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Abstract

Bone tissue engineering (BTE) encompasses the field of biomaterials, cells, and bioactive 

molecules to successfully guide the growth and repair of bone tissue. Current BTE strategies rely 

on delivering osteogenic molecules or cells via scaffolding materials. However, growth factor- and 

stem cell-based treatments have several limitations, such as source restriction, low stability, 

difficulties in predicting long-term efficacy, and high costs, among others. These issues have 

promoted the development of material-based therapy with properties of accessibility, high stability, 

tunable efficacy, and low-cost production. Hydrogels are widely used in BTE applications because 

of their unique hydrophilic nature and tunable physicochemical properties to mimic the native 

bone environment. However, current hydrogel materials are not ideal candidates due to minimal 

osteogenic capability on their own. Therefore, recent studies of BTE hydrogels attempt to 

counterbalance these issues by modifying their biophysical properties. In this article, we review 

recent progress in the design of hydrogels to instruct osteogenic potential, and present strategies 

developed to precisely control its bone healing properties.

Graphical Abstract

Introduction

Bone is a highly mineralized tissue with a solid intercellular matrix. It has a biphasic 

extracellular matrix (ECM) that is composed of both an inorganic mineral and an organic 
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phase, consisting of 90% collagen and 10% non-collagenous proteins, including growth 

factors1. Bone also preserves bone marrow producing mesenchymal stem cells and possesses 

a set of bone cells that include osteoblasts, osteocytes, and osteoclasts2.

Bone remodeling is a dynamic process that involves recruitment of cells, cytokines, and 

growth factors. However, a self-remodeling is not achievable with the severe defects or in 

the presence of complications, such as osteoporosis, osteoarthritis, or osteogenesis 

imperfecta3. Common treatments such as autografts or allografts are difficult to utilize 

extensively because of their source limitations, potential for infection, and adverse immune 

responses. Therefore, the demand for effective bone repair strategy is growing and has led to 

increased research in bone tissue engineering (BTE). The success of BTE is governed by 

several key factors, such as the osteogenic scaffold, osteogenic cells, and osteogenic 

stimulating factors. A treatment based on each component or a combined strategy is 

appealing, but the field of BTE is currently dominated by growth factor-based treatment. A 

treatment using bone morphogenetic proteins (BMPs) is well-established because of its high 

efficacy; however it is associated with severe side effects when supraphysiological doses are 

administered and poor delivery efficiency using currently available delivery system4.

A hydrogel is a viscoelastic polymeric scaffold with significant water uptake ability 

mimicking bone ECM5. An aqueous three-dimensional environment provides the hydrogel 

with unique properties, such as injectability, swelling, and surface absorption. A hydrogel 

has potential to entrap and attract native cells by providing anchoring sites on its mesh 

network. It is able to deliver proteins or small molecule drugs locally, and its ion adsorption 

ability initiates mineralization on the hydrogel surface to provide a bone-like environment. 

Therefore, hydrogel is a promising candidate for use as an osteogenic scaffold, and as an 

osteogenic carrier for delivery of cells or stimulating factors.

The ideal attributes of a hydrogel for BTE are 1) biocompatibility, 2) biodegradability, 3) in-

situ gel formation ability, 4) integration with surrounding tissues, 5) delivery of cells or 

drugs, and 6) osteogenic properties. These properties can be diversified by a choice of 

hydrogel polymer backbone, crosslinking, and various functionalizations. Advances in 

engineering hydrogels have provided many candidate hydrogels with the above-mentioned 

properties; however, osteogenic capacity is still very limited. Improvement of osteogenic 

performance of a hydrogel enables the simple biomaterials based (cell- and growth factor-

free) strategy of BTE. Osteogenic performance of a hydrogel requires a delicate balance of 

osteoinduction, osteoconduction, and osseointegration over a long period of bone healing6. 

However, many hydrogels used in bone repair have insufficient intrinsic osteogenic function, 

leading to limited healing in clinical settings7. In this article, we will focus on reviewing the 

fundamentals and various state-of-the-art approaches used to design an osteogenic hydrogel 

system, and the ongoing challenges and subsequent opportunities in the field.

