Methodology, Formal
analysis, Writing - review& editing.Assia Belhassan:Writing - review&
editing, Data curation.Mohamed Bakhouch:Writing - review& editing,
Data curation. Abdelali Idrissi Taourati: Writing - review & editing,
Data curation. Adnane Aouidate: Writing - review & editing, Data
curation. Salah Belaidi: Visualization, Writing - review & editing.
Mohammed Moutaabbid: Visualization, Writing - review & editing.
Said Belaaouad: Visualization, Writing - review & editing. Mohammed
Bouachrine: Project administration, Supervision. Tahar Lakhlifi: Proj-
ect administration, Supervision.
Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgment

We would like to express our grateful to the “Agence Universitaire de
la Francophone (AUF)” for funding research project (Reference: AUF-
463/2020. Title: Repositionnement des m�edicaments et le d�epistage in
silico de certains compos�es issus des ressources naturelles pour le
COVID19 via les m�ethodes de mod�elisation mol�eculaire). We would also
like to acknowledge all our colleagues at the COVID19 Project from
Morocco, Cameroun and Algeria for their amazing support, team spirit
and valuable input.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.chemolab.2021.104266.

References

[1] C. Drosten, S. Gunther, W. Preiser, S. VenderWerf, H.R. Brodt, S. Becker,
H. Rabenau, M. Panning, L. Kolensnikova, R.A.M. Fouchier, A. Berger,
A.M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme,
J. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H.D. Klenk,
A.D.M.E. Osterhaus, H. Schmitz, H.W. Doerr, N. Engl. J. Med. 348 (2003)
1967e1976.

[2] N. Lee, D. Hui, A. Wu, P. Chan, P. Cameron, F.M. Joynt, A. Ahuja, M.Y. Yung,
C.B. Leung, K.F. To, M.D. Leu, C.C. Szeto, S. Chung, J.J.Y. Sung, N. Engl. J. Med. 348
(2003) 1986e1994.

[3] Sho Konno, Pillaiyar Thanigaimalai, Takehito Yamamoto, Kiyohiko Nakada,
Rie Kakiuchi, Kentaro Takayama, Yuri Yamazaki, Fumika Yakushiji, Kenichi Akaji,
Yoshiaki Kiso, Yuko Kawasaki, Shen-En Chen, Ernesto Freire, Yoshio Hayashi,
Design and synthesis of new tripeptide-type SARS-CoV 3CL protease inhibitors
containing an electrophilic arylketone moiety, Bioorg. Med. Chem. 21 (2013)
412–424.

[4] N. Lee, D. Hui, A. Wu, P. Chan, P. Cameron, G.M. Joynt, A. Ahuja, M.Y. Yung,
C.B. Leung, K.F. To, S.F. Lui, C.C. Szeto, S. Chung, J.J.Y.N. Sung, Engl. J. Med. 348
(2003) 1986.

[5] WHO, SARS (Severe acute respiratory syndrome) - disease information. https
://www.who.int/ith/diseases/sars/en/, 2003.

[6] Y. Yang, F. Peng, R. Wang, K. Guan, T. Jiang, G. Xu, J. Sun, C. Chang, The deaordly
conaviruses: the 2003 SARS pandemic and the 2020 novel coronavirus epidemic in
China, J. Autoimmun. 109 (2020) 102434, https://doi.org/10.1016/
j.jaut.2020.102434.

[7] V. Thiel, K.A. Ivanov, A.A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weiabrich,
E.J. Snijder, H. Rabenau, H.W. Doerr, J. Ziebuhr, J. Genet. 84 (2003) 2305–2315.

[8] Xu Qiu, Xiaoxue Yang, Yiqun Zhang, Song Song, Jiao Ning, Efficient and practical
synthesis of unsymmetrical disulfides via base-catalyzed aerobic oxidative
11
dehydrogenative coupling of thiols, Organic Chemistry Frontiers 6 (2019)
2220–2225.

[9] D. Branowska, J. Ławecka, M. Sobiczewski, Z. Karczmarzyk, W. Wysocki,
E. Wolinska1, E. Olender, B. Mirosław, A. Perzyna, A. Bielawska, K. Bielawski,
Synthesis of unsymmetrical disulfanes bearing 1,2,4-triazine scaffold and their in
vitro screening towards anti-breast cancer activity, Monatshefte für Chemie -
Chemical Monthly 149 (2018) 1409–1420.

[10] K. Vandavasi, W.P. Hu, C.Y. Chen, J.J. Wang, Efficient synthesis of unsymmetrical
disulfides, Tetrahedron 67 (2011) 8895–8901.

[11] F. Yang, W. Wang, K. Li, W. Zhao, X. Dong, Efficient one-pot construction of
unsymmetrical disulfide bonds with TCCA, Tetrahedron Lett. 58 (3) (2017)
218–222.

