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Background: Susceptibility to Vibrio cholerae infection is affected by blood group, age, and preexisting immunity, but these 
factors only partially explain who becomes infected. A recent study used 16S ribosomal RNA amplicon sequencing to quantify the 
composition of the gut microbiome and identify predictive biomarkers of infection with limited taxonomic resolution.

Methods: To achieve increased resolution of gut microbial factors associated with V. cholerae susceptibility and identify predictors of 
symptomatic disease, we applied deep shotgun metagenomic sequencing to a cohort of household contacts of patients with cholera.

Results: Using machine learning, we resolved species, strains, gene families, and cellular pathways in the microbiome at the time 
of exposure to V. cholerae to identify markers that predict infection and symptoms. Use of metagenomic features improved the preci-
sion and accuracy of prediction relative to 16S sequencing. We also predicted disease severity, although with greater uncertainty than 
our infection prediction. Species within the genera Prevotella and Bifidobacterium predicted protection from infection, and genes 
involved in iron metabolism were also correlated with protection.

Conclusion: Our results highlight the power of metagenomics to predict disease outcomes and suggest specific species and 
genes for experimental testing to investigate mechanisms of microbiome-related protection from cholera.
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Cholera is an acute diarrheal disease caused by Vibrio cholerae. 
It is a major public health threat worldwide that continues 
to cause major outbreaks, such as in Yemen, where >1.7 mil-
lion cases have been reported since 2016 [1, 2]. Transmission 
of V.  cholerae between household members commonly oc-
curs through shared sources of contaminated food or water or 
through fecal-oral spread [3, 4]. The clinical spectrum of dis-
ease ranges from asymptomatic infection to severe watery diar-
rhea that can lead to fatal dehydration [5]. Host factors such as 
age, innate immune factors, blood group, or prior acquired im-
munity partially explain why some people are more susceptible 
to V. cholerae infection than others, but a substantial amount of 
the variation remains unexplained [6].

The gut bacterial community can protect against 
enteropathogenic infections [7], and may explain some of 
the variation in V. cholerae susceptibility. Several studies have 
identified commensal bacteria and mechanisms that could be 
protective against V. cholerae. For instance, a species enriched 
in the gut microbiota of patients recovering from cholera, 
Blautia obeum, was found to interfere with V. cholerae patho-
genicity through quorum-sensing inhibition in a mouse model 
[8]. Other experiments have demonstrated that alteration of 
commensal-derived metabolite levels influenced host suscep-
tibility by affecting V. cholerae growth or colonization [9–13].

Studies of V. cholerae and the gut microbiota often focus on a 
few bacterial species or involve patients who already have symp-
tomatic cholera [8, 14]. One study recently characterized the 
gut microbiome of healthy individuals exposed to V. cholerae. 
In that study, Midani et al [15] developed a machine learning 
model to predict susceptibility based on 16S ribosomal RNA 
(rRNA) gene amplicon sequencing of the gut microbiota in a 
group known to have high risk of infection: household contacts 
of confirmed cholera patients [4]. They showed that microbiome 
composition at the time V. cholerae exposure to can predict in-
fection with similar or better accuracy as commonly measured 
host factors known to affect susceptibility. However, 16S rRNA 

applyparastyle “fig//caption/p[1]” parastyle “FigCapt”

mailto:jesse.shapiro@mcgill.ca?subject=
mailto:jesse.shapiro@mcgill.ca?subject=
http://orcid.org/0000-0001-6819-8699


Stool Metagenomics Predicts Cholera • jid 2021:223 (15 january) • 343

sequencing has limited taxonomic resolution and does not 
identify the genetic mechanisms of protection.

In the current study we used shotgun metagenomics to an-
alyze an expanded prospective cohort of persons exposed to 
V.  cholerae in Bangladesh. Our metagenomic analysis yielded 
improved outcome predictions compared to 16S rRNA 
sequencing, and identified bacterial genes associated with re-
maining uninfected after exposure to V. cholerae. We are also 
able to predict disease severity among infected contacts, albeit 
with lower power and precision than susceptibility. Finally, we 
highlight several microbiome-encoded metabolic functions as-
sociated with protection against cholera.

