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Abstract
The coronavirus disease 2019 (COVID-19) pandemic highlighted the importance

of mathematical modeling in advising scientific bodies and informing public policy

making. Modeling allows a flexible theoretical framework to be developed in which dif-

ferent scenarios around spread of diseases and strategies to prevent it can be explored.

This work brings together perspectives on mathematical modeling of infectious dis-

eases, highlights the different modeling frameworks that have been used for modeling

COVID-19 and illustrates some of the models that our groups have developed and

applied specifically for COVID-19. We discuss three models for COVID-19 spread:

the modified Susceptible-Exposed-Infected-Recovered model that incorporates contact

tracing (SEIR-TTI model) and describes the spread of COVID-19 among these popu-

lation cohorts, the more detailed agent-based model called Covasim describing trans-

mission between individuals, and the Rule-Based Model (RBM) which can be

thought of as a combination of both. We showcase the key methodologies of these
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approaches, their differences as well as the ways in which they are interlinked. We illus-

trate their applicability to answer pertinent questions associated with the COVID-19

pandemic such as quantifying and forecasting the impacts of different test-trace-isolate

(TTI) strategies.

Keywords: Epidemiological modeling, COVID-19, SEIR models, Agent-based

models, Rule-based models

1 Introduction

1.1 Overview of mathematical modeling

As we write this in October of 2020, the world remains gripped by COVID-19

pandemic caused by the spread of a severe acute respiratory syndrome coro-

navirus (SARS-CoV-2). Since the emergence of this new virus, mathematical

sciences—particularly modeling—have been at the forefront of policy deci-

sion making around it.

Mathematical and computational models are a way to understand the pro-

cesses in complex systems that underlie empirical observations and to generate

possible future trajectories of these systems. Strictly speaking, mathematical

models refer to the actual framework of composing a set of equations or theo-

retical approaches, while computational models refer to the numerical and

computational approaches used to solve the mathematical framework. In prac-

tice, these terms are used interchangeably since solving practical mathe-

matical models analytically is rarely possible; hence, we often simply refer to

both as models. The overarching purpose of models is to allow a flexible frame-

work in which different scenarios can be tested, different questions related to

future behavior can be posed and evaluated, and potential future behavior can

be predicted. There is a difference between explanatory models that attempt to

explain current behavior and predictive models that extend this into the future,

and we will discuss this further in Section 1.2.

The overall aim of mathematical modeling is to generate answers to ques-

tions we can’t get from observations. The answers are then used to understand,

manage and predict future behavior of complex systems and processes, for

example, to inform public policy and future decision making. The statistician

George Box said, “all models are wrong; some models are useful.” It is impor-

tant to understand that modeling is like any other technology: it can be properly

applied or not, it may produce output that admits a useful interpretation, or it

may not. In Section 1.3, we discuss the notion of a “correct” model; it is impor-

tant to understand this notion of correctness against the background of utility of

mathematical modeling.

1.2 Modeling to explain or to predict

Mathematical modeling provides a framework that, given data, facilitates

understanding of how changes within the framework can affect outcomes.
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Modeling combined with data can explain past behavior, predict and forecast

future behavior, and evaluate how changes may alter these predictions.

Explaining past and current trends and predicting future trends are two differ-

ent aspects of modeling. The clear distinction between the two concepts was

highlighted by a number of scientists such as Forster and Sober (1994),

Forster (2002), Hitchcock and Sober (2004), and Dowe et al. (2007).

Explanatory modeling combines theory with data to test hypotheses and

explain behavior. Regression modeling, or curve-fitting to data, is a type of

explanatory modeling that is widely used in statistical sciences. Explanatory

modeling can answer questions like “Which population cohort is at greatest

risk of infection”? by looking backwards and finding the key parameters

(covariates) that help explain the observed patterns in the data. These types

of models have a long history in helping to explain patterns in disease and

public health. While continuing the trajectory of the curve that best explained

historical trends could in theory be used to predict future trends, the statistical

model best capable of explaining past trends may not be well suited to fore-

casting future trends.

In contrast, predictive modeling (Shmueli, 2010) consists of building a

mechanistic framework that is explicitly designed to be able to explain both

historical patterns and future states. In contrast to explanatory modeling,

within this framework different cogs within the system can be built to resem-

ble possible future behavior. Predictive modeling could explore different

scenarios and answer questions of the general form: “What would happen to

X if we did Y”? Specific examples of such questions include: “What would

happen to the COVID-19 epidemic under strict social distancing for

2 months”? or “If things carried on like today, how would the epidemic look

in 3, 6 or 12 months”? Finally, predictive modeling can also look at trade-offs

and optimise outcomes by answering questions like: “What is the best strategy

to take if we want to achieve a given outcome”?

Although both explanatory and predictive models are important and have

been used widely to gain a better understanding of the COVID-19 pandemic,

our focus in this chapter will be on predictive models. An overview of explan-

atory models can be found in Shmueli (2010).

1.3 What does it mean for models to be “right”?

Building a “correct” model is a more complex concept than may initially be

thought. In the previous section, we addressed the question of why we build

models: we do so in order to answer questions about things that we cannot

observe. But since the questions we put to models are often complex, knowing

whether the answer is “right” is also not straightforward. This is best illu-

strated with an example. In early 2020, the widely-publicised mathematical

model produced by Imperial College London (Ferguson et al., 2020) sug-

gested that mortality from COVID-19 was around 1% and an epidemic in a

susceptible population of 67 million people could cause around 670,000
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deaths in the absence of any interventions to reduce the spread of the virus

(Ferguson et al., 2020). In reality, numerous non-pharmeceutical interventions

were deployed, and the UK had recorded around 70,000 deaths by end of

November 2020. Does this mean that the model “got it wrong”? How can

we assess and validate the model under these circumstances?

This example illustrates a fundamental difficulty with evaluating predic-

tive models. If we model a policy scenario which doesn’t manifest, does that

invalidate the projections produced by the model? We can try to answer this

by going back to the model and asking whether it would have predicted the

actual trajectory of the epidemic if given information on what policies ended

up being enacted. Exercises of this nature have been attempted for the Impe-

rial model, for example (Rice et al., 2020).

Rather than asking whether a model is right, it is more instructive to ask

whether it is useful. It is for this reason that a better understanding of the pro-

cesses of modeling and a greater awareness of how and when models can be

reliably used are important. The COVID-19 pandemic illustrated that even

the often-cited maxim among modelers that “the model is as good as the data

it uses” may not always be the most useful framework, because even at the

onset of the pandemic where data was scarce, modeling still proved useful.

1.4 Aims and purposes of this work

This chapter aims to bring together the current thinking about mathema-

tical modeling of infectious diseases, zooming in on the modeling of the

COVID-19 pandemic that was used to guide policy. We first give a short his-

tory of mathematical modeling (Section 2) before presenting a scoping overview

of the key published models until September 2020 used to capture COVID-19

transmission dynamics (Section 3). Then in Section 4, we showcase three of

the models that we have applied to understanding the COVID-19 epidemic,

briefly describing their methodology and illustrating their application to answer

a specific policy question. Our conclusion then brings it all together, summar-

ising the usefulness of modeling.

2 Modeling of infectious disease

2.1 The essence of modeling infectious diseases

The essence of mathematical modeling involves building a framework, often

based on a system of equations, that simplifies and mimics reality in order to

derive answers to real-life questions, as shown schematically in Fig. 1A.

