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A B S T R A C T   

Evidence of the association of built environment (BE) attributes with the spread of COVID-19 remains limited. As 
an additional effort, this study regresses a ratio of accumulative confirmed infection cases at the city level in 
China on both inter-city and intra-city BE attributes. A mixed geographically weighted regression model was 
estimated to accommodate both local and global effects of BE attributes. It is found that spatial clusters are 
mostly related to low infections in 28.63 % of the cities. The density of point of interests around railway stations, 
travel time by public transport to activity centers, and the number of flights from Hubei Province are associated 
with the spread. On average, the most influential BE attribute is the number of trains from Hubei Province. 
Higher infection ratios are associated with higher values of between-ness centrality in 70.98 % of the cities. In 
79.22 % of the cities, the percentage of the aging population shows a negative association. A positive association 
of the population density in built-up areas is found in 68.75 % of county-level cities. It is concluded that the 
countermeasures in China could have well reflected spatial heterogeneities, and the BE could be further 
improved to mitigate the impacts of future pandemics.   

1. Introduction 

The spread of the novel coronavirus disease 2019 (COVID-19), as 
well as other communicable diseases, is due to transmission of viruses 
from people to people (Ferguson et al., 2005; Cummings et al., 2004; 
Gog et al., 2014; Poletto et al., 2014; Mousavinia et al., 2019). To cap
ture how viruses spread it is necessary to determine how people 
communicate face-to-face. Unfortunately, there exists no published data 
regarding such face-to-face communication. It is also not easy to obtain 
such data. Mobile phone data can be used, especially considering its 
wide spatial coverage and massive volume (Wesolowski et al., 2016; 
Gonzalez et al., 2008). However, face-to-face communication data at the 
individual level is not available, even though zone-based spatial 
agglomeration of communication can be measured. Although ques
tionnaire surveys can be implemented to ask people to report their 
face-to-face communication with others (Baym et al., 2004), it would be 
too costly to obtain a massive amount of data from a large proportion of 
the whole population. 

It is obvious that the closer/denser social contacts are, the higher the 
infection risk will be. Facilitating social contacts is one of the various 
purposes of improving the built environment (BE) (Megaheda & Gho
neim, 2020). Thus, it is more feasible to make use of the BE attributes to 
examine the spread of COVID-19 than to directly use data of face-to-face 
communications, which can be collected based on advanced technolo
gies but is only publicly available on a small scale. The BE concept is 
very broad, which refers to all types of human-made places for living, 
working, and playing (Basta and Moroni, 2013; Dearry, 2004; Anderson, 
2019). The BE dimensions include both urban attributes (e.g., density, 
street connectivity, land use) and regional structure (distribution of 
transportation facilities across regions) (Handy et al., 2002). Some BE 
attributes were revealed to directly contribute to the spread of viruses. 
At the inter-city level, Ruan et al. (2015) confirmed that the total fre
quency and speed of travel affect the spread of communicable diseases. 
Hogbin (1985) examined the role of South Africa’s railways in trans
mitting and preventing infectious diseases. At the urban level Yashima & 
Sasaki (2014) verified a relationship between the spread of 
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communicable diseases and the urban population size, commuting time 
and population flow by taking Tokyo, Japan as a case study. However, a 
later review shows there remain significant research gaps, in terms of 
the BE attributes targeted, analysis approaches, spatial scope and spatial 
heterogeneity, etc., regarding the association of BE attributes with the 
spread of the COVID-19. Addressing these gaps is not only important to 
identify clusters and mechanisms of infections and consequently take 
immediate proactive measures to effectively control the current 
pandemic, but also crucial to explore more scientifically sound meth
odologies for making policies against future pandemics. 

In considering the features of the BE in reflecting direct and indirect 
face-to-face communications, this study attempts to fill the research 
gaps by focusing on the spread of COVID-19 in its initial stage in China, 
measured by the ratio of accumulative confirmed infection cases. 
Studies on China have attracted various international attentions in terms 
of epidemic analysis (e.g., Ahmed et al., 2020; Han & Yang, 2020; Peng 
et al., 2020), policy measures (e.g., Aleta et al., 2020; Hasnain et al., 
2020), environmental impacts (e.g., Giani et al., 2020), and global 
development (e.g., Schindler et al., 2020), etc. Such attentions may be 
because China’s responses can be a better reference for other countries 
to deal with both the current and future pandemics (Altakarli, 2020; Xu 

et al., 2020). This study presents additional evidence on China’s expe
riences, but from a new perspective of the BE. Such a new perspective is 
also useful to research and policymaking in other countries, not only 
because this study shows how the BE attributes can be used to better 
understand the spread of the virus as a proxy of social contacts, but also 
because this study further shows how the BE can be improved to prevent 
future pandemics. This study focuses on the infection at the city level, by 
targeting the whole of China, and investigates the influences of both the 
inter- and intra-city BE attributes. The BE attributes vary across loca
tions and, therefore, it is not unrealistic to assume that the associations 
between the BE attributes and the spread of COVID-19 will also vary 
across locations. Such spatial heterogeneity can be captured by esti
mating a geographically weighted regression (GWR) model. As sum
marized by Zhang, Hayashi, & Frank (2020), various serious impacts of 
COVID-19 on human society (e.g. economic activities and people’s daily 
lives) have been found. It is, therefore, important to prepare for future 
pandemics from various aspects. In this regard, the importance of con
ducting the present research is obvious. A key contribution to practice is 
that this study presents initial evidence of the impacts of the various BE 
attributes on the spread of the virus in the context of China by focusing 
on the spread of COVID-19 in its initial stage. In this regard, this is the 

Table 1 
Major references about the association of the BE attributes with the spread of COVID-19.  

Source BE Attributes Analysis method Scale Major findings related to the present study 

Nguyen et al., 
2020 

Presence of a crosswalk, non-single family 
home, single-lane roads, dilapidated 
building and visible wires 

Google Street View (GSV) 
images and computer 
vision; Poisson regression 
models 

164 million images 
in the USA 

Indicators of mixed land use (non-single- 
family home), walkability (sidewalks) and 
physical disorder (dilapidated buildings and 
visible wires) were connected with higher 
COVID-19 cases. Indicators of lower urban 
development (single lane roads and green 
streets) were associated with fewer COVID- 
19 cases. 