METHODS

Sample Collection, Clinical Outcomes, and Metagenomic Sequencing

As described elsewhere (15), household contacts were en-
rolled within 6 hours of the presentation of an index cholera 
case at Dhaka Hospital, of the icddr,b (International Centre 
for Diarrhoeal Disease Research, Bangladesh). Index pa-
tients with severe acute diarrhea, a stool culture positive for 
V.  cholerae, age 2–60  years, and no major comorbid condi-
tions were recruited [4, 6]. A clinical assessment of symptoms 
in household contacts was conducted daily for the 10-day 
period after presentation of the index case, and repeated 
on day 30. We collected demographic information, rectal 
swab specimens, and blood samples for ABO typing and 
vibriocidal antibody titers as described in the Supplementary 
Methods. 

During the observation period, contacts were determined 
to be infected if any rectal swab specimen culture was posi-
tive for V.  cholerae and/or if the contact developed diarrhea 
and a 4-fold increase in vibriocidal titer during the follow-up 
period [4, 6]. Contacts with positive rectal swab specimens 
developing watery diarrhea were categorized as symptomatic, 
and those without diarrhea were considered asymptomatic 

(Figure  1). V.  cholerae–positive contacts (by culture or deep 
16S amplicon sequencing [15]) at the time of enrollment 
were excluded, in addition to contacts who reported antibi-
otic use or diarrhea during the week before enrollment. DNA 
extraction was performed for the selected samples and used 
for shotgun metagenomics sequencing. Details on cohorts, 
sequencing methods, and sample processing are described in 
the Supplementary Methods. The Ethical and Research Review 
Committees of the icddr,b and the Institutional Review Board 
of Massachusetts General Hospital reviewed the study. All adult 
subjects and parents/guardians of children provided written in-
formed consent. 

Taxonomic/Functional Profiling and Predictive Model Construction

We used MetaPhlAn2 software (version 2.9) [16] for taxonomic 
profiling and HUMAnN2 software [17] to profile cellular path-
ways (from the MetaCyc database) and gene families (identified 
using the Pfam database). To identify biomarkers of suscepti-
bility and disease severity, we used MetAML software [18] to 
apply a random forest (RF) classifier on species, pathways, and 
gene family relative abundances, as well as the presence or ab-
sence of strain-specific markers. Models constructed using each 
of these features types were compared with a random data set 
with shuffled labels, and to a model constructed with clinical 
and demographic data, using 2-sample, 2-sided t tests over 20 
replicate cross-validation [18]. 

We used a stratified 3-fold cross validation approach, split-
ting our data set into validation and training sets (one-third 
and two-thirds of samples, respectively) with the same infected-
uninfected ratio. We used an embedded feature selection 
strategy to identify the most useful features and improve model 
accuracy. Feature relative importance was computed using the 
mean decrease in impurity strategy, which calculates the impor-
tance of each feature as the sum of the number of nodes (across 
all trees) that use the feature, proportional to the number of 
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Figure 1. Study cohort in Dhaka, Bangladesh. After presentation of a Vibrio cholerae culture-positive index case to the hospital on day 1, household contacts were enrolled 
on day 2. The expanded cohort includes the 2018 cohort from Midani et al [15], with an addition of 33 samples from infected individuals (13 asymptomatic and 2 symptomatic).
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samples each of these nodes splits [18]. Further details are de-
scribed in the Supplementary Methods.

Data availability

After removal of human reads, the sequence data has been 
deposited in NCBI under BioProject PRJNA608678.

RESULTS

Metagenomic Sequencing of the Gut Microbiome in Household Contacts 

Exposed to V. cholerae

We performed metagenomic sequencing of the gut microbiome 
in 65 contacts of cholera case patients from a cohort de-
scribed by Midani et  al [15], from which sufficient DNA re-
mained. Of these 65 contacts, referred to as the Midani 2018 
cohort, 20 experienced infection during the follow-up period, 
and 45 remained uninfected (Figure  1). Among the 20 con-
tacts who became infected, 10 had no symptoms during the 
30-day follow-up period and were classified as asymptomatic, 
and 10 experienced symptoms (Supplementary Methods). To 
increase our sample size, we surveyed an expanded cohort 
(Supplementary Table 1a; All supplementary Tables S1–S9 
are available at: https://figshare.com/articles/Supplementary_
Tables_-_Levade_et_al_2020/12440417.) by adding 33 samples, 
including 10 additional preinfection samples from time points 
for contacts in the Midani 2018 cohort, and 23 samples from 16 
newly enrolled contacts from the same place and time (2012–
2014; Dhaka, Bangladesh). We used preinfection samples to 

identify predictive features of disease outcomes in the Midani 
2018 cohort, on which we base the majority of our analyses. We 
also performed exploratory analyses on the expanded cohort to 
determine the potential for predictive models to be generalized 
to larger samples.