1. Hydrogel fundamentals

The use of hydrogels is attractive in BTE due to its ability to mimic the bone ECM with high 

water contents that could provide suitable microenvironments to encapsulate cells or 

bioactive molecules. Additionally, hydrogels with injectable capability enable filling 
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irregular bone defects with a good integration into the surrounding tissues, while avoiding 

complex surgery. However, there are challenges concerning osteoconductivity, mechanical 

stability, and the loss of encapsulated bioactive components that need to be further 

investigated for successful BTE. The characteristics of a hydrogel can be modulated by its 

source and crosslinking methods. Polymeric hydrogels are widely used in tissue engineering 

because of their tunable physicochemical properties. Crosslinking is usually required to 

protect a hydrogel from rapid degradation and improve its stability. In this section, we will 

introduce polymer sources and crosslinking technologies being used to construct BTE 

hydrogels and discuss their advantages and limitations for use in bone repair (Figure 1).

1.1. Polymers used as backbones of hydrogels for BTE

Polymers are promising materials to prepare BTE hydrogels and can be classified into 

natural and synthetic polymers by their sources. The main advantages and drawbacks are 

listed in Table 1. No single material meets all requirements for successful bone regeneration, 

requiring further modifications to obtain desired biophysical properties.

1.1.1. Biopolymers—Biopolymers derived from natural macromolecules are an 

advantageous hydrogel source in BTE resulting from their biocompatibility, 

biodegradability, and similarity to natural bone ECM. Natural proteins, such as collagen, 

gelatin, or fibrin, and polysaccharides, such as hyaluronic acid, chitosan, or alginate, are 

extensively used in the field. These biopolymers can be used alone, or blended with other 

polymers to form a composite depending on the application.

1) Collagen is the main constructional protein in bone ECM and type I collagen is the most 

abundant among the five common types of collagen, I, II, III, IV, and V. The molecular 

weight of collagen is approximately 300 kDa with a long triple helix fibril structure. This 

elongated structure provides mechanical strength by hierarchical assembly. The integration 

of hydroxyapatite in fibril networks can enhance the mechanical properties of the materials, 

as well as provide biochemical cues. Collagen is known for successful cell attachment and 

differentiation of osteoprogenitor cells, which makes it widely used in BTE8. In the context 

of bone regeneration, type I collagen has been found to be a regulator of osteogenic 

differentiation of mesenchymal stem cells (MSCs) derived from rat bone marrow or dental 

pulp in vitro and in a rat calvarial defect9, 10. Collagen matrices are already being used in 

clinical practice to deliver BMP-2 for bone regeneration but premature leakage of BMP-2 

could induce ectopic bone formation11. There are also continued concerns about the 

widespread use of collagen due to its challenging purification process, a risk of disease 

transmission and immune response12–14.

2) Gelatin originates from collagen and is usually referred to an irreversibly hydrolyzed 

collagen. Because of hydrolysis, the molecular weight of gelatin varies from 20 to 220 kDa, 

which is smaller than collagen. It undergoes undemanding degradation, which leads to lower 

immunogenicity in comparison to collagen. Gelatin possesses similar amino acid profiles to 

collagen and thus exhibits the ability to support cellular attachment and growth15. Different 

gelatin processing from collagen allows various physicochemical properties, providing 

versatile platforms for tissue engineering scaffolds or delivery vehicles16. On the other hand, 
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the functional and bioactive properties of gelatin may differ from native collagen. Moreover, 

lower mechanical strength is a recurring issue in gelatin applications. A recent gelatin 

hydrogel was specifically designed to possess macroporosity and was shown to support 

robust endochondral ossification of human MSCs in a mouse subcutaneous model17. The 

compressive modulus of the engineered bone constructs was 10-fold higher compared to 

conventional gelatin hydrogels17.

3) Fibrin, a main part of the hemostatic clot, is formed by rapid reaction of thrombin 

protease on fibrinogen. Its mechanical properties and stability are easily tunable by adjusting 

fibrinogen and thrombin concentration. Fibrin is already being used widely as tissue 

adhesives and its intrinsic angiogenic properties make fibrin matrix attractive biomaterials 

for BTE18, 19. Fibrin prepared from platelet-rich plasma was successfully used in 

combination with dental implants to enhance osseointegration in elderly patients20. 

However, the specific effects of the growth factors present in platelets on bone repair is 

poorly understood.