Hamidi et al., 
2020a 

Metropolitan population, activity density 
(population & employment per square mile), 
ICU beds per 10,000 population, primary 
care physicians per 10,000 population 

Multi-level linear model 1165 metropolitan counties in 
the USA 

Larger metropolitan areas lead to 
significantly higher COVID-19 infection rates 
and higher mortality rates 

Lee et al., 2020 Traffic volumes on roads Single linear regression 6307 vehicle detection systems 
(VDS) in South Korea 

In Incheon there was a positive, but 
insignificant, linear relationship between the 
increasing numbers of newly confirmed cases 
and increasing traffic. 

Ghosh et al., 
2020 

Travel distance to London, population 
density 

Mixed-effects model Distance from London to four 
other cities (Birmingham, Leeds, 
Manchester and Sheffield) 

As the distance from London increases, the 
number of COVID-19 cases decreases. 

Mizumoto & 
Chowell, 
2020 

Occupant density on the Diamond Princess 
cruise ship 

Mathematical modeling 621epidemiological incidence 
cases 

The increased exposure risks associated with 
high occupant density were demonstrated in 
the COVID-19 outbreak that occurred on the 
ship. 

Emeruwa et al. 
2020 

Building-level variables, including the 
number of residential units per building and 
mean assessed value (per square foot), and 
neighborhood-level variables, including 
population density, household membership 
(persons per household) and household 
crowding. 

Bivariable logistic 
Regression model 

71 infected cases in New York COVID-19 transmission among pregnant 
women was associated with neighborhood- 
and building-level markers of large 
household membership and household 
crowding. 

Dai & Zhao, 
2020 

Ventilation rate Wells–Riley equation Typical scenarios, including 
offices, classrooms, buses and 
aircraft cabins. 

An infection probability of less than 1% 
requires a ventilation rate larger than 
100–350 m3/h per infector and 1200–4000 
m3/h per infector for 0.25 h and 3 h of 
exposure. 

Antony, Velray 
& Fariborz, 
2020 

Population density, climate severity, the 
volume of indoor spaces and air- 
conditioning usage 

Statistical analysis of 
correlations 

Various states in India Fast drying and size reduction of respiratory 
droplets makes the virus more active. 

Auger, Shah & 
Richardson, 
2020 

Schools Population-based time 
series analysis 

All USA states School closure was associated with a 
significant decline in the incidence of COVID- 
19 and mortality. 

Brown et al. 
2020 

Nursing homes crowding Population-based 
retrospective cohort study 

78,000 residents of 618 distinct 
nursing homes in Ontario, 
Canada 

Crowding in nursing homes was associated 
with a higher incidence of COVID-19 
infection and mortality. 

Hamidi et al., 
2020b 

County activity density and metropolitan 
area population 

Structural equation model 913 metropolitan counties in the 
USA 

Metropolitan population is one of the most 
significant predictors of infection rates; larger 
metropolitan areas have higher infection and 
higher mortality rates.  

S. Li et al.                                                                                                                                                                                                                                        



Sustainable Cities and Society 67 (2021) 102752

3

first study in literature, and especially, this study examined more 
intra-/inter-city BE attributes than all of the existing studies. Methodo
logically, both global and local effects of the BE attributes are jointly 
captured by estimating a mixed GWR model. Policy measures against 
pandemics should pay more attention to various locational contexts. 
Such a model presents a powerful tool for policymaking sensitive to 
locations. 

In the remaining part of this paper a literature review is firstly pro
vided to better position this study in the literature. Secondly, the BE 
attributes selected for this study are described. Thirdly, the adopted 
methods of local indicators of spatial association (LISA) and the mixed 
GWR model are briefly explained. Fourthly, the associations of the BE 
attributes with the spread of COVID-19 in its initial stage in China are 
analyzed in detail, with their policy implications also being discussed. 
Finally, the findings of this study are summarized, together with a dis
cussion about future research issues. 

2. Literature review 

Although there exist many publications about COVID-19 at the time 
of conducting this study, for example there are more than 6000 and 
8000 references on Web of Science and ScienceDirect, respectively, less 
than 1% are related to the BE or buildings (Pinheiro & Luís, 2020; Raj, 
Velray, & Haghighat, 2020). The major references are summarized in 
Table 1 in order to better position the present study. Road attributes, 
building and housing attributes, population or its density, medical fa
cilities and services, and schools, etc., have been examined. For instance, 
based on street view images, Nguyen et al. (2020) explored how side
walks, dilapidated buildings and visible wires were associated with 
COVID-19 infection cases in USA. Through a multi-level linear model, 
Hamidi et al. (2020a) examined the impacts of population, activity 
density (population & employment per square mile), ICU beds, primary 
care physicians on infection rates and higher mortality rates in USA. By 
building a structural equation model, Hamidi et al. (2020b) revealed 
that metropolitan population is one of the most significant predictors of 
infection rates in USA. Raj et al. (2020) investigated the relationships 
between virus viability and populating density, climate severity, the 
volume of indoor spaces and air-conditioning usage in India, through 
correlation analyses. Traffic volumes on road and travel distance are 
identified as important factors to explain newly confirmed cases of 
COVID-19, by Lee et al. (2020) who focused on Incheon, South Korea 
and estimated a linear regression model, and by Ghosh et al. (2020) who 
focused on four UK cities and estimated a mixed-effects model, respec
tively. Through a bivariate logistic regression model, the household 
crowding, number of residential units per building, and household 
structure are found to be associated with COVID-19 transmission in New 
York (Emeruwa et al., 2020). Auger, Shah & Richardson (2020) showed 
that school closure was associated with a significant decline in the 
incidence of COVID-19 and mortality in USA through a 
population-based time series analysis. Furthermore, Brown et al. (2020) 
found that crowding in nursing homes was associated with a higher 
incidence of COVID-19 infection and mortality in Ontario, Canada 
through a population-based retrospective cohort study. 

However, only a few BE attributes were targeted in each study and 
very limited studies have captured the BE from both inter-city and intra- 
city perspectives. For inter-city BE attributes, the contributions of travel 
distance are explored (Ghosh et al., 2020), as well airlines or train flows 
(Lau et al., 2020). However, no study can be found to deal with the 
number of trains, the number of flights and population flows across 
cities at the same time, as done in this study. In addition, for intra-city BE 
attributes, this study further selected the BE attributes of between-ness 
centrality of major transport nodes to reflect the influence of major 
transport demand, and point of interests (POIs) around train stations to 
reflect activity density. Moreover, the USA is a popular study area, but 
no studies can be found related to China. In particular, all of the existing 
studies focus on only the global effects of BE attributes based on some 

regression models, where the effects of BE attributes sensitive to loca
tions have been ignored. Moreover, spatial clusters of the COVID-19 
spread have not been investigated from a geographical perspective. 

