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ABSTRACT
Purpose: We aimed to develop a new scoring index based on decision-tree analysis to predict
clinical outcomes of patients with community-acquired pneumonia (CAP) admitted to the inten-
sive care unit (ICU).
Methods: Data of 3519 ICU patients with CAP were obtained from the Medical Information
Mart for Intensive Care III (MIMIC III) 2001–2012 database and analysed between 30-d survivors
and non-survivors. Accuracy, sensitivity, and specificity of the new decision tree model were
compared with those of CURB-65 and SOAR.
Results: The newly developed classification and regression tree (CART) model identified coexist-
ing illnesses as the most important single discriminating factor between survivors and non-survi-
vors. The CART model area under the curve (AUC) 0.661 was superior to that of CURB-65 (0.609)
and SOAR (0.589). CART sensitivity was 73.4%, and specificity 49.0%. CURB-65 and SOAR sensitiv-
ity for predicting 30-d mortality were 74.5 and 80.7%, and specificity was 42.3 and 33.9%,
respectively. After smoothing, the CART model had higher sensitivity and specificity than both
CURB-65 and SOAR.
Conclusions: The new CART prediction model has higher specificity and better receiver operat-
ing characteristics (ROC) curves than CURB-65 and SOAR score indices although its accuracy and
sensitivity are only moderately better than the other systems.

KEY MESSAGES

� The new CART prediction model has higher specificity and better ROC curves than CURB-65
and SOAR score indices.

� However, accuracy and sensitivity of the new CART prediction model are only moderately
better than the other systems in predicting 30-day mortality in CAP patients.
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Background

Community-acquired pneumonia (CAP) is a frequent
cause of intensive care unit (ICU) admissions inter-
nationally and is the leading cause of deaths due to
infectious disease in Western countries [1]. Incidence
of CAP is about 20–30% in developing countries,
which is significantly higher than the 3–4% reported
for developed countries and varies markedly with age,
occurring most commonly in the very young and very
old [2]. The disease course and outcomes of CAP vary
widely, presenting with high risk for respiratory failure
or sepsis-associated organ dysfunction in hospitalized
patients [3,4]. The overall mortality rate among hospi-
talized patients with CAP is 13% but this rises to more
than 35% in severe CAP (SCAP) patients [5]. Thirty-day

mortality is extremely high, especially in patients with
comorbidities such as cancer or renal disease [6].

Investigators have aimed to identify critical factors
for predicting ICU admission and prognosis in patients
with CAP [1–3]. Scoring systems have been developed
that combine multiple serum biomarkers and clinical
parameters by which to assess CAP and predict out-
comes [2,4,7,8]. For example, the Infectious Diseases
Society of America/American Thoracic Society (IDSA/
ATS) system, developed in 2001 (2) and revised in
2007(8), identifies CAP by the presence of 1 of 2 major
and at least 3 of 9 minor criteria. Other existing
scoring systems, include pneumonia severity scoring
indices (PSI); score based on confusion, urea, respira-
tory rate, blood pressure, age 65 (CURB 65); severe
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community acquired pneumonia (SCAP) score; score
based on systolic blood pressure, oxygenation, age,
respiratory rate (SOAR); and score based on systolic
blood pressure, multilobar involvement, albumin,
respiratory rate, tachycardia, confusion, oxygenation,
pH (SMART-COP), which are widely used today for pre-
dicting clinical outcomes of CAP [3,6–9]. However,
these systems have certain shortcomings, including
performing poorly in predicting patients at higher risk,
and showing low positive rates at recommended cut-
off points for predicting 30-d mortality [3]. PSI, for
example, was found to have only modest utility for
discriminating between patients with fatal and nonfa-
tal pneumonia [6]. Also, the generalizability of the
existing scoring systems is not consistent when
applied in different clinical situations. For example,
Gonzalez et al. [6] concluded that the performance of
CURB-65 and PSI systems are inadequate for predict-
ing pneumonia-related mortality in immunocomprom-
ised cancer patients. Fang et al. [10] compared scoring
indices in patients with healthcare-associated pneumo-
nia, finding that PSI, CURB-65, IDSA/ATS, SCAP, SOAR
and SMART-COP were not ideal for determining the
need for intensive care in this patient population.
However, those authors did state that the SCAP score
was as accurate as or better than other scoring
systems (e.g. CURB-65 and PSI) in predicting adverse
outcomes in CAP patients.