Although these systems of equations are simplifications of reality, they can

nevertheless be used to investigate real-world questions, either by solving

the equations directly if possible, or by simulating outputs from the system

for given values of the parameters within the equations (Fig. 1B).
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The parameters of the mathematical model can be refined when we com-

pare the outputs of the model to information that we already know, for exam-

ple, available data on the reported number of infections or the confirmed

number of deaths due to the infection. This process of model refinement (or

calibration) can be done iteratively a number of times sweeping through the

parameter space, manually or in an automated way (Taylor et al., 2010), until

the output of the model agrees with what we already know, e.g., about the

virus spread. While simple models with only a small number of parameters

can be calibrated with simple parameter sweep and sensitivity analysis, cali-

bration of complex models require extensive complex computational techniques.

A multitude of statistical approaches have been applied to this problem, some of

which rely on a likelihood function and some which do not (Andrianakis et al.,

2015; Kennedy and O’Hagan, 2001). In essence, these methods attempt to mini-

mise the difference between the model and the data. More formally, this means

minimising a specified objective function defined on the model by starting with

an initial model parametrisation and seeing how the difference changes as the

parameters change. A subset of the methods discussed in Andrianakis et al.

(2015) use Bayesian approaches, in which a prior distribution is set over the

parameter space, which is then updated to create a posterior distribution once

the information from the data has been taken into account.

Once the model is calibrated it can be used to tell us more about future

behavior of the virus spread, i.e., make predictions or forecasts. For example,

in epidemiological modeling, it can predict the epidemic curve, i.e., the curve

that gives the number of infections caused by the virus over time. Changes

to the model parameters can mimic possible future interventions and this

A 

Real-world question Modelling problem Make assumptions

Real-world answer Model analysis    Model formulation

B

Empirical Mechanistic
Deterministic Predicting virus spread 

from a regression analysis
over time

Predicting virus spread based on known 
historic behaviour and based on ordinary 
differential equations

Stochastic Analysis of variance in 
regression model of virus 

Predicting virus spread based on different 
historic behaviour and based on probabilistic 
differential equations

FIG. 1 (A) Schematic of mathematical modeling describing broadly the steps of modeling that

allow answering real world problems. (B) Broad division of mathematical models.
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would allow the calibrated model to be useful in making predictions of what

the epidemic curve may look like in the future.

Model discrepancy and measurement bias are two aspects that complicate

model calibration. While model discrepancy explains the difference between

the mathematical model and the reality as described by the data sources, the

measurements bias is related to describing the measurement error, which can

be caused by both the data and the calibration method. Separating the measure-

ment bias from model discrepancy is important in calibrating models and when

defining “goodness of fit.” Accounting for both is important in predictive

modeling.

Ideally, the system of equations within the modeling framework would be

solved analytically, deriving exact solutions using historic behavior (initial or

boundary conditions). But for non-trivial models it is rarely possible to obtain

such analytical solutions; the complexity of modeling real-life scenarios quickly

produces non-trivial models. The alternative is numerical solution of the sys-

tem. Broadly speaking, the modeler has a choice when conducting a numerical

simulation of the model: to formulate the model as an initial-value problem of

ordinary differential equations describing entire population groups or to con-

sider each change to the state of individuals in the population as a discrete

stochastic event. For differential equations, simulating the system always gives

the same result. For stochastic simulations, the inherent randomness means that

each simulation results in a different evolution of the system and ascertaining

how the system will behave on average requires running many such simulations

and reporting the mean or the median. These two strategies are related: with

suitable assumptions, the time evolution of the system described with differen-

tial equations is approximated by the average time-evolution of the stochastic

system. There are important differences: the more fine-grained the model is,

the less feasible it becomes to formulate differential equations for it, and the

only choice is stochastic simulation. Furthermore, only some choices of distri-

bution for the timing of events are compatible with the assumptions required

for the mean trajectory of the stochastic system to coincide with the solution

to the differential equations. These differences mean that the practice is that

some classes of model are typically simulated using one or the other technique

and this leads to two categories of widely used models: compartmental mod-

els and agent-based models (ABMs).

2.2 History of modeling infectious diseases

Mathematical modeling has a long history of being used for understanding

how a virus can spread in a population.

The simplest kind of disease model is based on the concept of splitting the

population in compartments, i.e., compartmental modeling and was intro-

duced in the seminal paper by Daniel Bernoulli in 1776 (Bernoulli, 1766).

This model described the spread and vaccination against smallpox and was
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revisited and discussed in detail in Dietz and Heesterbeek (2002). This was

extended by Ross (1911) who, in work for which he was awarded the Nobel

Prize in Medicine, used what we today call dynamic transmission modeling.

When he published his first dynamic malaria model, Ross introduced the

phrase “a priori pathometry” to describe the scientific process of modeling

transmission dynamics (Ross, 1911). He expanded on this in his work from

1911, presenting a new set of equations for the demonstration of the dynamics

of the transmission of malaria between mosquitoes and humans (Ross, 1916).

The importance of Ross’ work was that he believed that explaining epidemics

and epidemic control quantitatively were extremely challenging and had to be

combined with predictive quantitative measures; hence, giving rise to many of

the processes of mathematical modeling of infectious diseases as we know

them now. In his description of the work he called this “a priori notions of
observational data and exploration of patterns” that emerge when we use

observational data combined with statistical analysis; as outlined in Ross

(1916). The concept of combining data with a system of theoretical equations

forms the fundamental framework of mathematical modeling of infectious

diseases. Further advances were made possible by Ross’ collaborations with

the mathematician Hilda Hudson, whose technical expertise opened the door

for an understanding of the patterns that different models could produce

(Ross and Hudson, 1917a,b). These developments formed the seed for the

work of Kermack and McKendrick, widely considered as the conceptors of

the present-day mathematical epidemiology. Their first paper from 1927

(Kermack and McKendrick, 1927), acknowledged Ross and Hudson’s work

and cemented the notion of “mathematical epidemiology” or “mathematical

theory of epidemics” as they called it. Subsequent work by Kermack and

McKendrick (1932, 1933, 1937, 1939) expanded this theory and also defined

the basic reproduction number in terms of model parameters; we discuss their

model in more detail in Section 2.2.2. Ross, Kermack and McKendrick

influentially recognized the importance of mathematical epidemiology, and

their ideas motivated the work by Macdonald (1950, 1952, 1955, 1956) and

Anderson et al. (1992). This is the basis of compartmental models that are

presently used in modeling infectious diseases across a number of diseases,

including COVID-19; more details on this are presented in Section 3. In the

next section, we give a brief description of the simplest compartmental mod-

eling framework, while in Section 4.1 we show how we have extended this to

apply it to modeling the spread of COVID-19.

2.2.1 Lotka-Volterra equations, SIR models
and reproduction number

Every university mathematical epidemiology course generally starts with

introducing the modeling framework that tracks the temporal evolution of

populations of Susceptible to the infection (S) cohort, the subset of these that
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become infected (I) and the subset of these that recover from the infection

(R); this describes the model of Kermack and McKendrick (1927).