There are some studies (see Table 2) that only mention the BE at
tributes in association with COVID-19, such as hospitals (Rothan & 
Byrareddy, 2020; Gan et al., 2020), prisons and churches (Kim, 2020), 
public transport (European Commission, 2020), and building and indoor 
occupants (Dietz et al., 2020; Eykelbosh, 2020; Saadat et al., 2020). For 
instance, CDC, USA (2020) stated that people living and working in 
shared buildings might have challenges with social distancing measures 
to prevent the spread of COVID-19. Capolongo et al. (2020) suggested 
the importance of planning of smart and sustainable mobility networks 
to prevent the COVID-19. But all these studies do not include any 
empirical analyses of the relationships between BE attributes and the 
spread of the virus. 

In order to understand the spread of COVID-19, some modeling ap
proaches have been proposed. The network inference model and the 
susceptible infected recovered (SIR) model categorize the urban popu
lation into susceptible population, infected population and recovered 
population, by including the strength of the connections within and 
between the sub-groups of the city (Wang et al., 2018; Kuddus et al., 
2014; Mccluskey, 2010). The spatially explicit disease transmission 
model takes account of the population information, such as age, place of 
residence and individual activities (Germann et al., 2006). At the indi
vidual level Yang et al. (2008) developed a space-time activity-based 

Table 2 
The BE attributes targeted in the existing studies of COVID-19.  

Source BE attributes Explanation 

Rothan & Byrareddy 
2020; Gan et al., 
2020 

Hospital 
facility 

Transmissions of COVID-19 are more 
likely to occur within the hospital BE. 

Kim, 2020 Prisons and 
churches 

Accumulating evidence indicates that 
COVID-19 can spread widely in 
confined settings such as prisons, and 
churches. 

European Commission, 
2020 

Public 
transport 

Public transport is also a high-risk 
environment for the spread of COVID- 
19, due to the large number of people 
gathering together in a confined 
environment. 

Eykelbosh, 2020 
Dietz, et al., 2020 

Inside 
buildings 

Through building operators, all indoor 
occupants, ventilation and indoor air 
quality, lighting and the deposition on 
the surfaces of materials can reduce the 
spread of COVID-19. 

Chang, 2020 
Megahed & 
Ghoneim, 2020 

Population 
density 

Close contact among people is very 
high in urban areas rather than rural 
areas. 

Saadat et al., 2020 Household size A household with more members will 
have a higher chance to bring COVID- 
19 home, because there are more 
connections among people. 

CDC, USA, 2020 Shared 
facilities 

Shared housing includes a broad range 
of settings with special considerations. 
People living and working in this type 
of building might have challenges with 
social distancing to prevent the spread 
of COVID-19. 

Capolongo et al., 2020 Accessibility Re-thinking the accessibility to the 
places of culture and tourism. 

Capolongo et al., 2020 Mobility 
network 

Planning of a smart and sustainable 
mobility network 

Capolongo et al., 2020 Semi-private 
space 

Re-thinking building typologies, 
fostering the presence of semi-private 
or collective spaces; 

Budds, 2020 Social 
distancing 

Social distancing could change the 
design and planning process, 
specifically with the increased 
acceptance of distance learning, online 
shopping, and the cultural connection 
of online entertainment.  

S. Li et al.                                                                                                                                                                                                                                        
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model to capture the spatial adjacency and social network relationships 
of individual activities. Such an activity-based approach by using data 
collected via an activity diary is powerful to capture activity-travel 
behavior in various locations and at different timings if a massive 
amount of data is available; however, such diary surveys are usually 
costly and time-consuming. Even though a massive amount of data could 
be obtained, there remains no scientifically sound data about how 
spatial-temporal activity-travel behavior is associated with different 
levels of the spread of COVID-19. 

2.1. Research gaps in existing studies, and features and contributions of 
this study 

The above literature review revealed major research gaps in the 
existing studies. First, no studies on China can be found associated to the 
BE attributes. Second, there are few studies examining both the intra- 
and inter-city BE attributes at the same time. Third, only very limited BE 
attributes were targeted in each existing study. Fourth, the effects of the 
BE attributes have been assumed to be spatially homogeneous (i.e. only 
global effects are examined). Fifth, spatial clusters of the COVID-19 
infection have not been well revealed. In order to fill the above 
research gaps, this study: (1) investigates the spread of COVID-19 in the 
whole of China during the initial period of the spread between January 
20 and February 3, 2020 when Wuhan city was locked down on January 
23, 2020; (2) incorporates both global and local effects of the BE attri
butes by estimating a mixed GWR model, which is well supported by a 
careful analysis of spatial clusters of the spread; and (3) focuses on both 
inter-city and intra-city BE attributes, which is more than the existing 
studies have done. 

3. Data 

The spread of COVID-19 was measured by the cumulative number of 
confirmed infection cases in each city collected by the China University 
of Geoscience2 from various official websites of national, provincial and 
municipal health organizations. This study targeted Chinese 368 cities 
which have publicly accessible data about numbers of confirmed 
infection cases during the period. Among the 368 cities, only 255 cities 
have valid data of BE attributes. On January 23, 2020 Wuhan city was 
locked down. Therefore, we use 255 cities as our study area (for Local 
indicators of spatial association model, 11 cities in Hubei province are 
excluded). According to World Health Organization (2020), Yu et al. 
(2020) and Lauer et al. (2020), the incubation period of COVID-19, 
which is the length of time between exposure to the virus and the 
symptom onset, is on average 5–6 days, but can be as long as 14 days. We 
extracted data from January 20 (three days before the lockdown of 
Wuhan City) to February 3, 2020 and defined this period as the initial 
stage of COVID-19 in China. We further collected population data from 
the China City Statistical Yearbook and calculated the ratio of the accu
mulative infection cases in each city, that is the accumulative number of 
confirmed infection cases divided by the city’s population (hereafter 
“infection ratio” in short). 