Given the inadequate and inconsistent performance
of existing scoring systems for predicting clinical out-
comes of CAP patients, including 30-d mortality, it
seems clear that an effective prediction model is still
needed. We hypothesized that a prediction model
based on decision tree analysis would be better able
to predict the probability of mortality of CAP patients.
We planned to analyse a wider range of variables that
may impact 30-d mortality in CAP patients. Therefore,
the present study aimed to develop a new decision
tree-based scoring model to predict clinical outcomes,
especially 30-d mortality, of CAP patients admitted to
ICU, and to evaluate performance of the new scoring
index compared to other scoring systems in cur-
rent use.

Methods

Data source

All data for the present study were obtained from the
Medical Information Mart for Intensive Care III (MIMIC-
III) 2001–2012 [11]. MIMIC-III is a large, freely access-
ible database comprising de-identified health-related
data collected from over forty thousand patients

admitted to critical care units of the Beth Israel
Deaconess Medical Center (BIDMC), Boston, MA,
between 2001 and May 2012. The MIMIC research
database is a joint venture managed by researchers
from the Laboratory for Computational Physiology
at Massachusetts Institute of Technology (MIT),
Cambridge, MA. The Department of Medicine at
BIDMC is supported by grants from the National
Institute of Biomedical Imaging and Bioengineering
(NIBIB) of the National Institutes of Health (NIH) under
award numbers R01-EB001659 (2003–2013) and
R01-EB017205 (2014–2018). Use of the MIMIC database
for research purposes has been approved by the
Institutional Review Boards of BIDMC and MIT.

Study population

Patients admitted to ICU who were diagnosed with
CAP were eligible for inclusion. After screening the
MIMIC-III 2000–2012 database, the data of 3519
patients with CAP were included for analysis and
were divided into two groups, including 952 30-d sur-
vivors and 2567 non-survivors. Pneumonia patients
with other types of pneumonia were designated as
CAP to differentiate cases from institution-acquired
pneumonia or healthcare-associated pneumonia
(acquired prior to hospital admission through associ-
ation with healthcare but not otherwise community-
acquired) [12].

Subjects’ demographic and clinical characteristics

Demographics include subjects’ age (grouped as <40,
40–64, 65–79 and 80þ) and gender. Clinical character-
istics include coexisting illness (neoplastic disease, liver
disease, congestive heart failure, cerebrovascular
disease and renal disease), invasive mechanical ventila-
tion, septic shock needing vasopressor support,
respiratory rate, confusion, leukopenia, thrombocyto-
penia, hypothermia, hyperthermia, hypotension, pulse
rate, arterial pH for arterial blood gas (ABG) test, and
laboratory values (blood urea nitrogen (BUN), sodium,
glucose and haematocrit), oxygen, and pleural
effusion. Clinical characteristics correspond to variables
criteria for model development (shown below with
definitions).

Primary study outcomes

The endpoint of this study is 30-d all-cause mortality.
Patients’ 30-d mortality was defined as all-cause death
within 30 d after admission to ICU, calculated using
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the date of death and admission date. Deaths may
have occurred during or after hospitalization.

Study variables

The new scoring index was developed using the classi-
fication and regression tree (CART) approach. The fol-
lowing criteria shown with defined values were used
for model construction: invasive mechanical ventila-
tion, septic shock needing vasopressor support,
respiratory rate� at breaths/min, confusion, BUN
level� ev mg/dl, leukopenia (white blood cell [WBC]
count <4000 cells/mm), thrombocytopenia (platelet
count <100,000 cells/mm), hypothermia (core tem-
perature <36 �C or 96.8 �F), hyperthermia (core
temperature� em �C or 104.0 �F), hypotension (mean
arterial pressure of 40–50mmHg or a systolic blood
pressure <90mmHg or diastolic BP �60mmHg),
coexisting illness (neoplastic disease, liver disease,
congestive heart failure, cerebrovascular disease, and
renal disease), pulse rate �125 beats/min, arterial pH
for ABG test (ABG)< 7.35, sodium <130mmol/l,
glucose �250mg/dl (14mmol/l), haematocrit <30%,
PaO2<60mmHg or oxygen saturation <90% or
PaO2/FiO2 ratio <250, pleural effusion, age (80þ,
65–79, 40–64 and <40) and gender.