We used the shotgun metagenomic DNA sequence reads from 
these samples to characterize 4 features of the microbiome: (1) 
relative abundances of microbial species, (2) the presence/ab-
sence of subspecies-level strains, 3)  metabolic pathway relative 
abundances, and (4) gene family relative abundances (Table 1).

Predicting Susceptibility to V. cholerae Infection With an RF Model

We first used an RF model to predict V.  cholerae susceptibility 
(developing infection or remaining uninfected) from baseline 
microbiome features (Figure 1). In the Midani 2018 cohort, func-
tional pathways and gene families predicted infection significantly 
better than random (P < .05; 2-sample t tests comparing area 
under the curve [AUC] across 20 replicate 3 fold cross-validations) 
compared with data with shuffled (randomized) labels, and also 
predicted infection better than species or strain features (Table 1 
and Supplementary Table 2). Pathways and gene families had sig-
nificantly higher mean AUCs (0.71 and 0.74, respectively) than 
species or strains (0.61 and 0.62, respectively; P < .05) (Table 1, 
Supplementary Figure 1 and Supplementary Table 3).

To determine the minimum number of metagenomic fea-
tures required for prediction, we repeated the analysis using 

Table 1. Assessment of Prediction Performance for a Random Forest Model Applied to the 2018 Cohort from Midani et al [15] and the Expanded Cohorta

Prediction

Mean Value (Margin of Error) Determined With Random Forest Model

Cohort from Midani et al [15] Expanded Cohort

Species Abundance Strain Markers Gene Families Pathways Species Abundance Strain Markers Gene Families Pathways

Features, no. 705 54 953 6810 443 807 62 965 7514 461

Infected vs uninfected         

 Accuracy 0.73 (0.02) 0.71 (0.02) 0.76 (0.02) 0.72 (0.02) 0.76 (0.03) 0.69 (0.03) 0.80 (0.02) 0.80 (0.03)

Precision 0.71 (0.06) 0.68 (0.06) 0.77 (0.04) 0.70 (0.05) 0.76 (0.03) 0.70 (0.03) 0.81 (0.02) 0.81 (0.03)

F1 score 0.66 (0.02) 0.64 (0.03) 0.71 (0.03) 0.66 (0.03) 0. 75 (0.03) 0.68 (0.03) 0.80 (0.02) 0.80 (0.03)
 AUC 0.61 (0.05) 0.62 (0.04) 0.74 (0.04) 0.71 (0.04) 0.83 (0.02) 0.76 (0.03) 0.87 (0.02) 0.88 (0.02)
 Shuffled
  F1 score 0.55 (0.04) 0.56 (0.04) 0.56 (0.04) 0.56 (0.05) 0.40 (0.03) 0.45 (0.03) 0.48 (0.03) 0.44 (0.03)
  AUC 0.40 (0.04) 0.57 (0.04) 0.50 (0.05) 0.50 (0.04) 0.39 (0.03) 0.52 (0.03) 0.51 (0.03) 0.46 (0.03)

Asymptomatic vs symptomatic vs uninfected
 Accuracy 0.70 (0.02) 0.70 (0.02) 0.69 (0.01) 0.69 (0.01) 0.68 (0.01) 0.60 (0.03) 0.69 (0.02) 0.67 (0.03)

Precision 0.53 (0.03) 0.53 (0.03) 0.60 (0.02) 0.59 (0.02) 0.60 (0.02) 0.53 (0.03) 0.61 (0.02) 0.59 (0.02)

F1 score 0.60 (0.02) 0.59 (0.02) 0.57 (0.02) 0.57 (0.02) 0.62 (0.02) 0.55 (0.03) 0.64 (0.02) 0.62 (0.02)
 AUC NA NA NA NA NA NA NA NA
 Shuffled
 F1 score 0.48 (0.04) 0.49 (0.04) 0.46 (0.03) 0.55 (0.03) 0.41 (0.03) 0.35 (0.03) 0.44 (0.04) 0.37 (0.03)
  AUC NA NA NA NA NA NA NA NA