Regarding the BE attributes, there exist several available nationwide 
datasets. The first data set relates to the POIs from the Amap electronic 
navigation map, which has a high resolution and is frequently updated. 
The POIs data comprises of a total of 24,274,252 POIs in the above 255 
cities and 23 categories, including shopping service, catering service and 
transportation facility, etc. The POIs are used to calculate the density of 
the POIs around railway stations, and are also used to identify urban 
railway stations and residential areas, as well as activity centers. The 
second data set includes national road networks, derived from the Open 
Street Map (OSM), and lists a total of 1,198,099 roads, including main 

roads, secondary roads and pathways, in the 255 cities. We processed 
this second set of data based on Long & Liu’s (2017) three-step method3 . 
This data set is used to measure the relative positions of railway stations 
in a city. The third data set relates to trains information and includes a 
total of 6264 trains and 67,780 stopover records, with the number of 
trains, names of stopover stations, departure time and arrival time being 
available. The fourth data set comprises of the number of flights and 
includes a total of 12,937 flights departing from, or stopping over in, the 
cities in Hubei province and going to the above 255 cities between 
December 1, 2019 and January 20, 2020. The fifth relates to the urban 
built-up areas and population from the China City Statistical Yearbook. 
We calculated the population density of built-up areas. The final data set 
provides the population flow from Baidu Migration Production based on 
its location-based services, which is published by Baidu (available at: 
http://qianxi.baidu.com). For a city we computed the cumulative 
outflow population percentage from Hubei Province, which is a cumu
lative value of the daily proportion of the outflow population from 
Hubei Province to the city, during the period January 1 to January 20, 
2020. 

4. Specification of the BE attributes 

The density information at the level of buildings, such as household 
density (Emeruwa et al. 2020), nursing homes crowding (nursing homes 
crowding), or ventilation rate in particular architecture type (Dai & 
Zhao, 2020) is more useful to capture face-to-face contacts than the built 
environment attributes at city level. However, information of infections 
within buildings is not available, widely across a whole country. 
Considering that available information of infection in this study is 
accessible at city level, we selected as many publicly available city-level 
BE attributes as possible. In particular, during the initial stage of the 
pandemic in Wuhan, inter-city passenger transport systems transported 
many infected persons. Thus, it is indispensable to incorporate the in
fluence of inter-city connections into the pandemic analysis, such as 
population flows across cities via railways and flights, etc. Within cities, 
transport systems also transported many infected persons, via urban 
transport networks and people-to-people contacts are made through a 
variety of activities at various locations connected by transport systems. 
Such intra-city connections should also be reflected in our analysis. 

4.1. Inter-city BE attributes 

The COVID-19 outbreak occurred during the busiest travel season in 
China, namely the famous Spring Festival. Many people used railways to 
return to their hometowns. Thus, we first selected the number of trains 
as an inter-city BE attribute. Concretely, the number of trains departing 
from and stopping over in all of the cities in Hubei Province (hereafter 
“number of trains” in short). In addition, some scholars pointed out the 
contributions of the inter-city flights to the spread of COVID-19 in 
different countries. For instance, Lau et al. (2020) showed that there was 
an association between international and domestic air traffic and the 
COVID-19 outbreak, especially the total number of flights from Hubei, 
China. Murphy et al. (2020) revealed the link between national outbreak 
of COVID-19 and air travel in Ireland. Therefore, we also selected the 
total number of flights departing from and stopping over in all of the 
cities in Hubei Province (“number of flights” for short). Even though the 
above numbers of trains and flights can indirectly reflect the total 

2 https://github.com/Estelle0217/COVID-19-Epidemic-Dataset (Accessed on 
October 2, 2020). 

3 (1) Use the “Merge Divided Roads” under ArcGIS Cartography Toolbox to 
merge the OSM road network, thereby merging multiple lanes into a single lane; 
(2) Use the “Thin Road Network” under the ArcGIS Cartography Toolbox to 
simplify the road network and delete thin side roads; (3) Perform a topology 
check on the road network and deal with topological errors to ensure that there 
are no broken roads and that there is only one intersection when the roads 
intersect. 
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number of passengers transported, including infected persons, and the 
frequency of contacts between infected and susceptible individuals, 
these numbers actually represent supply capacities of major transport 
systems. In other words, actual transport demand is unknown. This 
motivated us to search for other data sources and eventually, we found 
available population flow to reflect the inter-city connections in terms of 
transport demand. According to the above Baidu website, this flow data 
covers all purposes of inter-city population mobility, captured via mo
bile phone cellular signaling data (more than 120 billion times per day 
of accessing location-based services). Jia et al. (2020) argued the 
importance of tracking aggregate population flows from an epidemio
logical perspective. This also supports the use of the inter-city popula
tion flow in this study. 

4.2. Intra-city BE attributes 

Regarding the intra-city BE attributes, we selected between-ness 
centrality of key transport nodes (here, railway stations) and transport 
accessibility (here, measured in terms of travel time by public transport) 
between residential areas and major activity centers, as the intra-city BE 
attributes. Railway stations are selected because they are not only key 
clusters of population flows within cities, but also the main gates to 
connect with other cities in China. Thus, railway stations play a dual role 
of defining both intra- and inter-city BE attributes. The travel time by 
public transport is used to capture exposure of passengers to infection 
risks inside public transport vehicles. The pandemic has been caused by 
massive transmission among people. In addition to the aforementioned 
connection-related BE attributes, the potential of massive transmission 
can be further measured from two more angles: the first one focuses on 
various facilities allowing people to make contacts with others, and the 
second looks at the population density, which reflects the intensity of 
potential exposure and transmission via social contacts. Concretely, 
POIs density around railway stations and population density of built-up 
areas are adopted. 

(1) Betweenness centrality of railway stations 
Between-ness centrality is one of the important attributes to measure 

the centrality of transportation networks, which reflects the times of the 
passed shortest routes between the railway stations in the entire city 
road networks (Lin et al., 2018). The higher the between-ness value of a 
railway station is, the more interactions people can generate in the 
station. It has been verified that this attribute in urban networks is 
imperative in the dynamics of the spread of infectious diseases via direct 
person-to-person transmission (Salathe and Jones, 2010), but its influ
ence on COVID-19 has not yet been examined. Thus, quantifying the 
position of railway stations within a city is important. Here, we 
measured the between-ness centrality of the road networks surrounding 
the railway station under study. 

We used the Edge Between-ness Centrality in Python-igragh to 
calculate the between-ness centrality of the road networks of all of the 
255 cities across the whole country. We used the average value of the 
between-ness centrality of the roads around the railway station (within a 
radius of 1.5 km) as the station’s between-ness centrality. Furthermore, 
we calculated the between-ness centrality of the city using the average 
value of the between-ness centrality of the railway stations in a city. We 
detected a total of 1410 railway stations from the POIs data by further 
matching with the data of the number of trains and stopover stations. 