Comparison of scoring indices

Accuracy, sensitivity and specificity of the newly con-
structed decision tree model were compared with
those of two existing scoring systems, CURB-65 score
and SOAR score, used currently to predict mortality
outcomes in hospitalized CAP patients.

CURB-65 index: CURB-65 is an expanded version of
CRB-65 that offers a simplified scoring system with
eight variables to assess severity in patients with CAP
[7]. The CURB-65 index identifies high-risk patients
using the following criteria (definitions of variables for
data extraction are also listed below): confusion, BUN
�20mg/dl, respiratory rate �30 breaths/min, systolic
blood pressure <90mmHg or diastolic blood pressure
�60mmHg, and age �65. Severity is divided into
three classes for scores of 0–1, 2 and 3–5.

SOAR score: The SOAR score comprises severity
assessment criteria recommended by the British
Thoracic Society, namely systolic blood pressure, oxy-
genation, age and respiratory rate [13]. The SOAR
score identifies severe CAP using the following criteria
(definitions of variables for data extraction are also
listed below): systolic blood pressure <90mmHg,
PaO2/FiO2 ratio <250, age �65 and respiratory rate

�30 breaths/min. Severity is divided into two classes,
for scores of 0–1 and 2þ.

Statistical analysis

Differences in categorical variables between the two
groups (survivors and non-survivors) were determined
using the Chi-square test and data are expressed as
number and percentage. All potential risk factors were
screened by univariate regression analyses to evaluate
associations with 30-d all-cause mortality. Significant
risk factors from univariate analysis were included in
CART analysis [14]. Nodes in CART were controlled to
have a minimum size of 100 records in parent nodes
and 50 records in final child nodes. A 10-fold cross-val-
idation was used to assess the predictive ability of the
regression tree model. Overall model discrimination
for the new CART model, CURB-65 and SOAR scores
was assessed by sensitivity, specificity and area under
the receiver operating characteristic (ROC) curve
(AUC), with and without smoothing of binormal
distribution. Sensitivity and specificity cut-off was
determined using Youden’s J statistic [15]. AUC pair-
wise comparisons between all three scores were done
using the DeLong test [16]. Smoothed ROC curve AUC
comparisons were done using the bootstrap method.
AUC confidence intervals were calculated using the
DeLong test [16] for non-smoothed ROC curves and
bootstrap for smoothed curves. Finally, logistic regres-
sion models were used to analyse differences in
probability of 30-d mortality between severe and
non-severe CAP patients. All statistical assessments
were two sided and evaluated at the 0.05 level of
significance. Statistical analyses were performed
using the statistical software package SPSS complex
sample module version 22.0 (IBM Corp, Armonk, NY)
and R for statistical computing version 3.4.2
(R Foundation for Statistical Computing, Vienna,
Austria) [17,18].

Results

The initial search of the MIMIC-III database version 1.4
identified 58,976 ICU admissions between 2001 and
2012. Among these, 3519 patients had CAP, including
952 survivors and 2567 non-survivors. Table 1 shows a
comparison of clinical characteristics between 30-d
survivors and non-survivors. Results of univariate
analysis indicated that 12 risk factors (age, invasive
mechanical ventilation use, septic shock with the need
for vasopressor portal, respiratory rate, BUN
level, thrombocytopenia, hypothermia, hypotension,
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coexisting illnesses, ABG test, haematocrit and positive
Streptococcus pneumoniae) were independently associ-
ated with 30-d mortality (Table 1).

Figure 1 depicts the CART analysis for predicting
30-d mortality. Among the 12 variables evaluated, the
CART method identified coexisting illnesses, septic

Table 1. Comparison of demographic and clinical characteristics between 30-d survivors and non-survivors.
Variables Total (%) Survivors (n¼ 2567) Non-survivors (n¼ 952) v2

Age, n (%) 79.81�
<65 years 1398 (39.7) 1135 (44.2) 263 (27.6)
�65 years 2121 (60.3) 1432 (55.8) 689 (72.4)

Gender, n (%) 0.336
Male 1931 (54.9) 1401 (54.6) 530 (55.7)
Female 1588 (45.1) 1166 (45.4) 422 (44.3)

Invasive mechanical ventilation use, n (%) 16.16�
No 954 (27.1) 743 (28.9) 211 (22.2)
Yes 2565 (72.9) 1824 (71.1) 741 (77.8)