Abbreviations: AUC, area under the curve; NA, .
aSpecies abundances, presence or absence of strain-specific markers, relative abundance of gene families grouped according to the Pfam database, and pathways from the MetaCyc data-
base were used as features. For each data set, we applied a binary (uninfected vs infected contacts) and a multiclass (asymptomatic vs symptomatic vs uninfected contacts) classifier and 
reported performance metrics for each data set. Metrics obtained by the same classifier applied to the same data sets with shuffled class labels (random assignment of labels to samples) 
are also reported (shuffled). Margins of error indicate 95% confidence intervals.
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smaller subsets of features. Using only 30 species, 60 gene 
families or pathways, or 200 strains achieved similar cross-
validation AUC values (Supplementary Figure 2). We then 
trained an RF model on this reduced number of selected 
features, yielding improved predictions for all feature types 
(Supplementary Figure 1 and Supplementary Table 4). This 
suggests that only a limited number of strains, species, genes, 
and pathways in the gut microbiome at the time of expo-
sure are sufficient to predict V.  cholerae susceptibility. For 
example, prediction using strain-level markers after feature 
selection yielded an AUC of 0.95 (Supplementary Table 4). 
However, such high AUC values should be treated with cau-
tion because the models can be overfit when a supervised fea-
ture selection step is applied on the same data used to train 
the model [18]. 

Because we did not have a fully independent validation co-
hort (eg, from another continent) to test our model, we decided 
to use the features selected from the Midani cohort to make 
predictions on the expanded data set. Using the same features 
selected from the Midani 2018 training data set, we made pre-
dictions on the expanded cohort and achieved AUCs between 
0.89 and 0.93 for prediction of infection using the 4 types of 
features (Supplementary Table 4). Again, because the expanded 
cohort partly overlaps with the Midani cohort and includes 
some repeated samples from the same individuals over time, 
these results could also be prone to overfitting, but they demon-
strate the potential for generalized predictions.

Finally, we repeated the RF analysis using all features in the 
expanded data set, which increased predictive performance 
relative to the original Midani cohort (Supplementary Figure 
1). Once again, genes and pathways outperformed species and 
strains according to all metrics, with AUC reaching approx-
imately 0.88 using cellular pathways (Table  1). This improve-
ment in the expanded cohort also highlights the importance 
of using larger, more balanced data sets as input to predictive 
models.

Improved Prediction Compared With Known Factors Affecting 

Susceptibility

To put the metagenomic predictions in context, we compared 
their predictive power and accuracy with clinical and demo-
graphic factors (Supplementary Table 1a). Three of these fac-
tors (age, baseline vibriocidal antibodies, and blood group) are 
known to affect susceptibility to V. cholerae infection [6, 15] and 
we used them to train RF models (Supplementary Table 5). As 
expected, contacts who became infected tended to be younger 
and have lower baseline antibody titers than those who re-
mained uninfected (Supplementary Table 1b), but these small 
differences were not sufficient to train a significantly predictive 
model. 

An RF model trained on the 7 clinical and demographic fac-
tors did not perform better than a random model with shuffled 

labels (AUC, 0.60; P = .66) (Figure 2). Predictions were not im-
proved using all species-level metagenomic features present at 
the time of exposure to V. cholerae (AUC, 0.61), but they signifi-
cantly improved with use of a selected number of species (AUC, 
0.80; P < .001). The use of all gene families or a selected number 
of genes showed an increased predictive performance (AUC, 
0.74 and 0.89, respectively; Figure  2) compared with species-
level or clinical and demographic contact data (P < .001 for all 
comparisons). 

We again note the caveat that models with selected features 
may be overfit and represent an upper bound for predictive 
power. Even without feature selection, we found that gene fam-
ilies clearly provide superior predictions, and adding clinical 
data did not improve the predictions based on microbiome fea-
tures alone (Figure 2). Together, these results demonstrate that 
gene families present in the gut microbiome at the time of expo-
sure contain more information about V. cholerae susceptibility 
than species-level or clinical and demographic contact data.