Let a road network be G = (N, E), which has N nodes and E bound
aries. Then, the between-ness centrality of the boundary e is defined 
below. 

Cb
e =

∑

j,k

j∕=k

⃒
⃒SPjk(e)

⃒
⃒

⃒
⃒SPjk

⃒
⃒

Here, |SPjk| represents the number of the shortest paths between a pair of 

nodes j, k (, k ∈ N), and |SPjk(e)| indicates the number of the shortest 
paths between j and k that include the boundary e (e∈E) 

(2) Travel time by public transport between residential areas and 
major activity centers 

We used travel time by public transport from residential areas to the 
closest activity centers as a proxy of intra-city transport accessibility; 
that is the connection between the city’s main attractions and residential 
areas. Activity centers are important nodes in urban networks and 
usually attract a large number of people. Some studies have found that 
the travel time by public transport from residential areas to activity 
destinations (e.g., the city center) has a major impact on the spread of 
epidemics within cities (Yashima & Sasaki, 2014; Balcan & Vespignani, 
2011; Balcan & Vespignani, 2012). 

There are a few methods to identify the centers based on employ
ment density and local density peaks (Hajrasouliha, & Hamidi, 2017; 
Park et al. 2020). We identified activity centers based on the POIs 
density of shopping and catering services in a city, as follows. First, the 
Create Fishnet tool in the ArcGIS was used to build a grid of 500 by 500 
m. Second, the Spatial Connection tool was adopted to calculate the 
density of the POIs of shopping and catering services in each grid. After 
the above two steps, the following two methods were further applied to 
identify the candidates of activity centers separately. The first method 
was to use Python to identify the grids that exceed a certain density (25 
% of the total density of the shopping and catering services in the city). 
The second was to conduct a Getis-Ord G∗

i analysis of the density of the 
POIs for shopping and catering services in the city and to select the 
hotspots grids (Fig. 1). Finally, activity centers were delineated as the 
intersections of candidate activity centers. Getis-Ord G∗

i is illustrated 
below, the details of which refer to Getis and Ord (1992). 

G∗
i (d) =

∑n

j=1
wij(d)xj − X

∑n

j=1
wij(d)

S ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

n
∑n

j=1
w2

i,j −

(∑n

j=1
wi,j(d)

)2

n− 1

√
√
√
√

, X =

∑
ixj

n
, Z(G∗

i ) =
G∗

i − E(G∗

i )̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(G∗

i )
√

Here, S is the standard deviation of the POIs density (POIs of shopping 
and catering services) of all grids; xj refers to the POIs density of the j th 
gird; G∗

i is a weighted value of xj, wij(d) is the spatial weight matrix with 
values for all grids ‘j’ within a distance d from target grid i ; Z(G∗

i ) is a 
standardized value of G∗

i ; n is the number of grids; and E(G∗
i ) and 

Var
(
G∗

i
)

denote the mean and variance of G∗
i , respectively. If Z(G∗

i ) is 
higher than 1.96, the area is called a hot spot, while, if Z(G∗

i ) is lower 
than -1.96, the area is called a cold spot. 

Eventually, we identified a total number of 976 activity centers in 
255 cities across the whole of China. After the above step, we calculated 
the travel time based on Baidu Maps’ path-planning interface. The 
interface is provided by the Baidu Maps’ API and is highly accurate and 
authentic. It precisely takes account of details, such as the walking time 
and transfer time during the use of public transport. We selected 
04:00–5:00 pm on November 27, 2019 (a weekend) to calculate the 
travel time. 

(3) Density of POIs around railway stations 
Many concentrated infection cases of COVID-19 were observed 

owing to the concentration of activities (Dong et al., 2020; Gao et al., 
2020), as the concentration of activities at railway stations allows 
infected persons transported via inter-city transport modes to quickly 
transfer to urban areas. To represent such a concentration the density of 
the POIs around railway stations is measured. It has been claimed that 
COVID-19 emerged from the South China Wet Market in Wuhan, 
although this has not been firmly confirmed and it is also unclear 
whether or not the market was the only source of the outbreak. This 
market is actually less than 1.0 km away from the Hankou Railway 
station. In this study we firstly established a buffer zone in ArcGIS 
through the “spatial connection” tool with 2.0 km to calculate the 
number of POIs, which can represent the distribution of urban facilities 
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around railway stations, and then calculated the POIs density of each 
station. The concentration of activities around the railway stations in a 
city is the average value for the POIs density around railway stations. 

(4) Population density of built-up areas 
Population density of built-up areas reflects possible interaction in

tensity among people. It is a major attribute affecting the spread and 
decay patterns of COVID-19 (Rashed et al., 2020). Similarly, Hamidi 
et al. (2020b) revealed the impact of population in metropolitan 
counties in USA on COVID-19 infection rates. Considering such evi
dence, we applied the population density of built-up areas as an addi
tional intra-city BE attribute to examine its influence on COVID-19 
spread in initial stages in China. 

4.3. Control variable 

COVID-19 has highlighted the vulnerability of elderly people 
(Wayne et al., 2020). However, the percentages of the aging population 
(65+ years old) vary across cities in China. Therefore, we chose the 
percentage of the aging population as a control variable in the following 
modeling analyses to capture the associations of BE attributes with the 
spread of COVID-19 in a proper way. 

5. Methods 

5.1. Local indicators of spatial association (LISA) 

The LISA approach can detect the spatial autocorrelation. Compared 
with the conventional Moran’s I measuring the global spatial autocor
relation, LISA can help to detect potential clusters of local spatial units, 
even though there is only a weak global spatial autocorrelation (Chen 
et al., 2017). LISA has been widely used in various research fields, such 
as geography (Cao et al., 2019), medical research (Hendricks & 
Mark-Carew, 2017) and city planning (Talen, & Anselin, 1998). In this 
study we use LISA to detect the spatial clusters of infection cases. LISA 
uses the following formulation: 

Ii = Zi

∑N

j=1
wijZj  

Here, N is the number of spatial units. Zi is the standardized value of the 
log-transformed infection ratio at locations i: that is Zi =

xi − x
δ , where δ is 

the standard deviation of the log-transformed infection cases xi with its 
mean being x. wij is the spatial weight between the i th and j th loca
tions. The significance of Ii can be assessed using the conditional 
randomization approach (Anselin, 1995). Here, we set the threshold of 

significance at the 0.1 level. As stated by Chen, Liu & Li, (2017), if an 
above-average value is surrounded by above-average neighbors, then 
the location is categorized as High-High, while, if a below-average value 
is surrounded by below-average neighbors, then the location is catego
rized as Low-Low. In contrast, if an above-average value is surrounded 
by below-average neighbors, then the location is categorized as 
High-Low, and vice-versa (i.e., Low-High). The High-High and Low-Low 
types indicate spatial clusters, while the other two types represent 
spatial outliers. 