Septic shock with the need for vasopressors, n (%) 66.86�
No 1934 (55.0) 1518 (59.1) 416 (43.7)
Yes 1585 (45.0) 1049 (40.9) 536 (56.3)

Respiratory rate, n (%) 4.31�
<30 breaths/min, 3034 (87.6) 2226 (88.3) 808 (85.7)
�30 breaths/min, 430 (12.4) 295 (11.7) 135 (14.3)

Confusion, n (%) 1.96
No 908 (46.0) 681 (47.0) 227 (43.4)
Yes 1065 (54.0) 769 (53.0) 296 (56.6)

BUN level, n (%) 61.94�
<20mg/d 1246 (35.6) 1007 (39.4) 239 (25.1)
�20mg/d 2258 (64.4) 1546 (60.6) 712 (74.9)

Leukopenia, n (%) 2.64
No 3500 (99.5) 2550 (99.3) 950 (99.8)
Yes 19 (0.5) 17 (0.7) 2 (0.2)

Thrombocytopenia, n (%) 41.44�
No 3253 (92.6) 2418 (94.3) 835 (87.9)
Yes 261 (7.4) 146 (5.7) 115 (12.1)

Hypothermia, n (%), 19.24�
No 2751 (80.0) 2046 (81.9) 705 (75.2)
Yes 686 (20.0) 453 (18.1) 233 (24.8)

Hyperthermia, n (%) 0.269
No 3427 (99.7) 2491 (99.7) 936 (99.8)
Yes 10 (0.3) 8 (0.3) 2 (0.2)

Hypotension, n (%) 11.75�
No 3180 (91.5) 2340 (92.5) 840 (88.9)
Yes 294 (8.5%) 189 (7.5) 105 (11.1)

Coexisting illnesses 80.79�
No 728 (20.7) 627 (24.4) 101 (10.6)
Yes 2791 (79.3) 1940 (75.6) 851 (89.4)

Pulse rate, n (%) 0.207
<125 beats/min 1335 (90.7) 960 (90.9) 375 (90.1)
�125 beats/min 137 (9.3) 96 (9.1) 41 (9.9)

Arterial pH for arterial blood gas test, n (%) 10.23�
�7.35 1003 (58.2) 758 (60.5) 245 (52.0)
<7.35 720 (41.8) 494 (39.5) 226 (48.0)

Sodium, n (%) 2.91
�130mmol/l 3277 (93.5) 2398 (93.9) 879 (92.3)
<130mmol/l 228 (6.5) 155 (6.1) 73 (7.7)

Glucose, n (%) 0.04
<250mg/dl 3181 (90.8) 2319 (90.9) 862 (90.6)
�250mg/dl 322 (9.2) 233 (9.1) 89 (9.4)

Haematocrit, n (%) 17.70�
�30% 2658 (75.9) 1984 (77.7) 674 (70.9)
<30% 846 (24.1) 569 (22.3) 277 (29.1)

PaO2 <60mmHg or oxygen saturation <90% or PaO2/FiO2 ratio <250 0.02
No 1559 (90.4) 1133 (90.5) 426 (90.3)
Yes 165 (9.6) 119 (9.5) 46 (9.7)

Streptococcus pneumoniae, n (%) 9.62�
No 3402 (96.7) 2467 (96.1) 935 (98.2)
Yes 117 (3.3) 100 (3.9) 17 (1.8)

Klebsiella pneumoniae, n (%) 0.01
No 3311 (94.1) 2416 (94.1) 895 (94.0)
Yes 208 (5.9) 151 (5.9) 57 (6.0)

Legionella pneumophila, n (%) 0.33
No 3513 (99.8) 2562 (99.8) 951 (99.9)
Yes 6 (0.2) 5 (0.2) 1 (0.1)

�Significant difference between survivors and non-survivors, p< .05.
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shock with the need for vasopressors, age, ABG test,
hypothermia, thrombocytopenia and respiratory rate
as significant predictors for 30-d mortality. Coexisting
illnesses was the most important single discriminating
factor between survivors and non-survivors. The
second most important predictors of 30-d mortality in
patients with coexisting illnesses was age and septic
shock with the need for vasopressor portal.