Difficulty of Predicting Disease Severity 

To predict symptomatic disease among infected individuals 
(Figure 1), we divided samples into uninfected, symptomatic, 
and asymptomatic groups and again applied the RF approach. 
We used the F1 score as a performance metric because it is well 
suited for uneven class distributions in our uninfected/sympto-
matic/asymptomatic comparison. Applied to the Midani 2018 
cohort, this model predicted outcomes significantly better than 
random (shuffled labels) using species, strains or pathway data, 
but not gene families (Table 1; see Supplementary Table 3 for P 
values). However, the F1 scores for the symptomatic/asympto-
matic predictions were systematically lower (mean scores, 0.57–
0.60) than for the infected/uninfected prediction (0.64 –0.71). 
In the expanded cohort, the scores were improved only slightly 
(Table 1). These results suggest that disease severity is predict-
able in principle, but with greater uncertainty than the infection 
outcome.

Taxonomic Biomarkers of Disease Susceptibility and Severity

Predictive features in the gut microbiome identified to a 
species/strain or gene level allow the possibility of experi-
mental follow-up to investigate mechanisms of the associ-
ations we observed. We characterized the most predictive 
species, pathways, and gene families (Supplementary Tables 
6–9). The most common discriminating species in individuals 
that remained uninfected during the follow-up period were 
Eubacterium rectale, Campylobacter hominis, Ruminococcus 
gnavus, Bacteroides vulgatus, Veillonella parvula, and mem-
bers of the Prevotella and Eubacterium genera (Figure 3A and 
Supplementary Figures 3A and 4A). These species are ranked 
by their importance score, which is effectively their relative 
weighting in the RF model. Several species associated with con-
tacts in whom V. cholerae infection developed belonged to the 
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genera Bifidobacterium, Actinomyces, or Collinsella, and many 
of the species were also associated with asymptomatic infection 
(Figure 3B and Supplementary Figures 3B and 4B), including 3 
species of Bifidobacterium. 

The top predictive species in contacts who developed symp-
tomatic infection were Clostridium ventriculi (formerly Sarcina 
ventriculi), Streptococcus parasanguinis, and members of 
Veillonella. Shigella species were also associated with the gut 
microbiome of persons who developed symptomatic V. cholerae 
infection, although persons enrolled in this study had stool cul-
tures negative for Shigella. Shigella identified by DNA presence 
in stool may be the result of recent or resolving infection or may 
be present at subclinical levels owing to ingestion of contamin-
ated water. The features identified by the multivariate RF model 
were confirmed using univariate statistics for the uninfected/

infected prediction (Supplementary Figure 5), but the overlap 
was poorer for the uninfected/symptomatic/asymptomatic pre-
diction (Supplementary Figure 6). This is consistent with the 
difficulty of predicting disease severity.

In general, the most important species were selected by the 
model because of differences in relative abundance at baseline 
among uninfected, symptomatic, and asymptomatic outcomes 
(Supplementary Figures 7 and 8). In rare cases, species pres-
ence or absence was predictive. For example, R. gnavus is absent 
(near or below the limit of detection) in most of the individ-
uals who become infected but present in many (but not all) 
of those who remained uninfected (Supplementary Figure 7). 
Thus, there is no single strong predictor of infection outcomes 
but rather a probabilistic combination of many species, each of 
relatively modest predictive value.
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Figure 2. Metagenomic features predict Vibrio cholerae infection better than clinical and demographic features. Random forest prediction of infection status was applied 
to 7 clinical and demographic features, and compared with all species and all gene families (top row), as well as 30 selected species features from metagenomes and 60 
selected gene family features (bottom row), or a combination of clinical, demographic, and metagenomic features. Plots show receiver operating characteristic (ROC) curves 
(average across cross-validations) for the 2018 data set from Midani et al [15]. Shuffled labels represent the prediction run on a data set with a random assignment of infec-
tion outcomes. Abbreviation: AUC, area under the curve.
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Identifying Functional Biomarkers of Disease Susceptibility and Severity