But before we discuss in more details this classic Kermack-McKendrick

SIR model we will introduce the classic Lotka-Volterra system of equations

as a pair of first order, non-linear, differential equations that describe the

dynamics of biological systems in which two species, a predator and a prey,

interact (Murray, 1989). They were proposed independently by Lotka in

1925 and Volterra in 1926 just before Kermack-McKendrick SIR model was

introduced in 1927. The classic Lotka-Volterra system comprises Eqs. (1)–(2)
and taught modeling courses generally start with introducing this system of

equations before subsequently studying them using steady-state, perturbation

and bifurcation analysis exploring the existence and stability of the long-term

solutions of the system; for details, see for example, Chapters 3 and 4 of

Murray (1989):

dx
dt

¼ x a� byð Þ (1)

dy
dt

¼ y cx� dð Þ (2)

Assuming that a,b,c,d>0, this system describes x as the predator and y as
the prey with the parameters c and d representing the competition between

them. The parameters a and d describe how quickly x(t) and y(t), respectively,
grow and decay exponentially in absence of the other species; solving the

system with b¼c¼0 gives

x tð Þ ¼ x0e
at, y tð Þ ¼ y0e

�dt

where x0 and y0 are the initial values of x and y, i.e., x0¼x(t¼0), yo¼y(t¼0).

If the parameters b and c are included, the system of Eqs. (1)–(2) can be

solved in special cases as shown by Varma, Wilson or Burnside (Varma, 1977;

Wilson, 1980). The numerical solutions of the system of equations, for a choice

of model parameters and initial conditions, are shown in Fig. 2A and B.

The oscillatory solutions in Fig. 2A are a result of the cyclic behavior of

the system confirmed in the phase plot diagram in Fig. 2B. Interestingly,

using two different solvers in MATLAB to solve even a very simple system

of equations such as (1)–(2) can give slightly different results; hence it is

important that we discuss the robustness of numerical solutions in Section 2.3.

In fact, we can derive the cyclic solutions depicted in Fig. 2B, representing

the phase trajectories, analytically by directly integrating the phase plane equa-

tion (brief introduction to phase plane analysis can be found in the Appendix

A of Murray (1989))

dv
du

¼ α
v
u

u� 1

1� v

� �
(3)
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FIG. 2 Solutions to the Lotka-Volterra system of Eqs. (1)–(2) when a¼1¼d, b¼0.01 and

c¼0.02. The initial conditions assume that x0¼y0¼20 in this example and we run the system

for t¼ [0,15]. (A) Predator/prey populations over time. (B) Phase plane diagram. In (A) we pres-

ent the temporal profiles of x and y showing the periodic solutions of the system which are

confirmed in the phase plane diagram in (B). When generating the phase plane diagram, we solve

the system of equations using two different numerical solvers ode45 and ode23 illustrating the

subtle differences present on even the simplest set of equations as (1)–(2).



Here, u and v represent the non-dimensionalised (or rescaled) versions of

the variables x and y defined as u ¼ cx
d , v ¼ by

a and α¼d/a. Eq. (3) has singular

points at u¼v¼0 and at u¼v¼1 and integrating it directly we get αu+v� ln
uαv¼C, where C is a constant with a minimum 1+ α occurring when

u¼v¼1. It is a straightforward mathematical conjecture to show that, for a

given constant C>1+α, the trajectories in the phase plane are closed; illu-

strated for a given parameter regime in Fig. 2B.

An important aspect to note from Fig. 2A and B is that the asymptotic

solutions, i.e., the solutions of the system that the system settles to as t!∞,

depend on the model parameters. Even in the simplest case, setting a¼c¼1;
and the system only has two non-zero parameters that describe the strength of

the competition between x and y, there are still three possible longtime solutions

of the system: the coexistence steady state shown in Fig. 2A; or a limit case of

this steady state where either the predator or the prey goes extinct in the long-

time if the competition term from one species is much stronger (mathematically

an order of magnitude larger) than the other. To determine these we need to set

the derivatives in (1)–(2) to zero and solve the system of algebraic equations to

determine the steady states and their stability; details on this method can be

found in Appendix A of Murray (1989).

Why is the Lotka-Volterra system of equations so important when doing

modeling? One of the reasons is that the classic SIR framework of Kermack-

McKendrick is very similar to this system of equations.

Instead of having two competitor species, as the Lotka-Volterra system,

the SIR framework splits the population cohort into three groups of Sus-

ceptible (S), Infected (I) and Recovered (R) populations. Analogous to the

Lotka-Volterra system of equations, it is based on the principle of mass action

that describes the rates of transition between these classes (Fig. 3A). In the

simplest SIR model, the one that Kermack-McKendrick developed, births

and deaths can be ignored and there is no waning of immunity, allowing only

two possible transitions: spread of infection with transfer of individuals

from the susceptible to the infected class (at a rate β) and recovery from the

infection with transfer of individuals from the infected to the recovered class

(at a rate γ). We note that different notations of the I and R compartments

exist: I are sometimes called infected, infective or infectious while R are

either recovered or removed; the original Kermack-McKendrick model

referred to these as infected and recovered and comprised the system of

Eqs. (4)–(6) below:

dS
dt

¼ �βSI=N (4)

dI
dt

¼ βSI=N � γI (5)
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Susceptible 
S Infected      I Recovered R

B

A

C

Schematic of an SIR model 

FIG. 3 (A) Schematic of SIR model. Schematic of a simple SIR model without and with waning

of immunity (at a rate δ) describing the system of Eqs. (3)–(4) and numerical solutions for two set

of parameters. (B and C) Model solutions for a parameter set. The model parameters are

β¼5�10�9, γ¼0.12 in (B) and γ¼0.07 in (C) and δ¼0.0 in (B) and δ¼1/60 in (C). The initial

conditions assume that N(t¼0)¼6�107, I(t¼0)¼10, R(t¼0)¼0, i.e., there are 10 infected

people at the onset and that the basic reproduction number is R0 ¼ β
γ N t ¼ 0ð Þ ¼ 2:5. We simulate

the system for t¼ [0,300]. In (B) we present the temporal profiles showing the system settles to a

steady state that clears the virus while in (C) the long-time solution shows the coexistence of the

infected, susceptible and recovered populations (this is endemic epidemic).



dR
dt

¼ γI (6)

Here, the parameter β represents the infectiousness rate, i.e., the rate at

which the susceptible population transfers to the infected population, and γ
is the rate of transfer from the infected to recovered population, with 1/γ
describing the average length of the infectiousness period. It is important to

note that this model assumes homogeneous mixing in the population which

means that everyone interacts with equal probability with everyone else and

discards situations where there is a heterogenous mixing across ages or set-

tings. Details on the model adaptations necessary to account for such situa-

tions can be found in Chapters 3 and 7 of Keeling and Roheni (2008).

Furthermore, there are some assumptions in deriving the transmission term

βSI that are key for this model; details can be found for example in

Chapter 2 of Keeling and Roheni (2008). Briefly, the parameter β can be

defined and derived from two additional parameters c as the average number

of contacts per unit of time and p as the probability of transmission per

contact.

The end outcome, defined as the steady-state solution, for SIR models

defined by Eqs. (4)–(6) is that the epidemic will either be cleared and the

infected population eventually fully transferred to recovered population.

Another possible outcome is that the epidemic will be sustained with coexis-

tence of susceptible, infected and recovered populations (see conditions on

this below, but we note that this is not possible in the case of Eqs. (4)–(6)
where there is no population growth and no waning of immunity (Fig. 3).

A whole theory of mathematical biology is concerned with exploring different

constraints necessary for these outcomes and how dependent they are on the

parameters β and γ; both Keeling and Roheni (2008) and Murray (1989)

Murray (1989) have details of this. Next we revisit this briefly.

The key question when modeling epidemics is, given the values of β and γ
and the initial conditions on the populations, will the infection spread or not,

how will it behave over time and when will it start to decline and diminish.