Analysis of the discrimination power of the CART
model, CURB-65 scoring system and SOAR scoring sys-
tem for predicting 30-d mortality using ROC curves
are shown in Figure 2 and Table 2. AUC of the CART
model for predicting 30-d mortality was 0.661. CART
analysis for predicting mortality, at the cut-off deter-
mined by Youden’s J statistic, had a sensitivity of
73.4% and a specificity of 49.0%. AUC of the CART

Figure 1. Decision tree model for predicting 30-d mortality.
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model was superior to that of the other scoring sys-
tems (CURB-65 0.609; SOAR 0.589). This was true even
after smoothing of binormal distribution (CART 0.667;
CURB-65 0.612; SOAR 0.611). Sensitivity of the CURB-
65 and SOAR scoring systems for predicting 30-d mor-
tality with Youden’s J statistic cut-off was 74.5 and
80.7%, respectively, and specificity was 42.3 and
33.9%, respectively. The new CART model had higher
specificity compared to both CURB-65 and SOAR
scores. After smoothing, the CART model had higher
sensitivity (67.7%) and specificity (56.6%) than both
CURB-65 and SOAR scores (Table 2).

Figure 3 shows the AUCs, AUC 95% confidence
intervals, and results of pairwise DeLong tests
between ROC curves of all three scores, non-smoothed
and smoothed. Results indicate that the new CART
model has significantly higher AUC than both CURB-
65 and SOAR scores.

Logistic regression models were used to compare
the probability for 30-d mortality between severe and

non-severe CAP patients as identified by each of the
three scores (Table 3). For comparing, all three scores
were dichotomized into severe and non-severe cate-
gories. Category cut-offs for CURB-65 and SOAR were
derived from Subramanian et al. [19]. The third quar-
tile (Q3¼ 3) was used as cut-off for the new CART
model. Results of regression analysis indicate that in
all three scoring systems, severe CAP patients have
significantly higher probabilities for 30-d mortality
compared to non-severe patients. However, among
severe patients, the OR of the new CART model was
higher than the OR for CURB-65 and SOAR scores.
Pseudo r-squared measures were also higher for the
CART logistic regression model compared to that
for CURB-65 and SOAR score regression models, indi-
cating that the new CART model is better at predict-
ing 30-d mortality between severe and non-severe
CAP patients.

Discussion

This study evaluated the effectiveness of a newly
developed prediction model to assess 30-d mortality
of CAP patients in the ICU specifically, and the results
were compared to those of two existing scoring sys-
tems, CURB-65 and SOAR score. Since CAP is an excep-
tionally severe disease that often requires ICU
admission and has an extremely high 30-d mortality,
we assumed that CAP severity in patients already
admitted to ICU would likely correlate with 30-day
mortality. Most of the existing scoring systems were
designed originally to predict severity but not neces-
sarily admission to ICU [7]. Of the two comparator

Table 2. Accuracy, sensitivity and specificity of the CART risk
model, CURB-65 score and SOAR score.

New decision tree CURB-65 score SOAR score

ROC curve
AUC 0.661 0.608 0.589
Sensitivity 73.4% 74.5% 80.7%
Specificity 49.0% 42.3% 33.9%

ROC curve with smoothing
AUC 0.667 0.612 0.611
Sensitivity 67.7% 65.0% 64.4%
Specificity 56.6% 51.2% 51.7%

Sensitivity and specificity cut-off point was calculated using Youden’s
J statistic.

Figure 3. ROC curve AUC pairwise comparisons.Figure 2. ROC curves for new decision tree and two scoring
systems in the main cohort.
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models in this study, CURB-65 is used primarily to
determine whether CAP patients require hospitaliza-
tion and SOAR is used to assess risk in hospitalized
patients whether in ICU or not. Results of this study
show that the newly designed CART model has higher
specificity and a better ROC curve compared to those
of the existing CURB-65 and SOAR score indices.
Logistic regression analysis revealed that in all three
models severe CAP patients have significantly higher
probabilities for 30-d mortality compared to non-
severe patients, but the new CART model is better at
predicting 30-d mortality between severe and non-
severe CAP patients. However, the sensitivity and
accuracy of the new decision-tree model were only
moderately better than those of the two existing mod-
els. Nevertheless, after smoothing, both the sensitivity
and specificity of the new CART model were higher
than those of CURB-65 and SOAR score indices.