4) Hyaluronic acid (HA) is a linear glycosaminoglycan with alternating β1→4 and β1→3 

glycosidic bonds of D-glucuronic acid and N-acetyl-D-glucosamine. Because of the 

presence of repeating carboxylic acids in the HA backbone, it is negatively charged at 

physiological pH. It can bind to proteins, such as CD44, noncovalently and affects the 

diffusion of cells and proteins21. It is also known to have low immunogenicity, anti-

inflammatory, antioxidant properties, and can induce the migration of MSCs22, which make 

it as an interesting candidate for BTE applications. A recent study demonstrated enhanced 

bone formation capability of bone graft materials when mixed with HA in a rat mandibular 

defect while minimal bone healing was observed in a defect treated with HA alone23. In 

addition, HA is used as a carrier for commercially available demineralized bone allografts to 

improve its handling properties24.

5) Chitosan is a linear cationic polysaccharide with β1→4 linkages of D-glucosamine and 

N-acetyl-D-glucosamine. It has an intrinsic ability to interact with cells and can be degraded 

by chitosanases25 or lysozymes26. The degree of deacetylation of chitosan alters the free 

amine ratio in the chitosan backbone, which influences the charge and provides further 

modification potential. The cationic nature of chitosan makes it an attractive candidate in 

BTE applications because chitosan can bind oppositely charged red blood cells or bacterial 

cell walls to exert hemostasis and antimicrobial properties in the infected wound site27. 

Chitosan provided an osteocompatible environment to promote the proliferation of 

osteoblasts and calcium deposition28. Chitosan also form a polyelectrolyte complex with 

many anionic glycosaminoglycans such as heparin that is known to modulate the bioactivity 

of growth factors such as BMP-2 important to bone regeneration29. Various bioconjugation 

techniques can modify the amine groups to other functional moieties such as methacrylate30 

or bone-specific phosphate groups31.

6) Alginate is a linear anionic polysaccharide composed of both a β1→4 linkage for D-

mannuronate and an α1→4 linkage for L-guluronate. Alginate can rapidly form a gel, with 

the addition of divalent cationic ions, such as Ca2+ or Zn2+, which create ionic bridges 

between chains via the egg-box model32. The fast gelation property of alginate makes it 
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widely used in calcium containing solutions mimicking the bone environment33. Despite its 

low cost and convenient gelation, alginate presents no cell-binding motifs, limiting cell 

attachment, and undergoes slow degradation due to the lack of specific enzymes to degrade 

it in vivo34. These properties limit the use of alginate on its own for BTE. A study 

demonstrated that cell-laden alginate hydrogels induced inferior bone formation compared 

to type I collagen hydrogels in a porcine calvarial defect35.

1.1.2. Synthetic polymers—Synthetic polymers have multiple benefits, such as low 

batch-to-batch variability, convenience for functionalization with specific bioactive moieties, 

and relatively stable structural properties. The widely used synthetic polymers for BTE 

hydrogels are polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAM).

1) Polyethylene glycol (PEG): PEG is a water-soluble polymer with a chemical formula 

of H-[OCH2CH2]n–OH, also known as polyethylene oxide (PEO). The molecular weight of 

PEG is directly linked to its physical properties, such as viscosity and it is available in 

different forms, such as branched or star-shaped PEG. It is biologically inert and safe, as a 

result, it is widely used in biomedical applications such as an excipient of pharmaceutical 

drugs36. PEG hydrogels were evaluated as barrier membranes for guided bone regeneration 

for the treatment of periodontal bone defects37. PEG hydrogel membranes were found to be 

as effective as conventional collagen membranes at enhancing bone growth at implant 

sites37. Furthermore, the solubility of PEG is dependent on its molecular weight, which 

makes PEG gels more attractive for use as controlled delivery vehicles to mediate sustained 

release of osteoinductive factors36, 38.