[12] N. Stellenboom, R. Hunter, M.R. Caira, L. Szil�agyi, A high-yielding, one-pot
preparation of unsymmetrical glycosyl disulfides using 1-chlorobenzotriazole as an
in situ trapping/oxidizing agent, Tetrahedron Lett. 51 (2010) 5309–5312.

[13] N. Stellenboom, R. Hunter, M.R. Caira, One-pot synthesis of unsymmetrical
disulfides using 1-chlorobenzotriazole as oxidant: interception of the sulfenyl
chloride intermediate, Tetrahedron Lett. 51 (2010) 5309–5312.

[14] M. Bao, M. Shimizu, N-Trifluoroacetyl arenesulfenamides, effective precursors for
synthesis of unsymmetrical disulfides and sulfonamides, Tetrahedron 59 (2003)
9655–9659.

[15] M. Koketsu, K. Tanaka, Y. Takenaka, C. Dkwong, H. Ishihara, Eur. J. Pharmaceut.
Sci. 15 (2002) 307.

[16] B. Tozkoparan, G. Aktay, E. Yolanda, Farmaco 57 (2002) 145.
[17] J.G. Sheppard, Keely R. Frazier, P. Saralkar, M.F. Hossain, W.J. Geldenhuys,

T.E. Long, Disulfiram-based disulfides as narrow-spectrum antibacterial agents,
Bioorg. Med. Chem. Lett 28 (8) (2018) 1298–1302.

[18] S. Andr�e, Z.C. Pei, H.C. Siebert, O. Ramstr€om, H. Gabius, J. Bioorg. Med. Chem. 14
(2006) 6314–6326.

[19] J.L. Venerstrom, M.T. Makler, C.K. Angerhofer, J.A. Williams, Antimicrob. Agents
Chemother. 39 (1995) 2671.

[20] W. Malinka, M. Kaczmarz, B. Filipek, J. Sapa, D.B. Glo, Farmaco 57 (2002) 737.
[21] Vijay H. Masand, Vesna Rastija, Meghshyam K. Patil, Ajaykumar Gandhi,

A. Chapolikar, Extending the identification of structural features responsible for
anti-SARS-CoV activity of peptide-type compounds using QSAR modeling, SAR
QSAR Environ. Res. 31 (9) (2020) 643–654.

[22] M. Vinicius, Alves tesia bobrowski cleber C. Melo-Filho daniel korn scott auerbach
charles schmitt eugene N. Muratov alexander Tropsha, QSAR modeling of SARS-
CoV mpro inhibitors identifies sufugolix, cenicriviroc, proglumetacin, and other
drugs as candidates for repurposing against SARS-CoV-2, Molecular Informatics 40
(2021) 2000113.

[23] Vijay H. Masand, Siddhartha Akasapu, Ajaykumar Gandhi, Vesna Rastija,
Meghshyam K. Patil, Structure features of peptide-type SARS-CoV main protease
inhibitors: quantitative structure activity relationship study, Chemometr. Intell.
Lab. Syst. 206 (2020) 104172.

[24] Samir Chtita, Majdouline Larif, Mounir Ghamali, Mohammed Bouachrine,
Tahar Lakhlifi, Quantitative structure–activity relationship studies of dibenzo[a,d]
cycloalkenimine derivatives for non-competitive antagonists of N-methyl-d-
aspartate based on density functional theory with electronic and topological
descriptors, Journal of Taibah University for Science 9 (2) (2015) 143–155.

[25] Samir Chtita, Rachid Hmamouchi, Majdouline Larif, Mounir Ghamali,
Mohammed Bouachrine, Tahar Lakhlifi, QSPR studies of 9-aniliioacridine
derivatives for their DNA drug binding properties based on density functional
theory using statistical methods: model, validation and influencing factors, Journal
of Taibah University for Science 10 (6) (2016) 868–876.

[26] Samir Chtita, Mounir Ghamali, Rachid Hmamouchi, Bouhya Elidrissi,
Bourass Mohamed, Majdouline Larif, Mohammed Bouachrine, Tahar Lakhlifi,
Investigation of antileishmanial activities of acridines derivatives against
promastigotes and amastigotes form of parasites using quantitative structure
activity relationship analysis, Advances in Physical Chemistry (2016) 1–16.

[27] Li Wang, Bo-Bo Bao, Guo-Qing Song, Cheng Chen, Xu-Meng Zhang, Wei Lu,
Zefang Wang, Yan Cai, Sheng Fu Shuang, Fu-Hang Song, Haitao Yang, Jian-
Guo Wang, Discovery of unsymmetrical aromatic disulfides as novel inhibitors of
SARS-CoV main protease: chemical synthesis, biological evaluation, molecular
docking and 3D-QSAR study, Eur. J. Med. Chem. 137 (2017) 450–461.

[28] Version 6 GaussView, Dennington Roy, Todd A. Keith, John M. Millam, Semichem
Inc., Shawnee Mission, KS, 2016.