These questions can be formulated mathematically as the set of Eqs. (4)–(6)
plus some initial conditions:

S 0ð Þ ¼ S0 > 0, I 0ð Þ ¼ I0 > 0,R 0ð Þ ¼ 0

Considering Eq. (4), since dS
dt < 0, S � S0. Hence we can see that if S0 <

γ
β

then

dI
dt

¼ I βS� γð Þ � 0, 8t � 0

This suggests that I0> I(t) as t!∞ and hence infection will die out in the

longtime. But if S0 >
γ
β, then similarly we conclude that I0< I(t) as t!∞, so

an epidemic occurs and starts growing. In this sense an epidemic occurs if the

infected population increases above its’ initial value, i.e., if I0< I(t) for some
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t>0. In modeling, this gives rise to a threshold phenomenon, i.e., depending

on the threshold value of the ratio γ
β we get two behavioral phenomena:

epidemic or not. The inverse ratio 1
γ
β
¼ β

γ represents the infection contact rate.

We note that as epidemiological modeling has been developing over the

years, so has the notation. For example, different modelers refer to the contact

rate differently and sometime writing β¼cp or β¼ �c log (1�p), where as

described above, p represents the probability of risk of transmission upon

contact and is related to viral load of the virus, while c represents the number

of contacts per unit of time; hence in this case only c is referred to as

contact rate.

Whichever notation we use, the interplay between the parameters β and γ
leads to the notion of the basic reproduction number which is defined as

R0 ¼ β
γ that simply represents the number of secondary infections that emerge

from one primary infection in a wholly susceptible population. By the defi-

nition, if more than one secondary infection is produced from the primary

infection this simply means R0>1. The basic reproduction number and the

condition R0>1 has been widely used and discussed in the media as a metric

for describing the state of the COVID-19 epidemic and we will revisit this

again in our COVID-19 specific case studies in Section 4.

While the basic reproduction number is an important metric to consider in

a growing epidemic, this simple example shows that its value is most relevant

at the onset of the epidemic, as it depends on the initial pool of susceptible

people. As the epidemic develops and the pool of susceptible people changes,

the basic reproduction number R0becomes an effective reproduction number,

often written as Reff, Re, Rt or just R. A detailed discussion of the differences

between these highlighting what the effective reproduction number can tell us

and what it can’t in terms of a growing epidemic can be found in Vegvari

et al. (n.d.).

It is also important to note that non-pharmaceutical interventions such

imposing social distancing rules to reduce the number of contacts (reducing c)

or wearing masks to reduce the risk of transmission during a contact (to

reduce p) would reduce the transmission rate β. This can in turn reduce the

effective reproduction number—we illustrate this in our case studies in

Sections 4.1 and 4.2.

2.2.2 Stochastic models: Adding stochasticity to the SIR
framework, branching processes and individual- or agent-based
models (IBMs/ABMs)

Compartmental models with fixed parameters, such as the SIR framework in

Section 2.2.2, can answer simple questions around initial epidemic growth

and give parameter constraints on expected long-term solutions. But such

models have a crucial limitation: since everyone in each compartment is

assumed to be the same, these models ignore important aspects of social
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interactions and heterogeneous behavior patterns. Various generalisations of

the structure of the simple SIR model have been made over the years to

address this limitation, which have included modifications of the model struc-

ture to include sub cohorts of the population (e.g., different age or risk-

groups) or the addition of a mixing matrix to the infection rate beta to account

for the interaction between such sub cohorts (see for example Kiss et al.,

2006; Lloyd and May, 2001; Rohani et al., 2010). But an alternative means

of addressing the assumption of heterogeneity within compartments is to use

probability distribution functions for the flow rates between compartments,

rather than assuming a fixed value. This allows for uncertainty and variability

in the model parameters to be included in compartmental models. For exam-

ple, the duration of the infectiousness period (described by the parameter

gamma in Section 2.2.2) need not be treated as a fixed number but rather as

a varying parameter, which takes different values according to a probabi-

lity distribution. For large populations, this variability averages out, but for

small populations, a stochastic treatment is required. Stochastic Differential

Equations (SDEs) are one way to capture this variability where there is a nat-

ural limiting behavior of the mean field that yields a corresponding ODE

system for large populations. Another, more flexible way to capture this varia-

bility is by explicitly modeling individuals rather than the population as a

whole. This can be done using Agent- or Individual-Based models (ABMs/

IBMs).

In ABMs, epidemics are modeled by creating a set of autonomous agents

or individuals that follow certain rules and/or decisions and interact with each

other in certain defined ways. ABMs allow individual contacts within a net-

work to be modeled, and infectious disease spread within realistic synthetic

population to be simulated (Eubank et al., 2004). In addition, agent-based

models can more easily allow for uncertainty analysis by allowing the incor-

poration of stochastic effects, as well as the potential to have well-defined

variation between individuals. While compartmental models encourage mode-

lers to simplify the problem at hand, ABMs encourage modelers to think more

deeply about the full system. This can pair well with model-driven data col-

lection: rather than building a model simply to use the available data, this

approach involves building the model first and then identifying what data

gaps remain to be filled. When applied appropriately, this approach can have

enormous benefits, since “one can only understand what one is able to build”

(Dudai and Evers, 2014). While still a less common approach than compart-

mental modeling, there are still many examples of where it has been used

successfully (Heesterbeek et al., 2015).

There are several disadvantages to using ABMs as well. First, vast sto-

chasticity within ABMs can be a disadvantage: the results from ABMs almost

always converge to those of compartmental models if averaged over a large

enough numbers of individuals and/or over a large number of trajectories,

and in cases where this is the desired outcome, a compartmental model may
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be preferable because of its lower computational cost. Second, compared to

compartmental models, ABMs are typically much more data-hungry, as they

often have many more parameters to inform the behavior of individual agents.

It is often hard enough to find sufficient data to parameterise compartmental

models appropriately, much less ABMs. In such cases, the better approach

is often to opt for a simple model based on available data rather than create

a complex model based on many assumptions.

2.3 Challenges of modeling infectious diseases

Developing and using models to inform decision making has challenges. Some

of these were highlighted in a series of challenge papers published as a special

issue of Epidemics in 2015 led by a consortium of scientists (Lloyd-Smith

et al., 2015). A follow-on collection of challenge papers focused on the chal-

lenges related to modeling the COVID-19 pandemic and planning for future

pandemics is under preparation in late 2020 by another consortium of scientists

within the Isaac Newton Institute.

The challenges of modeling infectious diseases can be grouped into four

broad categories.

First, it is necessary to find good and reliable data to parametrise the

model. Formulating mathematical models requires defining model variables

and model parameters. The variables represent the key dynamic quantities that

change in time (for example, the number of infected people or the number of

disease-related deaths), while the parameters govern the ways in which the

state of the model evolves over time. Defining the parameters of a model is

one of the main tasks of the modeler, and it often involves a trade-off

between simplicity and detail. For example, there are just two parameters

(β and γ) in the SIR model presented in Section 2.2.2, while the more

detailed ABM we describe in Section 4.2 includes over 500 parameters.

Often, the values of the parameters will be informed by data, so a crucial first

step in determining the structure and parameterisation of a model is to eval-

uate the extent of data available. But there are stark limitations on data that can

inform the model parameters, especially when modeling new diseases or out-

breaks such as COVID-19. This is one of the main challenges of good model-

ing. In the absence of reliable data sources, the modeler has various options:

(a) use a less data-rich model (for example, a simpler SIR model instead of

an ABM); (b) propagate the uncertainty stemming from the lack of data through

the model to produce distributions of possible predictive outcomes, either by

conducting a sensitivity analysis in which the model is simulated numerous

times for different parameter values, or by conducting a more formalized statis-

tical analysis.