2) Poly(N-isopropylacrylamide) (PNIPAM): PNIPAM is a temperature-responsive 

polymer with a chemical formula of [C6H11NO]n. It has a lower critical solution temperature 

(LCST) phase transition at 32 °C, such that it is highly solvated below LCST and can 

reversibly interchange to shrink above its LCST, because of the hydrophobic aggregation of 

isopropyl groups39. The LCST of PNIPAM is close to the human body temperature, as a 

result, it is widely used as a thermo-gel in biomedical applications40. In spite of its distinct 

thermo-responsive properties, the use of PNIPAM hydrogels is limited for BTE applications 

due to its intrinsic nature of poor mechanical strength and biodegradability39. For this 

reason, PNIPAM is often used in copolymers with other polymer blocks to produce 

hydrogels with improved physicochemical properties. Gelatin was grafted with PNIPAM to 

create biodegradable in situ gelling systems and injection of the resultant hydrogels 

encapsulating BMSCs successfully induced new bone formation in a rat cranial model41.

1.2. Crosslinks to form hydrogel networks for BTE

Crosslinking is an essential process to fabricate a stable hydrogel structure, which cannot be 

dissolved in aqueous conditions and maintains good mechanical strength until the desired 

time point. A variety of techniques including both chemical and physical approaches are 

used to crosslink hydrogels (Table 2). Besides the efficiency of crosslinking, it is also very 

important to consider a mild reaction environment, which will not damage the encapsulated 

cells or drugs.
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1.2.1. Chemical crosslinks—Chemical crosslinking creates covalent bonds at the 

inter- and intra-molecular level. It can be initiated by a radical reaction, a linkage between 

specific functional groups, or enzymatic activity. Covalent bonds are more stable and 

stronger than non-covalent bonds, leading to the excellent stability and mechanical 

properties under physiological conditions.

1) Radical chemistry: Radical crosslinking is initiated by radical initiators, which can 

generate free radicals in the presence of various stimuli, such as photo-, thermal-, or redox 

reactions. A photoreaction, such as UV- or visible-light is widely applied in tissue 

engineering hydrogel formation, because of its mild reaction conditions in comparison to the 

extreme changes in temperature or pH. Photoinitiators can be chosen differently depending 

on light sources with differences in excitation wavelength. Common photoinitiators are 

Irgacure 295930, 42 or Irgacure 65143 used for UV crosslinking (250-370 nm), and 

camphorquinone42, 44 or riboflavin45 used for visible light crosslinking (400-700 nm). 

Radical reactive groups in the polymer backbone can be activated by free radicals to form a 

network structure in hydrogels. An unsaturated vinyl group is usually introduced into a 

polymer as a radical reactive group. Amine, carboxyl, or hydroxyl groups in the polymer 

backbone can be converted to acrylate or methacrylate groups by simple bioconjugation.

Gelatin and HA modified with methacrylate functional groups have been extensively 

explored as modified natural ECM components for BTE applications. For example, photo-

crosslinked gelatin methacryloyl (GelMA) hydrogels encapsulating osteogenic and 

angiogenic cells were effective for the formation of vascularized bone tissue constructs46. 

Moreover, bioactivity of osteogenic growth factors such as BMP-2 was significantly 

enhanced when delivered from GelMA hydrogels compared to exogenous BMP-247. There 

has also been an increased use of photo-crosslinkable hydrogels in combination with 3D 

bioprinting techniques for complex bone regeneration. Researchers took advantages of the 

fast gelation ability of photopolymerization and produced cell-laden complex 3D hydrogel 

constructs via 3D printing systems based on stereolithography. Photosensitive methacrylate 

HA was successfully printed into porous and anatomically shaped bone constructs under UV 

light radiation with the high level of cell survival incorporated48. However, photo-

crosslinkable hydrogels have not been translated into clinical practice due to concerns 

associated with oxygen inhibition in polymerization reactions and the nature of a random 

chain growth mode, which may decrease curing efficiency and polymer network 

homogeneity with the production of unreacted toxic residues49, 50. Moreover, UV irradiation 

is known to have harmful effects on host tissues including oxidative damage to DNA and 

premature aging. Alternative visible light or near-infrared has been demonstrated to be safe 

with deeper tissue penetration.

2) Click chemistry: Click chemistry that allows for very selective and specific reactions 

with a high yield of desired covalent bonds51, 52 has been widely utilized in hydrogel 

network formation. Numerous functional moieties can be involved in this reaction; the 

established reactions are, (a) Schiff base, (b) Michael addition, and (c) Diels-Alder reaction.