We also identified gene families in the gut microbiome 
of persons who remained uninfected during follow-up 
(Supplementary Figures 9 and 10), with some of the top 
gene families involved in DNA repair, transmembrane trans-
porter activity, iron metabolism (indicated with asterisks in 
Figure  4), and genes of unknown function (Supplementary 
Table 8). Long-chain fatty acid biosynthesis pathways (eg, 
cis-vaccenate, gondoate, and stearate) were associated with 
individuals who remained uninfected, whereas amino acid bi-
osynthesis and catabolic pathways were associated with indi-
viduals who became infected (Supplementary Figures 11 and 
12 and Supplementary Table 9). We identified 3 iron-related 
genes associated with remaining uninfected [1]: the ferric up-
take regulator (Fur), a major regulator of iron homeostasis 
[2]; thioredoxin, a redox protein involved in adaptation to 
oxidative and iron deficiency stress; and [3] the TonB/ExbD/
TolQR system, a ferric chelate transporter [19–21]. In individ-
uals who became infected but asymptomatic, 2 genes involved 
in the conversion of riboflavin into catalytically active cofac-
tors, the riboflavin kinase and the flavin adenine dinucleotide 
(FAD) synthetase, were found to be the first and the third most 
discriminant features (Figure 4 and Supplementary Table 8).

We next asked which taxa in the microbiome likely en-
coded these genes. In some cases, specific taxonomic groups 
corresponded to discrete gene functions. For example, several 
iron metabolism–related gene families tend to be encoded by 
Prevotella genomes (Supplementary Figure 13). In other cases, 
the major contributors to protective gene families were un-
classified (Figures 5 and Supplementary Figure 14). These re-
sults partly explain why gene families or pathway features tend 
to outperform species-level features in predicting infection 
status—because predictive gene families are distributed across 
many species, including several with poor taxonomic annota-
tion or families lacking representation in taxonomic databases.

DISCUSSION

The gut microbiome is a potentially modifiable host risk factor 
for cholera, and identification of specific genes and strains cor-
related with susceptibility is needed for experimental testing 
to understand the mechanisms of observed correlations. 
Compared with a previous study using a single marker gene, 
shotgun metagenomics provides this degree of resolution, po-
tentially to the species and strain level, and to the level of indi-
vidual genes and cellular functions. We found that gene families 
in the gut microbiome at the time of exposure to V. cholerae were 

Top discriminating species associated with contacts
who remained uninfected or became infected

Mitsuokella multacida 
Catenibacterium sp CAG 290 

Burkholderia pyrrocinia 
Eubacterium rectale 

Prevotella sp 885 
Bifidobacterium longum 
Prevotella sp TF12 30 

Roseburia sp CAG 471 
Bifidobacterium adolescentis 
Faecalibacterium prausnitzii 

Prevotella sp CAG 5226 
Campylobacter hominis 

Slackia isoflavoniconvertens 
Bifidobacterium bifidum 

Firmicutes bacterium CAG 83 
Dialister sp CAG 486 

Eubacterium sp CAG 202 
Actinomyces odontolyticus 

Clostridiales bacterium KLE1615 
Ruminococcus gnavus 

Prevotella copri 
Shigella flexneri 

Veillonella parvula 
Burkholderia stabilis 
Bacteroides vulgatus 

BA
Top discriminating species associated with contacts 
who remained uninfected or became infected 
symptomatic or infected asymptomatic 

Collinsella massiliensis 
Prevotella sp 885 
Burkholderia pyrrocinia 
Enorma massiliensis 
Catenibacterium sp CAG 290 
Veillonella parvula 
Eubacterium rectale 
Collinsella aerofaciens 
Clostridium ventriculi 
Escherichia coli 
Gemmiger formicilis
Bifidobacterium bifidum*
Roseburia faecis
Bifidobacterium adolescentis*
Shigella sonnei 
Faecalibacterium prausnitzii 
Shigella boydii
Streptococcus parasanguinis
Bifidobacterium longum*
Eubacterium sp CAG 146 
Prevotella sp AM42 24 
Roseburia sp CAG 471 
Veillonella atypica 
Veillonella infantium 
Prevotella sp TF12 30 

Feature importance ranking 

Figure 3. Most important discriminating species of the gut microbiome at the time of exposure to Vibrio cholerae identified in the 2018 data set from Midani et al [15], 
classified by clinical outcome. A, Species associated with contacts who became infected (red) or remained uninfected (black) during follow-up. B, Species associated with 
contacts who remained uninfected (black), or became infected asymptomatic (green), or symptomatic (red) during follow-up. The top 25 most important features for discrim-
inating between classes in the random forest model are shown here; see Supplementary Table 6 for the full list. Yellow lines connect species associated with uninfected 
individuals in both A and B; red lines connect species associated with infection in A and symptomatic disease in B; gray lines connect species associated with infection in A 
but asymptomatic infection in B. Three species of Bifidobacterium are marked with asterisks.
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A 
Top discriminating gene families associated with contacts who

remained uninfected or became infected 

PF16868: NMT1-like family 

PF10825: Protein of unknown function (DUF2752) 