The new prediction model was built on a foundation
of decision-tree analysis, following the CART analysis
described previously by Brims et al. [20] The CART
approach has been used previously for simple prognos-
tic models in acetaminophen-induced acute liver failure
and is reported to offer improved sensitivity and model
performance even though accuracy and specificity were
shown to be equal or “negligibly worse” than other
prognostic models for this clinical condition [21]; while
the CART model offered only slightly better predictive
accuracy at admission of patients with acute liver fail-
ure, higher predictive accuracy was found later during
post-admission. The CART prediction model examines
the interaction of multiple variables with a given out-
come. In developing the new model for CAP, we took
more risk factors into consideration compared to

existing systems. CURB-65, for example, uses eight risk
factors in assessing severity, and SOAR uses the four
factors on which it is based – systolic blood pressure,
oxygenation, age and respiratory rate. In developing
the new index in this study, univariate analysis identi-
fied 12 risk factors associated with 30-d mortality,
including age, invasive mechanical ventilation use, sep-
tic shock needing vasopressor support, respiratory rate,
BUN level, thrombocytopenia, hypothermia, hypoten-
sion, coexisting illnesses, ABG test, haematocrit and
positive Streptococcus pneumonia. In general, expanding
the risk factors is intended to improve the ability of the
index to identify patients at high risk for 30-d mortality.
However, the number of included indicators may not
make a significant difference in determining prognosis
for all clinical conditions; use of a decision tree model
for acute pancreatitis had only three clinical indicators
and, though deficiencies of the indicators were noted,
sensitivity and specificity were 88.6 and 90.0%, respect-
ively, and the authors did not suggest expanding the
indicators in future system development [22].
Nevertheless, since the risk factors we identified were
also associated with 30-d mortality, we expected the
expansion to help promote good performance of the
new predictive model in terms of accuracy, sensitivity
and specificity, which would indicate an enhanced abil-
ity to identify patients at highest risk. In this study, the
purpose was to determine 30-d mortality in ICU
patients, but not to determine which patients should
be admitted to ICU. Another study of mortality predic-
tion among older adults hospitalized for CAP expanded
the CURB score inventory of risk factors with age and
comorbidities, including confusion, urea, respiratory
rate and blood pressure, reporting finally that predict-
ive accuracy for 30-d mortality was comparable to that
of PSI [23]. It must be noted, however, that the new
scoring model was evaluated in severely ill patients
who were all hospitalized in ICU. Therefore, it can be
expected that the new decision tree model with an
expanded risk factor inventory will perform somewhat
better than the two scores with fewer indicators of
severity, CURB-65 and SOAR, which were used
for comparison.

The ROC curve is a prime outcome for assessing
predictability. Area under the ROC curve, or AUC, indi-
cates the discrimination capability in a logistic regres-
sion model. That is, knowing the value of the
predicted probability of a specific outcome such as
30-d mortality occurring allows us to establish a
threshold. In this study, the ROC of the newly devel-
oped CART system was better than the ROC of either
CURB-65 or SOAR, indicating that the new system is

Table 3. Probability of 30-d mortality for severe vs. non-
severe CAP patients for CART risk model, CURB-65 score and
SOAR score.

OR 95% CI p Value

New decision tree
Non-severe (<4) Ref.
Severe (�4) 2.802 2.346–3.347 <.001

CURB-65 score
Non-severe (<3) Ref.
Severe (�3) 1.960 1.653–2.325 <.001

SOAR score
Non-severe (<2) Ref.
Severe (�2) 1.779 1.458–2.169 <.001

�2LL Cox and Snell’s r2 Nagelkerke’s r2

New decision tree 3982.9 0.035 .051
CURB-65 score 4050.7 0.016 .024
SOAR score 4077.6 0.009 .013