LISA is more logical to identify spatial clusters and outliers than a 
direct comparison of infection levels at different locations. As stated in 
the Tobler’s First Law of Geography, a formulation of the concept of 
spatial autocorrelation proposed by the geographer Waldo Tobler 
(Tobler, 1970), “everything is related to everything else, but near things 
are more related than distant things”. Use of the four types of cities 
identified by LISA allows us to reflect the association of the infection 
rates in surroundings cities of a city under study. 

5.2. A mixed GWR model 

A mixed GWR model jointly estimates the explanatory variables with 
both local and global effects (e.g., Kang et al., 2010), which can be 
formulated as follows: 

yi =
∑

k
βk(ui, vi)xik +

∑

m
γmZim + εi  

where yi is the dependent variable at location i; xik is the k th explanatory 
variables at location i; βk(ui, vi) is the coefficient of xik with a 
geographical coordinate (ui, vi); Zil is the mth explanatory variable 
without local effects, that is its coefficient γm is invariant across loca
tions (showing global effects); and εi is an error. 

The above mixed GWR model turns to the standard GWR model 
when global effects can be ignored and, when local effects can be 
ignored, the mixed GWR model turns to the traditional multiple linear 
regression (MLR) model. The MLR model (e.g., Rath et al., 2020) as
sumes that the explanatory variables are spatially stationary over the 
whole study area, which, therefore, only provides global estimates (Yu & 
Peng, 2019). 

In this study the above three regression models were all estimated, 
with the dependent variables being the infection ratio. The explanatory 
variables include the following seven BE attributes and a control vari
able. The first BE attribute is the number of trains, which is used to 
capture the large-scale population movement from Hubei Province. The 
second is the between-ness centrality, which is used to reflect the rela
tive positions of the railway stations in a city. The third is the density of 

Fig. 1. A process of identifying activity centers in city.  
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the POIs around the railway stations, which services as a proxy of the 
intensity of activity participation and face-to-face contact. The fourth is 
the travel time by public transport (from residences to the nearby ac
tivity centers). The fifth is the population flow from Hubei Province. The 
sixth is the number of flights from Hubei, which also reflects the pop
ulation movement between cities. The last BE attribute is the population 
density of built-up areas, which indicates the intensity of the connec
tions between people. Finally, the percentage of the aging population is 
used as the control variable for better capturing of the associations of the 
BE attributes with the spread of COVID-19 at its initial stage in China. 

6. Results 

Here, the data from the 255 cities with the available spatial infor
mation is used for two types of analysis, based on the LISA and regres
sion models, respectively. LISA is used to identify the spatial clusters of 
the spread of COVID-19 and the regression models are used to examine 
the associations of the BE attributes with the spread of the virus. LISA 
can be used for all of the 255 cities; however, the cities in Hubei province 
(11 cities in total) are excluded, as these cities had an extremely high 
number of infection cases, which are obviously spatial clusters. Thus, 
LISA was conducted with only cities outside Hubei (244 cities in total). 

6.1. Spatial patterns of the spread of COVID-19 

In this study we used the GeoDa software to calculate the local spatial 
autocorrelations of the spread of COVID-19. As shown in Fig. 2, the LISA 
approach found spatial clusters of the spread of COVID-19 (measured in 
terms of the ratio of accumulative infection cases). Among the 244 cities 
112 showed positive local autocorrelations, with 39 cities belonging to 
the High-High type and 73 belonging to the Low-Low type. Only 10 
cities showed negative local autocorrelations (5: High-Low; 5: Low- 
High) indicating spatial outliers. The High-High type (denoted in the 

red color in Fig. 2) indicates that a city with a high infection ratio is 
surrounded by cities with high infection ratios. In other words, the High- 
High type reveals serious infection clusters, which are mainly located at 
the southeastern region, such as in Shanghai and in the cities at the north 
and south of Hubei Province. The Low-Low clusters (denoted in the blue 
color: clusters being less serious) are mainly found at the west of the 
Heihe-Tengchong line, which is an imaginary line that divides China 
into two roughly equal parts according to area. The High-Low outliers 
(denoted in the pink color) tend to be scattered, while the Low-High 
outliers tend to be gathered, around Hubei Province. 

We further compared the BE attributes in the above four types of 
spatial patterns (Fig. 3). The cities of the High-High type have more 
trains departing from and stopping over in Hubei Province. This is also 
true for the Low-High cities. The between-ness centrality has higher 
values in the Low-High cities. Differently, the travel time by public 
transport and the POIs around railway stations show smaller variations 
across the city types. The travel times by public transport in cities with 
positive local autocorrelations (High-High and Low-Low) are longer 
than they are in the other two types of spatial patterns, while the High- 
High and Low-Low cities have more dense POIs around the railway 
stations. Similar to the number of trains, the population flow is also 
higher in the High-Low and Low-High types. In contrast, there are fewer 
flights from Hubei to the cities of these two types of spatial patterns. The 
population density of built-up areas is higher in the High-Low type. 

6.2. Analysis of influential attributes based on the mixed GWR model 

Table 3 presents the results of the Global Moran’s I test. Five vari
ables were identified to be statistically significant at the 0.01 level, 
indicating that they are spatially clustered and, therefore, the local pa
rameters for them should be estimated. In contrast, three variables were 
tested to have no spatial cluster and, consequently, global parameters 
should be introduced to these three variables. With these results we 

Fig. 2. Spatial patterns of the spread of COVID-19 based on LISA.  
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decided to use the mixed GWR model to evaluate the local and global 
effects of the BE attributes. 

The standardized estimation results of the three regression models 
(multiple regression model (MRL), GWR and mixed GWR) are shown in 
Table 4, where the dependent variable is the infection ratio and the 
explanatory variables are the number of trains, betweenness centrality, 
density of the POIs around the railway stations, travel time by public 
transport, percentage of the aging population, population flow, number 
of flights, and the population density of built-up areas. The GWR and 
MLR models are used for comparison, where GWR is a special case of the 
mixed GWR and MLR is a special case of both GWR and mixed GWR. 
Here, all the variables are standardized before the estimation and their 
parameter values are, therefore, directly comparable. The VIF (variance 
inflation factor) values in Table 4 are all much smaller than 5.0, sug
gesting that none of the introduced explanatory variables suffers from 
the collinearity issues. The adjusted R2s in the MLR, GWR and mixed 
GWR models are 0.282, 0.502 and 0.538, and the AICs in the three 
models are 792, 738, 710, respectively. Both the adjusted R2 and AIC 

values suggest that the mixed GWR model outperforms the MLR and 
GWR models. 