PF00817: impB/mucB/samB family 

PF02417: Chromate transporter 

PF01370: NAD dependent epimerase/dehydratase family 

PF01544: CorA-like Mg2+ transporter protein 

PF13174: Tetratricopeptide repeat 

PF14743: DNA ligase OB-like domain 

*PF13905: Thioredoxin-like 

PF03008: Archaea bacterial proteins of unknown function 

PF11799: impB/mucB/samB family C-terminal domain 

*PF01475: Ferric uptake regulator family

PF00079: Serpin (serine protease inhibitor) 

PF04371: Porphyromonas-type peptidyl-arginine deiminase 

PF04085: rod shape-determining protein MreC 

PF14294: Domain of unknown function (DUF4372) 

PF13145: PPIC-type PPIASE domain 

PF11638: DnaA N-terminal domain 

PF05437: Branched-chain amino acid transport protein (AzID) 

PF13186: Iron-sulfur cluster-binding domain 

Feature importance ranking 

B 
Top discriminating gene families associated with contacts who remained 
uninfected or became infected symptomatic or Infected asymptomatic 

PF01687: Riboflavin kinase*
PF01863: Protein of unknown function DUF45 

PF16868: NMT1-like family 

PF08905: Domain of unknown function (DUF1850) 

PF01193· RNA polymerase Rpb3/Rpb11 dimerisation domain 

PF04055: Radical SAM superfamily 

PF10825: Protein of unknown function (DUF2752) 

PF06574: FAD synthetase*
PF02146: Sir2 family 

PF01544: CorA-like Mg2+ transporter protein 

PF04371: Porphyromonas-type peptidyl-arginine deiminase 

PF00817: impB/mucB/samB family 

PF00410: Ribosomal protein S8

PF01000: RNA polymerase Rpb3/RpoA insert domain 

PF00297: Ribosomal protein L3 

PF00359: Phosphoenolpyruvate-dependent sugar phosphotransferase system, EIIA 2 

PF13905: Thioredoxin-like*
PF01472: PUA domain 

PF06144: DNA polymerase III, delta subunit 

PF04002: RadC-like JAB domain 

Figure 4. Most important discriminating gene families of the gut microbiome at the time of exposure to Vibrio cholerae identified in the 2018 data set from Midani et al 
[15], classified by clinical outcome. A, Genes families associated with contacts who became infected (red) or remained uninfected (black) during follow-up. B, Genes families 
associated with contacts who remained uninfected (black), or became infected asymptomatic (green) or symptomatic (red) during follow-up. The top 25 most important fea-
tures for discriminating between classes in the random forest model are shown here; see Supplementary Table 8 for the full list. Yellow lines connect species associated with 
uninfected individuals in both A and B. Asterisks indicate genes involved in redox or iron metabolism. All PF gene name abbreviations can be found in the Pfam database at 
https://pfam.xfam.org/.
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Figure 5. Top predictive cellular pathways of the gut microbiome at the time of exposure to Vibrio cholerae in the 2018 cohort from Midani et al [15], annotated by their 
taxonomic contributors. The 4 top-ranked pathways associated with uninfected contacts (left column), contacts who developed asymptomatic infection (middle column), and 
contacts who developed symptomatic infection (right column) are shown. Total bar height reflects log10-scaled community relative abundance of each pathway. The contribu-
tions of each genus to encoding these pathways are shown as stacked colors within each bar, linearly scaled within the total. See Supplementary Table 9 for the complete 
list of pathways.
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more predictive of susceptibility compared with taxonomic or 
clinical and demographic information. Selecting a subset of the 
most informative features further improved predictions, but 
using these selected features may lead to overfitting. This sug-
gests an upper limit to predictive power that requires validation 
in larger, independent cohorts.

Most of the top predictive biomarkers were associated with re-
maining uninfected after exposure to V. cholerae. An example is 
the genus Prevotella, including several strains within Prevotella 
sp. 885, identified only at the genus level in a previous study [15]. 
Prevotella species are hypothesized to be beneficial members of the 
microbiota in healthy individuals in non-Westernized countries, 
and this species is a potential candidate for follow-up experimental 
studies in V. cholerae susceptibility [14, 22, 23].