(a) Schiff base reaction: The Schiff reaction is a condensation reaction used to form a 

covalent imine type bond via nucleophilic addition of an amine to an electrophilic aldehyde 
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or ketone under physiological conditions53. Additionally, aldehyde groups can bind to 

tissues firmly because of the abundant amine groups on the tissue surface54. Among imine 

type bonds, hydrazone and oxime are more stable than imine because of mesomeric 

effects55. The resulting bond is biocompatible, pH-responsive, and reversible, which is 

advantageous for application in dynamic hydrogels with self-healing properties. Compared 

to other chemical crosslinking, the Schiff reaction enables rapid gelation under very mild 

conditions without initiators or light irradiation. A recent study demonstrated that injectable 

hydrogels based on glycol chitosan and oxidized HA successfully induced osteogenesis and 

bone formation in vitro and in a rat calvarial defect56. In addition, dynamic covalent bonds 

in Schiff base crosslinking hydrogels add advantage of using this system for 3D printing 

bioinks due to its shear thinning and cytoprotective ability during extrusion and subsequent 

self-healing to form stabilized printed constructs57.

(b) Michael addition: A Michael type reaction is a nucleophilic addition to unsaturated 

carbonyl groups. Typically, amines, thiols, or phosphines act as nucleophiles, and alkynes or 

olefins act as acceptors in the reaction. It is often seen in the coupling of a thiol and a vinyl 

containing polymers, or crosslinker in a basic environment. However, it can also form 

undesired disulfide bonds as a side reaction. A pair of acrylated HA and tetrathiolated PEG 

was used to form a hydrogel to deliver BMP-2 and cells58. The thiol Michael reaction is 

much slower compared to Schiff base crosslinking, requiring excessive modification with 

thiol groups to form stable hydrogels. A drawback with the thiol-Michael click chemistry is 

unwanted thiol oxidation that could affect protein stability by breaking disulfide bridges in 

the protein. A recent study found that crosslinking chemistry could influence the bioactivity 

of osteogenic growth factors loaded in a hydrogel by evaluating two HA hydrogels loaded 

with BMP-2, HA-thiol-michael and HA-hydrazone gels59. In this study, BMP-2 delivered 

from HA-hydrazone gels promoted a better ectopic bone formation in a rat subcutaneous 

model, indicating a detrimental effect of thiol-based crosslinking on the bioactivity of 

growth factors.

(c) Diels-Alder reaction: The Diels-Alder reaction is a cycloaddition of an electron 

donating diene and an electron withdrawing alkene. It is a one-step, catalyst-free, bio-

orthogonal reaction without byproduct formation. It is usually applied in hydrogel formation 

with polymers modified with furan and maleimide derivatives. A previous study 

demonstrated the potential of Diels-Alder crosslinking hydrogels for sustained drug release 

and osteogenic differentiation of human MSCs based on maleimide PEG and furan 

dexamethasone60. However, Diels-Alder click chemistry is less effective for use as BTE 

hydrogels due to its relatively longer gelation time and substantial degradation under 

physiological conditions. A recent study reported an improved Diels-Alder reaction with 

significantly increased gelation rates and hydrolytic stability by replacing the furans with 

more electron-rich fulvene dienes61.

3) Enzyme-catalyzed chemistry: Enzymatic crosslinking has proven to be specific, 

efficient, cell-friendly, with mild reaction conditions, which are beneficial for in situ 
gelation62. Transglutaminase, binding with calcium cofactor, catalyzes post-translational 

modifications and promotes amide formation between carboxamide and amine. A fibrin gel 
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formed by factor XIII, a transglutaminase isoenzyme, could deliver BMP as a bone 

substitute63. There has been a more extensive use of the transglutaminase crosslinking 

strategy since more cost-effective microbial transglutaminase (mTG) was discovered. mTG-

crosslinked gelatin has been shown to support proliferation and osteogenic differentiation of 

MSCs as well as the release of osteogenic growth factors for potential BTE64, 65. Another 

promising enzymatic crosslinking approach is through a peroxidase-catalyzed reaction due 

to its ability to fine-tune the various physico-mechanical properties of formed hydrogels66. 