[29] Gaussian 09, Revision B.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria,
M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson,
H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng,
J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr.,
J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin,
V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene,
J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski,
R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador,
J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz,
J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, 2010.

[30] ChemOffice, PerkinElmer Informatics. http://www.cambridgesoft.com, 2016.
[31] XLSTAT, Software, XLSTAT company. www.xlstat.com, 2013. (Accessed 17 April

2020). Accessed.
[32] S. Chtita, M. Ghamali, A. Ousaa, A. Aouidate, A. Belhassan, A. Idrissi Taourati,

V.H. Masand, M. Bouachrine, T. Lakhlifi, QSAR study of anti-Human African
Trypanosomiasis activity for 2-phenylimidazopyridines derivatives using DFT and

https://doi.org/10.1016/j.chemolab.2021.104266
https://doi.org/10.1016/j.chemolab.2021.104266
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref1
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref1
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref1
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref1
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref1
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref1
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref2
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref2
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref2
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref3
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref3
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref3
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref3
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref3
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref3
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref3
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref4
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref4
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref4
https://www.who.int/ith/diseases/sars/en/
https://www.who.int/ith/diseases/sars/en/
https://doi.org/10.1016/j.jaut.2020.102434
https://doi.org/10.1016/j.jaut.2020.102434
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref7
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref7
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref7
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref8
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref8
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref8
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref8
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref8
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref9
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref9
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref9
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref9
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref9
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref9
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref10
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref10
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref10
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref11
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref11
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref11
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref11
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref12
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref12
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref12
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref12
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref12
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref13
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref13
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref13
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref13
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref14
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref14
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref14
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref14
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref15
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref15
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref16
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref17
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref17
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref17
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref17
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref18
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref18
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref18
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref18
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref18
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref19
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref19
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref20
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref21
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref21
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref21
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref21
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref21
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref22
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref22
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref22
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref22
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref22
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref23
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref23
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref23
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref23
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref24
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref24
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref24
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref24
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref24
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref24
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref24
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref25
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref25
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref25
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref25
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref25
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref25
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref26
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref26
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref26
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref26
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref26
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref26
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref27
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref27
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref27
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref27
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref27
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref27
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref28
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref28
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref29
http://www.cambridgesoft.com
http://www.xlstat.com


S. Chtita et al. Chemometrics and Intelligent Laboratory Systems 210 (2021) 104266
Lipinski’s descriptors, Heliyon 5 (3) (2019), e01304, https://doi.org/10.1016/
j.heliyon.2019.e01304.

[33] a Golbraikh, A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002) 269–276;
b A. Tropsha, Best practices for QSAR model development, validation, and
exploitation, Mol. Inf. 29 (6–7) (2010) 476–488.

[34] OECD Guidance Document on the Validation of QSAR Models, Organization for
Economic Co-operation & Development, Paris, 2007.

[35] Mahmud Tareq Hassan Khan, Predictions of the ADMET properties of candidate
drug molecules utilizing different QSAR/QSPR modelling approaches, Curr. Drug
Metabol. 11 (4) (2010) 285–295, https://doi.org/10.2174/138920010791514306.

[36] D.E. Pires, T.L. Blundell, D.B. Ascher, pkCSM, Predicting small-molecule
pharmacokinetic and toxicity properties using graph-based signatures, J. Med.
Chem. 58 (9) (2015) 4066–4072.

[37] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and
computational approaches to estimate solubility and permeability in drug discovery
and development settings, Adv. Drug Deliv. Rev. 46 (1997) 3–26.

[38] A. Aouidate, A. Ghaleb, M. Ghamali, et al., Investigation of indirubin derivatives: a
combination of 3D-QSAR, molecular docking, and ADMET towards the design of
new DRAK2 inhibitors, Struct. Chem. 29 (2018) 1609–1622, https://doi.org/
10.1007/s11224-018-1134-0.

[39] T.J. Hou, K. Xia, W. Zhang, X.J. Xu, ADME evaluation in drug discovery. Prediction
of aqueous solubility based on atom contribution approach, J. Chem. Inf. Comput.
Sci. 44 (2004) 266–275.

[40] J.C. Dearden, M.T. Cronin, K.L. Kaiser, How not to develop a quantitative structure-
activity or structure-property relationship (QSAR/QSPR), SAR QSAR, Environ. Res.
20 (2009) 241–266.