CURB-65 and SOAR score severity cut-off determined according to
Subramanian et al. [19]. The third quartile (Q3¼3) was used as cut-off for
the new decision tree CART risk model.
95% CI: 95% confidence interval.
�2LL: �2 log likelihood.
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better able to predict 30-d mortality in CAP patients.
Sensitivity and specificity, however, must be deter-
mined to test the predictive ability indicated by ROC
values. Sensitivity identifies true positives (true positi-
vesþ false negatives) [24]. If the test methodology, in
this case the CART evaluation, is highly sensitive and
the test result is negative, it is nearly certain that the
outcome (30-d mortality) has not been predicted.
Specificity identifies true negatives (true negati-
veþ false positives) [19]. If the test methodology is
highly specific and the test result is positive, it is
nearly certain that the outcome (30-d mortality) has
been predicted. In this case, accuracy, sensitivity and
specificity refer to the ability of the scoring system to
identify patients with CAP who are at high risk of mor-
tality within 30 d. Results of this study showed that
sensitivity of the CART index was only somewhat, or
moderately, better than sensitivity of the CURB-65 and
SOAR systems. In another study, pooled sensitivity for
CURB-65 was only 49% and pooled specificity for PSI
was only 48%, indicating that neither scoring system
was sufficiently accurate to predict 30-d mortality [25].
On the other hand, specificity of the newly designed
CART system was superior to that of CURB-65 and
SOAR scores. CURB-65 was reported by Liu et al. [7] to
have a deficiency in predictive specificity. In predicting
CAP 30-d mortality, such a deficiency in specificity can
result in classifying patients incorrectly as low risk.
Although it may be reasonable to suggest that pre-
dicting 30-d mortality should be sufficiently accurate
to determine if intensive management strategies are
needed, all patients in this study were already in ICU
and the goal was to identify 30-d mortality, not
whether intensive management was needed.

Kolditz et al. [3] have suggested that accurate mor-
tality prediction may not always identify patients who
are likely to develop severe CAP and who should be
admitted to ICU for intensified management. Indeed,
this study aimed to predict clinical outcomes, specific-
ally 30-d mortality, of patients with CAP admitted to
ICU rather than determining whether ICU admission
was necessary. Although admission to ICU is consistent
with high-risk prediction, all scoring systems are not
able to predict high risk in all patients. This is further
complicated by the policies of the ICU in different med-
ical centres and the decisions of individual physicians.
One study, for example, showed that 35% of patients
had contraindications for ICU admission according to
the criteria applied by the hospital [1]. In a review
study that evaluated several severity scales for CAP, the
authors noted that PSI, CRB-65 and CURB-65 had differ-
ent strengths and weaknesses, with the greatest

common strength being good negative predictive val-
ues for mortality in populations that have a relatively
low prevalence of death [26]. In a clinical situation like
CAP, however, which has a high mortality rate, more
accurate risk classification is needed to support appro-
priate management decisions whether patients are in
ICU or not. Acknowledging that disease severity and
chronic pulmonary disease are strong predictors of ICU
admission, Vohra et al. [27] found that every 10-point
increase in the PSI index was predictive of 20.7%
increased odds of ICU admission. Consequently, those
authors suggested that greater use of severity indices
such as PSI may optimize management decisions and
ultimately minimize mortality in the ICU setting where
length of stay and mortality are already significantly
higher than in the general medicine setting.

This study has associated strengths and limitations.
We used the high-quality MIMIC-III database that
encompasses a diverse and exceptionally large popula-
tion of ICU patients. It provided high temporal resolution
data, including lab results, electronic documentation,
and bedside monitoring trends and waveforms, which
all helped to give credence to our analysis and results.
Nevertheless, the present study has several limitations.
First, data were obtained from only a single medical
centre in Boston, MA, which means that our results may
not be generalizable to other populations in other loca-
tions. Second, the MIMIC database does not include life-
style and dietary information, environmental exposure,
or family medical history, all factors that may have influ-
enced our results if they had been included in analysis.
Although CAP was defined for this study based on
Kaplan et al. [12], the MIMIC III database generates diag-
nosis codes at the end of the hospital stay so this study
could not include the duration of all cases of CAP in its
analyses and the exclusion criteria could not identify
healthcare-associated pneumonia. Also, no information
was available on medical utilization after discharge, only
in-hospital data during patients’ ICU stays were included.
All data for the present study came from ICU patients,
which is a well-defined portion of CAP patients, but in
clinical practice, ICU patients do not represent all CAP
patients and other populations must be studied. Further
prospective, multicentre study is still needed to further
validate the newly developed CART model, and inde-
pendent risk factors must be expanded to include those
lacking as variables in this study.

Conclusions

The new CART prediction model has higher specificity
and better ROC curves than CURB-65 and SOAR score
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indices, although its accuracy and sensitivity are only
moderately better than the other systems in predict-
ing 30-d mortality in CAP patients admitted to ICU.
CART is a simple, effective system for assessing the
severity of CAP patients admitted to ICU, however, ICU
patients do not represent all CAP patients and the
CART model must be studied in other populations.
Further prospective study is needed with a large sam-
ple from multiple settings to corroborate results of
this initial development study.
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