For the three variables with global effects the density of the POIs 
around the railway stations is positively associated with the infection 
ratio; however, the association is not statistically significant. The num
ber of flights has a negative association with the infection ratio, differing 
to our expectations, and the association is also not significant. One 
reason for this negative association of flights may be that the airline 
coverage from Hubei Province to county-level cities in China is low. 
Among the 255 cities under study only 68 cities (26.7 %) have available 
flights from Hubei Province. There are a few prefecture-level cities, such 
as Xinyang and Nanyang, that are close to Wuhan and have high 
infection ratios, but have no airlines to Wuhan. The travel time by public 
transport is negatively related to the infection ratio and is significant at 
the 0.01 level. This means that the longer the travel time by public 
transport is from residences to the nearby activity centers, the higher the 
infection ratio will be. 

Table 4 further summarizes the information of the coefficients esti
mated from the mixed GWR model, including the average, maximum, 
minimum and median values. By comparing all of the coefficients it was 
found that, on average, the number of trains shows the highest associ
ation (0.461) with the infection ratio, followed by the population flow 
(0.270) and percentage of the aging population (-0.165). The population 
flow has the highest positive value of the maximum coefficient, while 
the between-ness centrality shows the highest negative minimum coef
ficient. The mixed GWR estimation results indicate that all of the vari
ables with local effects have both negative and positive estimates. 
Higher infection ratios are associated with more trains (departing from 
or stopping over in Hubei Province) in 98.04 % of the cities under study 
and higher between-ness centrality in 70.98 % of the cities. For the 
population flow and population density of built-up areas, the percent
ages of the negative and positive estimates are similar. With regard to 
the percentage of the aging population, there are more negative esti
mates (in 79.22 % of the cities) than positive parameters. As all of the 
coefficients with local effects were estimated with regard to each loca
tion, their spatial distributions are illustrated below. 

Fig. 3. The built environment attributes in four city types.  

Table 3 
Global Moran’s I test results.  

Variable Moran’s 
index 

Z- 
score 

Sig. 

Infection ratio 0.596 25.990 Local 
effects*** 

Total number of trains 0.343 16.185 Local effects 
*** 

Between-ness centrality 0.212 9.822 Local effects 
*** 

POI density around railway stations 0.029 1.457 Global effects 
Travel time by public transport 0.016 0.919 Global effects 
Percentage of the aging population 

(over 65 years of age) 
0.420 18.300 Local effects 

*** 
Population flow 0.191 8.982 Local effects 

*** 
Number of flights 0.009 0.567 Global effects 
Population density of built-up areas 0.174 7.680 Local effects 

*** 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. 
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6.3. Spatial distributions of the associations of the BE attributes with the 
spread of COVID-19 

For the number of trains Fig. 4a shows that the coefficients are 
positive for most of the cities across the country and statistically sig
nificant at the 0.01 level, except for the northwestern cities. Higher 
coefficients appear in the cities surrounding Hubei Province. Negative 
coefficients are observed in only a handful of sub-provincial cities and 
prefecture-level cities, but are not statistically significant. There are 
further differences between the administrative types of cities. The co
efficients are higher in county-level cities and 36.36 % of these cities 
show the highest coefficient range (between 0.674 and 1.180). These 
results may suggest that, for most cities in China, restricting the inter- 
city connections, via railway transport, contributed to slowing down 
the spread of COVID-19, especially in the cities surrounding Hubei 
Province and county-level cities. 

As shown in Fig. 4b, positive associations of the between-ness cen
trality with the spread of COVID-19 are found in 70.98 % of the cities 
under study, which are widely distributed in the whole of China. The 
cities with the highest coefficient range (between 0.100 and 0.778) are 
concentrated in the south and north of Hubei Province, but the co
efficients are only statistically significant for most of the cities in the 
south. The negative impacts of between-ness centrality on the spread of 
COVID-19 are mainly observed in southwestern China and the Yangtze 
River delta (around Shanghai). Other coefficients with statistical sig
nificance appear along the Heihe-Tengchong line in the middle of China. 
Positive associations of between-ness centrality are found in half of the 
directly controlled municipalities and 62.5 % of the sub-provincial cit
ies, but in more than 80 % of the county-level cities. These observations 
may imply that the control measures implemented at the railway sta
tions with higher between-ness centrality, especially in the southern 
cities of Hubei Province, significantly contributed to preventing the 
spread of COVID-19. 

Fig. 4c illustrates the coefficient distributions of the percentage of the 

aging population. In the cities located at the north of Hubei Province and 
in southeastern China, the higher the percentage of the aging population 
is, the more serious the spread of COVID-19 will be. Negative associa
tions are found in 79.22 % of the cities, with the coefficients in south
western China and the Yangtze River delta (around Shanghai) being 
statistically significant. The above results suggest that younger people’s 
careless behavior is more likely to spread the virus, while older people 
are more cautious about the virus. 25 % of the province-capital cities 
have positive coefficients that are the highest among all of the city 
levels. This means that, in these province-capital cities, older people 
may contribute to the spread of COIVD-19. 

Fig. 4d shows that both the positive and negative coefficients of the 
population flow are observed to vary across locations and 39.22 % of 
them are statistically significant. The highest values of the positive co
efficients (between 0.483 and 2.493) are mainly observed in northeast 
China, most of which are statistically significant. Negative associations 
appear in the cities surrounding Hubei Province. This may be because 
the population flow is greater in larger cities, where the medical con
ditions are better and the local governments are more serious in con
trolling the spread of COVID-19. 

In 53.33 % of the cities under study (Fig. 4e) the population density 
of the built-up areas is estimated to be positively related to the infection 
ratio, while 46.67 % of the cities show an opposite relationship. Positive 
coefficients are mainly concentrated in the west, east and south of Hubei 
Province. Differences in the relationships are remarkable between 
inland and coastal areas. The coefficients are statistically significant for 
a few cities located in the south of Hubei Province. Focusing on the 
administrative type of cities, positive relationships are obvious in pro
vincial capitals. Thus, for the cities at the south of Hubei Province 
reducing the population densities of the built-up areas could be effective 
to mitigate the impacts of future pandemics in China in their initial 
stage, especially in provincial capitals. 