Several species known to ferment mucin glycans into short-
chain fatty acids (SCFAs) are correlated with remaining un-
infected, including E.  rectale, R.  gnavus, and B.  vulgatus [24, 
25]. This finding is consistent with experiments of SCFAs ap-
plied to animal models. B. vulgatus has been shown to inhibit 
V. cholerae colonization in mice, an effect that was dependent 
on SCFA production [13]. SCFAs are known to affect immune 
cell development and attenuate inflammation by inhibiting his-
tone deacetylases and other mechanisms of altering gene ex-
pression [26–29].

All 3 Bifidobacterium species associated with contacts who 
developed infection were also associated with asymptomatic 
rather than symptomatic disease, and prior work on this 
genus supports several hypotheses for this relationship. First, 
Bifidobacterium species are known to produce the SCFA ace-
tate that can protect against enteric infection in mice [30–32]. 
SCFAs are also known to inhibit cholera toxin–related chloride 
secretion in the mouse gut, reducing water and sodium loss and 
have been observed to increase cholera toxin–specific antibody 
responses [31, 33, 34]. Bifidobacterium species are also major 
producers of lactate, a metabolite that has been shown to impair 
V.  cholerae biofilm formation, a function that can affect viru-
lence [12]. Finally, Bifidobacterium bifidum and Bifidobacterium 
adolescentis are known to reduce the activity of V. cholerae type 
VI secretion systems through modification of bile acids [9].

Metagenomics also allowed us to identify bacterial functions 
that could affect the ability of V. cholerae to compete and col-
onize the gut. For example, several gene families involved in 
iron transport, iron regulation, and riboflavin conversion ap-
peared among the top 20 features associated with uninfected 
and asymptomatic individuals, suggesting that competition for 
iron might be a protective mechanism of the gut microbiota 
against V.  cholerae, as in other pathogens [7]. Iron is often a 
limiting redox cofactor in the gut, and bacteria have evolved 
strategies to solubilize and internalize iron [32, 35]. Riboflavin 
(another major redox cofactor in bacteria) and iron levels are 
reciprocally regulated in V. cholerae, and riboflavin may allow 
V. cholerae to overcome iron limitation in the gut [32, 36]. A gut 

microbiota more competitive for iron could therefore help resist 
V. cholerae colonization or reduce its virulence. Further work is 
thus needed to understand mechanisms whereby enrichment 
of these genes may protect people after exposure to V. cholerae.

Our results are currently not generalizable beyond the 
study cohort in Dhaka, Bangladesh, as a similar cohort in 
another geographic location is not available. As with any 
association-based study [37], it is unknown whether any of 
the metagenomic features correlated with protection from 
V. cholerae infection are causal, and many may be markers of 
clinical or environmental factors that themselves affect sus-
ceptibility. Despite our deep sequencing and collection of 
standard cholera risk factors, our study was unable to measure 
all potentially relevant environmental or clinical risk fac-
tors. In line with recent studies in Dhaka, we assume that 
V. cholerae transmission occurs mainly within households [3] 
and did not consider how the mode of transmission (eg, wa-
terborne or not) might affect outcomes. 

It has also been noted that microbiome-disease associations 
may be poorly portable across human populations [37]. For in-
stance, we identified species of Prevotella as protective features 
in Bangladesh, but Prevotella is much less abundant and less 
diverse in Western countries [22]. It thus remains to be seen 
whether protective gene features (eg, iron metabolism) are en-
coded in other species of the microbiome outside endemic areas 
like Bangladesh, or if people outside these areas are simply at 
greater risk for cholera. Further experimental characteriza-
tion of metagenomic features correlated with protection from 
infection or symptoms are needed to understand if factors we 
identified affect V.  cholerae pathogenesis or host responses to 
infection. Ultimately, the strains and functionalities identified 
have the potential to inform microbiota-based therapeutics to 
ameliorate or prevent disease. Our results show the power of 
metagenomic data from the gut microbiome to predict health 
outcomes, such as susceptibility to infection and disease severity.
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Diseases online. Consisting of data provided by the authors to 
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Supplementary Tables S1–S9 are available at: https://
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