The second challenge is around having a robust and efficient numerical

algorithms to solve the model and produce reliable predictive outcomes. It

is the responsibility of the modeler to assure that technically correct and
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robust numerical techniques are used for calibration and prediction, and that

uncertainty within the model is clearly communicated.

Third, there are challenges associated with developing simulation code

that can withstand the tests of time and be reproducible by other users. The

modeler needs to have good code etiquette with the code available as open

source so it can be understood, reproduced, expanded, adapted and used by

other users.

The fourth and final challenge is that models should be able to answer

questions from policy decision makers in a timely and informative fashion.

This has rarely been more pertinent than in the worldwide pandemic of

COVID-19, when mathematical modeling was brought to the forefront of pol-

icy making and communication. In the next section, we provide an overview

of these models.

3 Models for COVID-19

Since the beginning of the COVID-19 pandemic, mathematical modeling

was widely used to help make decisions around the control of COVID-19

spread. COVID-19 presented a unique modeling challenge to the community

due to (a) the extreme urgency of generating accurate predictions; (b) the

quickly-evolving data; and (c) the large uncertainties, especially early on in

the epidemic, around even basic aspects of transmission such as the reproduc-

tion number, latent period, and proportion of people who are asymptomatic.

3.1 Compartmental modeling and the SEIR framework: Overview
and examples of COVID-19 models

The vast majority of the models that have proliferated in response to the

COVID-19 pandemic have been compartmental models, due to their relatively

simple requirements for development and the long-standing body of work

using them, making them most accessible to epidemiologists. For example,

Walker et al. (2020) adopted the basic SIR framework from Section 2.2.2

and used an age-structured stochastic “Susceptible, Exposed, Infectious,

Recovered” (SEIR) model to determine the global impact of COVID-19 and

the effect of various social distancing interventions to control transmission

and reduce health system burden. Read et al. (2020) developed an SEIR model

to estimate the basic reproduction number in Wuhan. Keeling et al. (2020) used

one to look at the efficacy of contact tracing as a containment measure; and

Dehning et al. (2020) used an SIR model to quantify the impact of intervention

measures in Germany. In models such as those by Giordano et al. (2020) and

Zhao and Chen (2020), compartments are further divided to provide more

nuance in simulating progression through different disease states, and have been

deployed to study the effects of various population-wide interventions such as

social distancing and testing on COVID-19 transmission.
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3.2 Agent-based models: Overview and examples of COVID-19
models

ABMs shot to public prominence on the basis of the dire predictions of the

Ferguson et al. model, later named CovidSim (Ferguson et al., 2020). At the

time, there had been only 6000 COVID-19 deaths globally, but this model

predicted half a million deaths in the UK and over 2 million deaths in the

US if strong interventions were not implemented. Like many COVID models,

CovidSim was based on an earlier influenza model (Ferguson et al., 2006).

Another influential early COVID-19 ABM was that of Koo et al. (2020),

who adapted an existing H1N1 model by Chao et al. (2010), in order to explore

the impact of interventions on COVID transmission in Singapore. Other ABMs

were developed to simulate the spread of COVID-19 transmission and the

impact of social distancing measures in Australia (Chang et al., 2020) and the

United States (Chao et al., 2020). Due to their flexibility, ABMs can be used

to evaluate micro-level policies much more accurately than compartmental

models, such as to evaluate the impact of social distancing and contact tracing

(Aleta et al., 2020; Kretzschmar et al., 2020; Kucharski et al., 2020) and super-

spreading (Lau et al., 2020). Since these models can account for the number of

household and non-household contacts (Chao et al., 2020; Kretzschmar et al.,

2020; Kucharski et al., 2020); the age and clustering of contacts within house-

holds (Aleta et al., 2020; Chao et al., 2020; Kucharski et al., 2020); and the

microstructure in schools and workplace settings informed by census and

time-use data (Aleta et al., 2020) they can be used to investigate detailed inter-

ventions with maximal realism.

3.3 Branching process models: Overview and examples
of COVID-19 models

A third type of model, in some senses halfway in between a compartmental

model and an ABM, is a branching process model. Although not widely used

in the epidemiology community compared to the other two model types,

branching process models saw considerable use during the COVID-19 epi-

demic since in some ways they combine with simplicity of a compartmental

model with the detail and stochasticity of an ABM. Branching process mod-

els have also been used to investigate the impact of non-pharmaceutical

intervention strategies (Hellewell et al., 2020; Peak et al., 2017). Compared

to ABMs, which represent both infected and susceptible individuals and

their interactions, branching models consider only infected individuals,

and use probabilistic algorithms for determining how many new infections

each infected individual causes. Although this allows for the incorporation

of properties specific to the infected individual, it does not allow for a full

treatment of the interactions between infected and susceptible individuals

as in an ABM.
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4 Applications of modeling of COVID-19: Three case studies

4.1 Case study 1: Application of SEIR-TTI model to the UK
COVID-19 epidemic

4.1.1 Overview of SEIR-TTI

For this case study, we illustrate a new method for including the effects of

Testing, contact-Tracing and Isolation (TTI) strategies in classic Susceptible-

Exposed-Infected-Removed (SEIR) models. The SEIR-TTI model is a direct

extension of the SEIR modeling framework that incorporates a probabilistic

argument to show how contact tracing at the individual level can be reflected

in aggregate on the population level.

4.1.2 SEIR-TTI methodology

Details of the mathematical framework behind the SEIR-TTI model can be

found in Sturniolo et al. (2020). Briefly, the SEIR set-up extends the classic

SIR model from Section 2.2.1 to include a cohort of individuals exposed

(E) to the virus that have been infected with the virus but not yet infectious.

A key parameter than describes the latent period when the pathogen reproduces

within the host, but the viral load is too low to be categorised as susceptible

(S) or infected (I). Hence an intermittent cohort E, and respective mathematical

equation is needed to link these. Assuming the average length of the latency

period is 1/α the system of equations becomes:

dS
dt

¼ �βcSI=N (7)

dE
dt

¼ βcSI=N � αE (8)

dI
dt

¼ αE� γI (9)

dR
dt

¼ γI (10)

An important thing to note is that although SIR and SEIR models behave

very similarly at steady state, i.e., have the same longtime solutions with the

E cohort emerging as an intermediate cohort, the SEIR models have a slower

growth rate. This is a consequence of the delayed process of development of

infectiousness following the virus/pathogen entering the host system.

The SEIR model, we developed in Sturniolo et al. (2020) has similar struc-

ture to Eqs. (7)–(10). The novelty of our work is how we then layer this model

with a model for tracing the population that is either exposed or infectious—

the E and I cohorts. Existing models that have attempted to do this have

incorporated this by asserting that a proportion of exposed individuals become

quarantined or via reducing the transmission, sometime with a possible delay.
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But neither of these concepts account for finding and tracing both exposed

and infectious individuals that have different probabilities of risk of onward

transmission. Our SEIR-TTI framework allows us to do that; further details

can be found in Sturniolo et al. (2020). Importantly, we validated our SEIR-

TTI ODEs based model against two mechanistic ABMs and showed good

agreement at far less computational cost.

There are two key concepts in our SEIR-TTI framework:

a) the introduction of overlapping compartments within the SEIR modeling

framework;

b) defining the transition rates for people who are traced.