Table 4 
Standardized estimation results of the MLR, GWR and Mixed GWR models.  

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01; the values in parentheses of the Min column indicate the shares of negative coefficients and those of the Max column refer 
to the shares of positive coefficients; MLR: Multiple Linear Regression; GWR: Geographically Weighted Regression; VIF: Variance Inflation Factor. 
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Fig. 4. Spatial distributions of impacts 
of the built environment attributes on 
the spread of COVID-19.. 
a. Parameters of number of trains. 
b. Parameters of betweenness centrality. 
c. Parameters of percentage of aging 
population. 
d. Parameters of population flow. 
e. Parameters of population density of 
built-up area.   
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7. Discussion and conclusion 

7.1. Discussion 

Five BE attributes were identified to have local effects by the Global 
Moran’s I test. On average the number of trains is mostly associated with 
the spread of COVID-19, followed by the population flow and percent
age of the aging population. The coefficients for the number of trains and 
between-ness centrality are positive in most of the cities. In contrast, the 
coefficients for the percentage of the aging population are negative in 
most of the cities. For the population flow and population density of 
built-up areas the percentages of the negative and positive estimates are 
similar. On the whole, all of the five BE attributes have mixed effects on 
the spread of COVID-19, as captured by the location-specific co
efficients. It is further observed that there are many spatial clusters of 
the spread of COVID-19 and these clusters vary with all of the seven BE 
attributes. For the global-effect coefficients the associations are positive 
for the density of the POIs around railway stations and negative for the 
number of flights and travel time by public transport; however, the as
sociation is significant for only the travel time by public transport. 

The above findings have important policy implications. First, 
restricting the inter-city connections via railways is likely to prevent a 
further spread of COVID-19 in most cities of all levels. For sub-provincial 

cities and country-level cities control of the population flow is probably 
effective to suppress the spread of COVID-19. Lowering the between- 
ness centrality could slow down the spread of future pandemics in 
more than 70.00 % of prefectural-level cities, while reducing the pop
ulation densities of built-up areas could be effective to prevent the 
spread of future pandemics in about 70.00 % of the province capitals. 
Effective countermeasures seem not to be the same across locations, 
showing geographical differences, as suggested by the coefficients of the 
BE attributes with local effects for directly controlled municipalities, 
provincial capitals and sub-provincial cities (most developed cities in 
China) (Supplementary Table 1). For instance, in Shanghai, only the 
coefficient of the number of trains is positive, implying that restricting 
the inter-city connections could be sufficient to control the spread of 
COVID-19. Reducing the travel time by public transport from residences 
to nearby activity centers could be significantly effective to control the 
spread of COVID-19. 

7.2. Conclusion 

This study empirically examined how the BE attributes were asso
ciated with the spread of COVID-19 in China in its initial stage across the 
whole country. We conducted a mixed GWR-based analysis by focusing 
on both the inter- and intra-city BE attributes, through which spatial 

Fig. 4. (continued). 
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heterogeneities across locations are reflected. To the authors’ best 
knowledge this study has presented one of the initial investigations 
about the above association in the field of urban and regional research 
linked with a public health pandemic. 

The contributions of this study can be summarized as follows. First, 
we conducted the first study in literature on the whole of China by 
associating the BE attributes with the spread of COIVD-19. Second, we 
examined more intra-/inter-city BE attributes than all of the existing 
studies by focusing on the spread of COVID-19 in its initial stage. Third, 
we conducted a joint analysis of both the global and local effects of the 
BE attributes by estimating a mixed GWR model. 

The introduced seven BE attributes indirectly reflect the intensity of 
activity participation and face-to-face contact. Although the GWR 
analysis does not capture true causalities between the BE attributes and 
the spread of COVID-19, the findings of this study have important 
practical implications. Infection clusters occurred not only at activity 
centers, but also in less dense areas. At the initial stage of the pandemic 
in China cutting the inter-city connections may have largely contributed 
to mitigating the spread of COVID-19, especially in the cities sur
rounding Hubei Province. The associations of the seven BE attributes 
differ remarkably in different geographical locations. This suggests that 
countermeasures against COVID-19 in China could have been imple
mented by considering such spatial heterogeneities, which may have the 
same effects as countrywide uniform measures. Countrywide uniform 
measures are not unique in China, as they can also be observed in other 
countries, such as India, Japan and some European countries. Imple
menting uniform measures across a whole country is easier; however, 
the social and economic costs are enormous. Our findings suggest that 
geographical differences should be better addressed in policy measures 
against COVID-19. 

The current pandemic has raised important questions for national, 
regional and urban planning, such as how to make our nations, regions, 
cities and communities resilient to future public health pandemics, as 
argued by Zhang et al. (2021). The findings of this study have long-term 
urban planning and policymaking implications, for example the BE 
could be improved to mitigate the impacts of future public health pan
demics, such as planning a more flexible transport network and city 
schedules, and rethinking about the location of landmarks and urban 
activity centers, as well as integrating the telecommuting work plans. 

Having summarized the findings, we have to admit there are limi
tations of this study. First, due to the focus being on the initial stage of 
the spread of COIVD-19, we did not investigate shelter-in-place vari
ables (such as the lockdown time in different cities). Wuhan was locked 
down first, followed by other Chinese cities, and the whole country was 
locked down before January 30, 2020. Our target period (January 20 – 
February 3, 2020) can reflect the spread of COVID-19 before the lock
down of the whole of China. Thus, excluding the shelter-in-place vari
ables in this study has its own rationality. Nevertheless, in considering 
the various different situations of the spread of COVID-19 in other 
countries, the shelter-in-place variables should be paid sufficient 
attention in research of COVID-19. Second, there are some unintuitive 
associations between the BE attributes and the ratios of accumulative 
infection cases. To overcome this shortcoming analysis approaches 
incorporating the causalities between the dependent and independent 
variables should be developed. Third, more spatially fine data may be 
needed to measure the influence of the BE attributes. Fourth, as well as 
the BE attributes, other socio-demographic characteristics of households 
and healthcare facilities should be considered in future studies. Finally, 
it is important to make international comparisons to derive more 
scientifically sound evidence and, consequently, support more effective 
policy recommendations, as the virus cannot distinguish between people 
and between countries. 
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