[41] J.F. Hair Jr., R.E. Anderson, R.L. Tatham, W.C. Black, Multivariate Data Analysis,
third ed., Macmillan, New York, 1995.
12
[42] S. Chtita, Mod�elisation de mol�ecules organiques h�et�erocycliques biologiquement
actives par des m�ethodes QSAR/QSPR - Recherche de nouveaux medicaments,
Faculty of Sciences Meknes - Moulay Ismaïl University, Morocco, 2017. Thesis.

[43] L.S. Higashi, M. Lundeen, K. Sef, Empirical relations between disulfide bond
lengths, (N or C)-C-S-S torsion angles, and substituents in aromatic disulfides.
Crystal and molecular structure of 3,3’-Dihydroxydi-2-pyridyl disulfide, American
Chemical Society 100 (26) (1978) 8101–8106.

[44] S. Chtita, M. Ghamali, M. Larif, R. Hmamouchi, M. Bouachrine, T. Lakhlifi,
Quantitative structure–activity relationship studies of anticancer activity for Isatin
(1H-indole-2,3-dione) derivatives based on density functional theory with
electronic and topological descriptors, Int. J. Quan. Struc. Prop. Rel. 2 (2) (2017)
90–115.

[45] S. Chtita, M. Ghamali, R. Hmamouchi, B. Elidrissi, M. Bourass, M. Larif,
M. Bouachrine, T. Lakhlifi, Investigation of antileishmanial activities of acridines
derivatives against promastigotes and amastigotes form of parasites using
quantitative structure activity relationship analysis, Adv. Phys. Chem. (2016) 1–16.

[46] M.L. Amin, P-glycoprotein inhibition for optimal drug delivery, Drug Target
Insights 7 (2013) 27–34.

[47] G.M. Levin, P-glycoprotein: why this drug transporter may be clinically important,
Cur Psychiatry 11 (2012) 38–40.

[48] E. V.Pires Douglas, Tom L. Blundell, David B. Ascher, pkCSM: predicting small-
molecule pharmacokinetic properties using graph-based signatures, J. Med. Chem.
58 (9) (2015 May 14) 4066–4072, https://doi.org/10.1021/
acs.jmedchem.5b00104.

[49] A.H. Ahmed, Y.I. Alkali, In silico pharmacokinetics and molecular docking studies
of lead compounds derived from Diospyros mespiliformis, Pharma 7 (2019) 31–37.

https://doi.org/10.1016/j.heliyon.2019.e01304
https://doi.org/10.1016/j.heliyon.2019.e01304
http://refhub.elsevier.com/S0169-7439(21)00034-4/bib33a
http://refhub.elsevier.com/S0169-7439(21)00034-4/bib33a
http://refhub.elsevier.com/S0169-7439(21)00034-4/bib33a
http://refhub.elsevier.com/S0169-7439(21)00034-4/bib33b
http://refhub.elsevier.com/S0169-7439(21)00034-4/bib33b
http://refhub.elsevier.com/S0169-7439(21)00034-4/bib33b
http://refhub.elsevier.com/S0169-7439(21)00034-4/bib33b
http://refhub.elsevier.com/S0169-7439(21)00034-4/bib33b
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref33
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref33
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref33
https://doi.org/10.2174/138920010791514306
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref35
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref35
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref35
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref35
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref36
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref36
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref36
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref36
https://doi.org/10.1007/s11224-018-1134-0
https://doi.org/10.1007/s11224-018-1134-0
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref38
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref38
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref38
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref38
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref39
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref39
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref39
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref39
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref40
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref40
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref41
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref41
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref41
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref41
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref41
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref41
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref41
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref41
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref42
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref42
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref42
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref42
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref42
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref43
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref43
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref43
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref43
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref43
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref43
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref43
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref44
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref44
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref44
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref44
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref44
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref45
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref45
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref45
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref46
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref46
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref46
https://doi.org/10.1021/acs.jmedchem.5b00104
https://doi.org/10.1021/acs.jmedchem.5b00104
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref48
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref48
http://refhub.elsevier.com/S0169-7439(21)00034-4/sref48

	QSAR study of unsymmetrical aromatic disulfides as potent avian SARS-CoV main protease inhibitors using quantum chemical de ...
	1. Introduction
	2. Material and methods
	2.1. Selection of dataset and generation of molecular descriptors
	2.2. Principal component analysis (PCA)
	2.3. Data splits and model development
	2.4. Model validation
	2.4.1. Drug-likeness and ADMET properties


	3. Results and discussions
	3.1. Molecular descriptors
	3.2. Principal component analysis (PCA)
	3.3. Data splits and models development
	3.4. Y-randomization test for model 34
	3.5. Golbraikh and Tropsha’s criteria
	3.6. Design of new compounds
	3.7. Drug-likeness
	3.8. ADMET properties

	4. Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix A. Supplementary data
	References