The first of these is achieved by defining overlapping compartments to represent

model states that are not mutually exclusive like the S, E, I and R compartments

are. Hence, we allow for an individual within our SEIR model to belong in more

than one category, e.g., be infected and contact-traced, or exposed and tested.

Specifically, as illustrated in Fig. 4A we represent unconfined and isolated

individuals simply by doubling the number of states, labeling SU, EU, IU, RU

respectively the undiagnosed S, E, I and R compartments; and similarly, SD,
ED, ID, RD the ones who have been diagnosed or otherwise distanced from

the rest of the population, by for example home isolation or hospitalization.

The second point is more complex and explicitly explained in Sturniolo

et al. (2020), so we will not go into details here. The key aspect is that we

derive transition rates among overlapping compartments, by considering that

individuals will be traced proportionally to how quickly the infectious indivi-

duals who originally infected them are, themselves, identified. People can be

identified via testing, at a rate 1
θ , or via tracing at a rate η and success χ. We

define a global tracing rate that depends on the probability of an individual of

being traced.

In the next section, we give an illustration of how the SEIT-TTI model can

be applied to predict the effective reproduction number as a combination of

different test-trace strategies and how this changes the epidemic curve.

4.1.3 Application of SEIR-TTI to estimate R

We applied the SEIR-TTI model to simulate the spread of COVID-19 in

the UK. We began by creating a total population of 67 million individuals,

with 100,000 individuals initially infected (i.e., I(0)¼100,000). To model the

dynamics of transmission, we define the probability of transmission per contact

per day to be P¼0.033, the number of contacts per day to be c¼13, the rate of

exposed people becoming infectious to be α¼0.2 days�1; and the length of the

infectiousness period (recovery time) to be 7 days. These values result in a

basic reproduction number of R0¼3 at the onset.

Assuming the success of tracing χ¼0.5, we then simulate different combi-

nations of tracing and testing levels and project the value of R after 30 days
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(Fig. 4B). Our results suggest that sufficiently effective tracing and suffi-

ciently frequent tracing are necessary to control the virus and keep R<1

and within the blue region in Fig. 4B. But we also found a non-linear relation-

ship between testing and tracing, implying it would be possible to control the

virus with less effective tracing and more frequest testing, or vice versa

(Fig. 4C). The epidemic trajectory looks different for different combinations

of test-trace levels; in Fig. 4C we illustrate these for different testing levels

assuming a tracing rate of η¼0.5.

4.2 Case study 2: Application of Covasim to the UK COVID-19
epidemic

4.2.1 Overview of Covasim

For this case study, we illustrate the application of an open-source agent-

based model called Covasim (COVID-19 Agent-based Simulator) developed

by the Institute for Disease Modeling. The methodology of the model is

contained in Kerr et al. (2020a) with further development and implementation

details available at http://docs.covasim.org. Since the onset of the pandemic,

Covasim has been applied across a number of studies (Cohen et al., 2020;

Kerr et al., 2020b; Panovska-Griffiths et al., 2020a,b; Stuart et al., 2020).

Here, we illustrate an application of Covasim to answer questions around

the COVID-19 epidemic in the UK.

4.2.2 Covasim methodology

Covasim is an agent-based model with individuals modeled at different stages

of their infectiousness, as susceptible to the virus, exposed to it, infected,

recovered, or dead. Infectious individuals are additionally categorized as

asymptomatic, presymptomatic (before the viral shedding has begun) or with

mild, severe or critical symptoms, as illustrated in Fig. 5A.

Covasim is coded in Python with default parameters that are regularly

updated based on ongoing literature reviews. It is equipped with demographic

data on population age structures and household sizes for different countries,

FIG. 4—CONT’D (A) Schematic of the SEIR-TTI model. Application of the SEIR-TTI model.

(B) R phase plane for test-trace levels. Phase plane plot of the effective reproduction number

R after 30 days of running the model for different tracing (x-axis) and frequency of testing

(y-axis) levels. Larger R, implying higher numbers of new infections is shown in red, while lower

values in white, and the blue region representing area where the resurgence of COVID-19 is con-

trolled (R<1) with combinations of adequate test-trace strategy. (C and D) Model predictions for

different testing levels. SEIR-TTI model predictions of the Exposed and Infected populations

(C) and R (D) over time when tracing level is 50% and frequency of testing increases. Panel A

schematic of the SEIR-TTI model reproduced from Sturniolo S, Waites W, Colbourn T,

Manheim D, Panovska-Griffiths J. Testing, tracing and isolation in compartmental models.”

medRxiv. (2020) preprint doi: https://doi.org/10.1101/2020.05.14.20101808, with permissions.
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with individuals interacting across four contact network layers for schools,

workplaces, households and community settings. Different epidemics can be

modeled by adjusting context-specific parameters, including rates of testing,

tracing, isolation compliance, and other non-pharmeceutical interventions.

Transmission occurs during contacts between infectious and susceptible indi-

viduals, according to a parameter β, which is comparable to the infection rate

β in the simple SIR from Section 2.2.2, but stratified across contact network

layers and across different risk groups.

Covasim has a flexible framework that can be adapted across settings and

for specific conditions. To run a simulation, we can use the default parameters
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FIG. 5—CONT’D and projecting total and daily counts as well as health outcomes. (C and D)

Model predictions with increased social mixing and with reduced social mixing. Outcomes from

an application of Covasim to the UK epidemic, calibrated to the reported COVID-19 infections

and deaths until August 28, 2020 with model parameters as per (Panovska-Griffits et al., 2020).

Medians across 12 simulations are indicated by solid lines and 10% and 90% quantiles by

shading.
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to generate a population of agents who interact over the four contact networks

layers and then change model parameters to calibrate the model to fit the spe-

cific epidemic. A simple modification would be to specify the time for which

we are interested to run the simulation, or change a model parameter.

In Fig. 5B we show the outcomes of a simple simulation in Covasim with

the simulation ran between September 1, 2020 and December 1, 2020 with a

change in the infection rate β from 0.016 to 0.2 from November 1, 2020. The

simulation shows an increase in infection with increased β, i.e., showcases the
impact of a single parameter on the predicted outcomes from November 1,

2020 when β was changed (Fig. 5B).

This example can be built on and expanded within Covasim to simulate and

evaluate a large number of interventions. These include non-pharmaceutical
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interventions, such as reduced social mixing, hygiene measures and use of

face coverings (all of which can be simulated by respective changes in

the contact rate c or the infection rate β), different testing interventions,

such as testing people with COVID-19 symptoms or asymptomatic testing

(for which specific parameters are defined within Covasim), as well as con-

tact tracing and isolation strategies (again changing specific parameters for

these within Covasim). It is also possible to simulate different vaccination

strategies with Covasim.

The example illustrated above simulates the most basic intervention in

Covasim—reducing transmissibility starting on a given day. Transmissibility

can mean a reduction in transmissibility per contact (such as through wearing

face coverings or maintaining social distance), or a reduction in the number

of contacts at households, school, work, or community settings. For example,

school closures can be modeled either by setting both of these to 0, while par-

tial closures can be modeled by scaled reductions in either transmissibility per

contact or the number of contacts. Our published work (Panovska-Griffiths

et al., 2020a) has modeled the impact of reopening school and society on

the UK COVID-19 epidemic in a similar, but more complex way to this

simple example.