Peroxidase, in the presence of hydrogen peroxide, catalyzes the oxidation of various organic 

substrates, such as tyramine, phenol or aniline, and creates polymer-phenol conjugates. A 

recent study illustrated versatile manipulation for the gelation rate, stiffness and degradation 

behavior of tyramine-modified HA and chondroitin sulfate by varying the concentration of 

horseradish peroxidase and hydrogen peroxide67. Such an enzyme catalyzed hydrogel 

promoted osteogenic differentiation of BMSCs in vitro and bone regeneration in a rat 

femoral defect67.

1.2.2. Physical crosslinks—Physical crosslinks are driven by non-covalent reversible 

intermolecular interactions. It does not require any chemical agents, which may be 

potentially toxic to the encapsulated cells or biologies. Additionally, it exhibits stimulus-

responsive properties by responding to changes in the surrounding environment, such as a 

change in ionic concentration, temperature, or pH.

1) Ionic interactions: Electrostatic interactions, driven by opposite electric charges 

attracting each other, can crosslink a network. A polyanionic polymer can be crosslinked 

with a cationic ion, and a polycationic polymer can be crosslinked with an anionic ion. 

Alginate crosslinks with divalent cations including calcium or magnesium to form an egg-

box structure at room temperature in physiological pH68. Chitosan also rapidly crosslinks 

with anions such as glycerol phosphate69. Moreover, a pair of polyanionic and polycationic 

polymers can easily form a polyelectrolyte complex, such as alginate-chitosan70, collagen-

chitosan71, and chondroitin sulfate-chitosan72 for BTE applications. Although ionically 

crosslinked gels can be prepared under very mild process conditions without covalent 

modification, the fast gelation rate may lead to inhomogeneous precipitation, making it 

difficult to achieve injectable or moldable preparations. Several studies have been conducted 

on control over the gelation kinetics of hydrogels based on retarded gelation-inhibiting 

buffers73, 74. Another challenge to ionic gelling is its unpredictable long-term stability in 
vivo due to rapid ion exchange and gel dissolution in a physiological medium. Moreover, 

crosslinked ions released from the gel may cause unwanted biological reactions.

2) Hydrogen bond: A hydrogen bond is a specific dipole-dipole interaction between 

hydrogens and electronegative atoms, such as oxygen, nitrogen, or sulfur. It is an essential 

interaction for stabilization of the three-dimensional structure of DNA, proteins, and other 

synthetic polymers. A DNA-based hydrogel with tunable properties is available by 

controlling DNA sequences and its nanostructures75, 76. A supramolecular polymer, 

P(NAGA-VPA), was based on copolymerization of N-acryloyl glycinamide and 

vinylphosphonic acid directly crosslinked by hydrogen bonding between glycinamide 

groups in an aqueous solution77. This hydrogel mineralized in situ to improve mechanical 
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strength and deliver BMP-2 to support bone regeneration in rat forelimb defects77. 

Hydrogen bond-based hydrogels are weak and fragile compared to covalently crosslinked or 

other physical hydrogels. Recent developments seek multiple hydrogen bonding motifs in 

preparing hydrogels with improved structural integrity. In particular, ureido-pyrimidinone 

(UPy) is a well-studied quadruple hydrogel bonding unit that can form strong intermolecular 

bonds compared to a single hydrogel bond78. A previous study developed injectable 

hydrogels with rapid self-integrating properties by grafting UPy to a dextran backbone and 

the resultant hydrogels successfully regenerated both bone and cartilage tissues in a mouse 

subcutaneous model79.

3) Hydrophobic interactions: Non-polar groups in a hydrophilic polymer tend to 

aggregate and fold the network to form a hydrophobically associated hydrogel. A 

hydrophobic interaction is also triggered by an external stimulus, such as temperature. A 

gelation of PNIPAM can be initiated by the aggregation of isopropyl moieties at a 

temperature above its LCST (32 °C), and reversibly interchange its gelation state at this 

point39, 40. Poly(N-acryloyl glycinamide) is an example of an upper critical solution 

temperature (UCST) induced hydrogel, and its composite hydrogel with transforming 

growth factor β-1 (TGFβ-1) and β-tricalcium phosphate (β-TCP) was effective in rat 

osteochondral regeneration80. A hydrogel can be designed to possess hydrophobic guest and 

host molecules, adamantane and cyclodextrin groups, to direct crosslinking in a fixed 

geometry81. A pair of cyclodextrin modified gelatin and aromatic residue possessing gelatin 

could form a stable hydrogel by guest-host interaction, and supported bone regeneration in a 

rat calvarial defect82. Although gelation caused by hydrophobic interactions occurs under 

mild conditions with a low risk of damaging encapsulated cells and bioactive agents, there 

are some disadvantages to this approach for applications as BTE scaffolds. Thermosensitive 

hydrogels exhibit a slow response rate to temperature changes, high shrinkage after 

dehydration, and poor mechanical properties. Many efforts have been made to modify the 

hydrogel features, including interpenetrating polymer networks, nanocomposites, etc41, 83. 