Importantly, Test-Trace-Isolate (TTI) interventions can also be modeled in

Covasim. Testing can be modeled either by specifying the probabilities of

receiving a test on each day for people with different risk factors and levels

of symptoms; or by specifying the number of tests performed on each day

directly. Tracing assigns a probability that a contact of a person testing posi-

tive can be traced, and allocates a time that it takes to identify and notify con-

tacts. Isolation of persons testing positive and their contacts is the key aspect

by which TTI interventions can reduce transmission. In Covasim, people diag-

nosed with COVID-19 are isolated with an assigned adherence level and a

period duration of isolation. In the next section, we illustrate a specific appli-

cation of Covasim on the UK epidemic during 2020.

4.2.3 Application of Covasim to the UK epidemic

To apply Covasim to the UK epidemic (Panovska-Griffiths et al., 2020a,b),

we used the default parameters and generated a population of 100,000

agents across the household, schools, workplaces and community networks.

We then calibrated the model outcomes by performing an automated search

for the optimal values of the number of infected people on 21 January 2020

(when the UK first COVID-19 case was confirmed), the per-contact transmis-

sion probability and the daily testing probabilities for individuals with and with-

out COVID-19 symptoms during May, June, July, August and September (until

September 26, 2020). The optimal values determined were the ones that mini-

mised the sum of squared differences between the model’s estimates of
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confirmed cases and deaths and data on these same two indicators between Jan-

uary 21, 2020 and August 28, 2020. The data we compared against was collated

from the UK government’s COVID-19 dashboard (https://coronavirus.data.gov.

uk). These particular parameters were selected as the most important to estimate

because of the considerable uncertainties around them. Details of the exact

methodology can be found in Kerr et al. (2020a) and Panovska-Griffiths et al.

(2020a,b) and the code used to run all simulations contained in here is available

from https://github.com/Jasminapg/Covid-19-Analysis.

We included policies around mask usage and TTI interventions that were

part of the policy recommendations in the UK at the time of writing. Specifi-

cally, under the policy on masks in September of 2020, face coverings were

mandatory in parts of community, such as public transport or in shops, and

were recommended in secondary schools from September 1, 2020, but were

not mandatory in workplaces. To simulate the impact of the masks policy,

we defined effective coverage (a measure for effectiveness of masks) as the

product of efficacy of masks (efficacy) and adherence to wearing them (cov-

erage). A systematic review of the efficacy of face coverings suggested that

taking in consideration different types of masks, their average efficacy is

within the range of 11%–60% (Panovska-Griffits et al., 2020b). To simulate

different face masks policy we then reduced the transmission probability of

relevant contact network layers by the amount of effective coverage. For

example, if masks are worn in 50% of the community settings with efficacy

of 60%, then the effective coverage is 30%. To explore the impact of this pol-

icy in the model, we then reduced the transmission probability in the commu-

nity contact network layer by 0.30. To account for masks additionally worn by

50% of those in school (i.e., only secondary school students) we also reduced

the transmission risk in this layer by 30% (assuming again efficacy of 60%).

We assumed that 60% of workforce were returning to work in September

2020 with the rest of the workforce working from home.

In addition to masks policy, since May 28, 2020 the key non-pharmaceutical

intervention in the UK has been the Test-Trace-Isolate (TTI) strategy. For the

testing part, the daily testing probabilities for symptomatic and asymptomatic

people were fitted between May and September 26, 2020. For the level of con-

tact tracing we collated the publicly available weekly data from NHS Test and

Trace reports (NHS, 2020) between May 28, 2020 (when the program started)

and September 26, 2020. To generate an average number, we multiplied the

percentage of people testing positive that were interviewed, the percentage

of those reporting contacts and the percentage of contacts that were traced

to generate an overall percentage for contacts of those tested positive that

were traced. We derived average monthly levels of contract tracing to be

43% for June, 47% for July, 45% for August and 50% for September (until

September 26, 2020). For the isolation part of the TTI strategy, we assumed

that 90% of people who are required to isolate do so.
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Under these assumptions, the model predicted new infections, cumulative

deaths and the effective reproduction number R, as shown in Fig. 5C. To com-

pare these, we additionally simulated a scenario where only 40% of the work-

force goes back to work from September 1, 2020 (instead of 60%) and there is

additional 20% reduction in transmission in community (i.e., β for this layer

was set to 0.4 instead of 0.6 since September 1, 2020). The results are shown

in Fig. 5D.

This scenario analysis suggested that allowing fewer people to go back to

work and reducing the transmission risk in the community, while keeping

schools open, would result in a smaller resurgence of the COVID-19 in the lat-

ter part of 2020 than if social mixing was higher (comparing Fig. 5C and D).

Fig. 5C and D show the median projections as solid lines, and the range across

12 simulations in shaded area. Although there is an obvious difference in the

pattern of the projected epidemic—increasing with less stringent assumption

in Fig. 5C and able to be controlled under more stringent assumptions in

Fig. 5D—the shaded area highlights the wide range of possibilities across

the simulations. Therefore it is important to note a level of uncertainty within

the model projections.

4.3 Case study 3: Application of rule-based modeling

4.3.1 Overview

For this case study, we show how Rule-Based modeling (RBM) as a technique

from computational molecular biology (Danos and Laneve, 2004) can be

applied to the COVID-19 pandemic. Details of the methodology illustrated

here can be found in Waites et al. (2020). This technique is based on chemical

equations, and hence is similar to compartmental models of infectious disease

but generalises reactions in two important ways: it allows arbitrary subsets of

the population to be specified in rules, and it allows bonds to be formed

between individuals.

4.3.2 Rule-based modeling methodology

One of the characteristics of compartmental models is that they experience

rapid combinatorial explosion when adding features. For example, when

considering the effect of face masks in the classic SIR model, this can be

done via changes in the parameter β, to assume that the effect of masks is

to reduce the transmission risk of susceptible people become infected; or

to double the number of compartments, e.g., susceptible individuals with

and without masks, infectious ones the same, and so on. Introducing vac-

cines, where an individual can be vaccinated or not, means that another dou-

bling of compartments is required. Adding two features has thus caused the

number of compartments to expand from the original 3–12. This explosion
in the number of compartments clearly implies an explosion in the number
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of transitions: one I!R transition is now three, the quadratic S+ I! I+ I

transition now requires no less than 16 to completely specify. Each of these

rates needs data so using large-scale compartmental models in scarce data

scenarios can lead to a large number of assumptions and hence large uncer-

tainty of the predictive modeling.

RBM gives an alternative to this by defining an agent. This is not the kind

of agent found in agent-based modeling, but agent by analogy with reagent. It

has three internal states: disease progression state, wearing a mask or not, and

a binding site for a vaccine:

%agent: Person(covid{s i r} mask{y n} vax{y n})

Now, if we want to refer to any person, we simply write, Person(). If we want

to refer to infectious people, we write, Person(covid{i}). If we want to refer to

those people who are susceptible and wearing a mask, we can write,

Person(covid{s}, mask{y}). We can write the recovery, or removal rule as,

Person(covid{i}) -> Person(covid{r}) @ gamma

We note that not only is this representation simple, but it is the model, ver-

batim, meaning that precisely what is written above is provided to the

simulator.

The infection rules are somewhat more complicated. Infection involves an

infectious person and an unvaccinated susceptible person and infection hap-

pens at different rates depending on whether masks are worn or not. So, we

have four rules:

Person(covid{i}, mask{n}), Person(covid{s}, mask{n}, vax[.]) ->
Person(covid{i}, mask{n}), Person(covid{i}, mask{n), vax[.]) @

beta_nn
Person(covid{i}, mask{y}), Person(covid{s}, mask{n}, vax[.]) ->
Person(covid{i}, mask{y}), Person(covid{i}, mask{n), vax[.]) @

beta_yn
Person(covid{i}, mask{n}), Person(covid{s}, mask{y}, vax[.]) ->
Person(covid{i}, mask{n}). Person(covid{i}, mask{y), vax[.]) @

beta_ny
Person(covid{i}, mask{y}), Person(covid{s}, mask{y}, vax[.]) ->
Person(covid{i}, mask{y}), Person(covid{i}, mask{y), vax[.]) @

beta_yy

These rules are all nearly identical: an infectious person and a susceptible one

come in, two infectious ones come out, for different combinations of masks

or no.

The notation vax[.] means that there is no vaccine bound to the

person’s vaccine receptor. What does it mean for a vaccine to become

bound? To make use of this, we require another kind of agent. This is the
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second feature of RBM that does not have an equivalent in compartmental

models. This agent is not a compartment, it does not correspond to a subset

of the population but individuals become vaccinated by forming a bond with

an available vaccine:

Person(vax[.]), Vaccine(p[.]) ->
Person(vax[1]), Vaccine(p[1]) @ vaxrate

Within the rule-based modeling framework we also need to specify initial

conditions, can model wearing masks and introduce social dynamics, can

model different testing and vaccinating strategies. Details of how we do this

and simple examples can be found in Waites et al. (2020).

The simulation can in principle be done in a deterministic way and it is

possible to produce a system of ordinary differential equations (ODEs)

approximated by the mean trajectory of the model when simulated using a

stochastic technique such as Gillespie’s algorithm. Different software can be

used to run the simulations, e.g., KaDE can produce Matlab or Octave code

for the differential equations, and KaSim simulates the model stochastically.

The expressiveness of the rule-based modeling language makes it very easy

to write a rule-based model that results in an unreasonably large (possibly

infinite) system of ODEs and for this reason stochastic simulation is

normally used.

Next we apply this technique to a question related to testing in resource

constraint settings.

4.3.3 Application of RBM to LMICs

We consider a scenario of modeling testing strategies against COVID-19

transmission to answer the question: how do we optimally allocate tests?

We focus narrowly on surveillance testing at a relatively high rate and a rela-

tively low rate, aiming to explore if non-pharmaceutical severe social distanc-

ing (lockdown)-like intervention is triggered on the rate of positive tests, how

much surveillance is required, and how accurate the tests should be. The

answer that we get is that this style of outbreak management is relatively

insensitive to the accuracy of the tests, and even a low level of surveillance

testing will suffice for these purposes.

The setup is as follows. We augment a transmission model with testing.

Tests are discrete entities, much like the vaccines in the toy example above.

Individuals in the population have two internal states related to testing: a state

indicating the correct result for a perfect test, and a state indicating the actual

result, for the modeled tests have a certain sensitivity and specificity. The

relevant parts of the agent definitions are,

%agent: Person(test{p n} result{x p n})
%agent: Test(used{y n})
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The rules relating to testing are straightforward. If an individual is not in

a possession of a result, and their test site is not bound, an unused test may

bind to it:

Test(used[.]{n}), Person(test[.], result{x}) ->
Test(used[1]{y}), Person(test[1], result{x}) @ testRate

The individual in possession of a test receives a result after some time,

Person(test[_]{p}, result{x}) -> Person(test[_]{p}, result{p}) @

r*resultRate
Person(test[_]{p}, result{x}) -> Person(test[_]{p}, result{n}) @

(1-r)*resultRate
Person(test[_]{n}, result{x}) -> Person(test[_]{n}, result{n}) @

s*resultRate
Person(test[_]{n}, result{x}) -> Person(test[_]{n}, result{p}) @

(1-s)*resultRate

And the result that they receive is correct or incorrect according to the char-

acteristic sensitivity (recall) and specificity of the test. Finally, an individual

becomes eligible for retesting at some rate,

Test(used[1]), Person(test[1]) -> Test(used[.]), Person(test[.]) @

retest

From this, we compute the rate of positive tests occurring in a window of time

given by the retest rate. This is simply the ratio of the number of individuals

with positive results bound to a test to the total number of individuals bound

to a test with any result:

%obs: TPR
jPerson(test[_], result{p})j /
( jPerson(test[_], result{p})j + jPerson(test[_], result{n})j )

We use this quantity in a perturbation: when it increases above 2%, a

non-pharmaceutical intervention occurs that reduces the contact rate by half.

When it falls again below 1%, this intervention is removed.

Our results shown in Fig. 6A suggest that, with a high level of surveillance

testing—perhaps unreasonably high where each individual in the population

could expect to be tested on average once a year—we see a clearly defined

cycle of applying and releasing the non-pharmaceutical intervention. In con-

trast, with testing an order of magnitude lower as shown in Fig. 6B, where only

10% of the population can expect to be tested in a year, our results suggest this

may not be necessary.

As with the previous model, it is useful to show both the mean (solids lines

in Figs. 6A and B) and the range of the simulations, hence highlighting the

uncertainty of the predictions.
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FIG. 6 Application of the Rule-Based Model. (A) High surveillance testing regime. Illustration of the model outcomes under a high-surveillance testing regime

showing the clear period solutions of the model. (B) Low-surveillance testing regime. Illustration of the model outcomes under a low-surveillance testing regime

showing the higher uncertainty in the model projections.



5 Conclusions

In this chapter, we aimed to highlight the need for and importance of mathe-

matical modeling of infectious diseases, illustrating this with three case

studies of how we modeled the COVID-19 pandemic during 2020. We dis-

cussed a number of issues related to what modeling is, what it can and cannot

do, addressing the issues of model validity, robustness, calibration and different

frameworks. By illustrating three conceptually different models applied for the

same purpose—to better understand COVID-19 transmission during 2020—we

showcased the power of cross-disciplinary and cross-methodologies research

in the midst of a pandemic.

As discussed in greater depth in Section 1.2, mathematical modeling can

be very useful in evaluating possible interventions and predicting future

epidemic curves, but models need to be built well and designed to answer spe-

cific questions. There are no models that fit all the questions or can give all

the answers; rather, each individual model, assuming it is fit for purpose,

can contribute to a collective goal of decision support.

An important development in modeling in infectious diseases over the last

30 years has been the growth in inter- and multi-disciplinary collaborations of

mathematicians, computer scientists, and data analysts with biological and

medical researchers and policy decision makers. For future applicability and

ability of modeling to inform decision making, this cross-disciplinary work

needs to continue.

Addressing heterogeneity in both the model framework and within the data

is crucial for real-time decision modeling. But behavioral heterogeneities that

play an important role in describing infectious disease dynamics and design-

ing and validating infectious diseases models remain challenging. Different

modeling frameworks, as illustrated in Section 4, are amenable to modeling

infectious diseases, and in this case COVID-19 spread and different interven-

tions. Each has strengths and limitations, as outlined in Section 2.3 and it is

important to remain aware of these when modeling real-life epidemics. It is

especially important to identify the limits of predictability and potential uncer-

tainty of the model predictions when discussing with policy decision makers.

In summary, modeling remains a very useful technique to support policy

decision making and this chapter has included perspectives on modeling of

infectious diseases, highlighting different frameworks for modeling COVID-19

and illustrating some of the models that our groups have developed and

applied during the COVID-19 pandemic.
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