Hydrophobic domains are often introduced to polymer chains to create high-toughness 

hydrogels84, 85. However, incorporation of hydrophobic units could lead to nonuniform 

arrangement or phase separation of hydrophobic domains.

2. Biofunctionalization of hydrogels

Matrix remodeling is mediated by encapsulated cells, followed by the process of cell 

attachment, spreading, migration, differentiation, and ECM deposition86. Although a 

hydrogel already has advantages for providing a suitable microenvironment for cells because 

of its hydrophilic and three-dimensional organized nature, it is still necessary to present 

osteogenic microenvironments for applications in BTE (Figure 2). In the following sections, 

we will discuss the several strategies used to customize hydrogel microenvironments to 

specifically guide bone regeneration (Table 3 and Figure 3).

2.1. Bioconjugation

Bioconjugation covalently couples functional groups onto the polymer backbone to fabricate 

novel cell-responsive hydrogels. Because of strong covalent bonds, it can stably deliver 
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bioactive molecules to the localized area. These functional groups can be a variety of 

peptides, proteins, polysaccharides, specifically charged moieties, and genes.

2.1.1. RGD peptide—The arginine-glycine-aspartic acid (RGD) peptide is an integrin 

binding ligand, which regulates cell attachment and spreading87. While some biopolymers 

like collagen or fibrin already contain abundant RGD groups in their structure, many other 

polymeric materials such as hyaluronic acid, alginate, chitosan, and PEG lack this ligand. 

RGD peptide also triggers intracellular signaling, which mediates osteoblast 

differentiation88, 89. Therefore, RGD conjugation significantly improved cell attachment, 

spreading, and osteogenesis in these hydrogels31, 90–92.

2.1.2. Catechol group—Catecholic amino acid present in mussel adhesive is an 

attractive functional moiety for enhancing cell adhesion. The role of catechol in wet-

adhesion is well known through the mechanism of π-π stacking, coacervation, or 

oxidation93. The catechol group can be adsorbed onto hydroxyapatite, which is a key 

component of matrix mineralization94. Therefore, catechol-functionalized polymeric 

hydrogels such as hyaluronic acid95 or alginate96 have high potential in BTE.

2.1.3. Calcium-binding groups—Matrix mineralization is a unique process in bone 

tissue that fills the organic matrix with calcium-based nanocrystals. Negatively charged 

PO4
3− or COOH groups can attract calcium ions, which are appealing candidates for 

bioconjugation97. Phosphate groups containing phosphoserine conjugated chitosan hydrogel 

could nucleate minerals on the hydrogel surface and support bone repair in a mouse calvarial 

defect31. Oligo[poly(ethylene glycol) fumarate] hydrogel functionalized with phosphate 

groups also allowed calcium uptake and exhibited osteoconductivity98. Carboxyl group 

functionalized polyacrylamide hydrogel could capture calcium ions by decreasing its 

diffusion rate and initiating chelate formation99.

2.1.4. Heparin—Heparin is a highly sulfated ECM molecule with great binding affinity 

for growth factors, such as BMPs. It forms a stable complex with growth factors to increase 

their bioactivities, and also regulates BMP function by interacting with its antagonists, such 

as noggin100–102. By conjugating heparin onto a hydrogel backbone, it is possible to achieve 

a specific interaction with BMP to demonstrate the overall osteogenic ability of the 

hydrogel. Heparin conjugated fibrin hydrogel was studied for the sustained delivery of 

BMP-2 and improved bone regeneration in a mouse calvarial defect103, 104. Heparin 

conjugated chitosan hydrogel enhanced BMP bioactivity by protecting BMP from 

physiological stressors and its antagonist, noggin105.

2.1.5. BMP or BMP-derived peptides—BMP is a key regulating factor in 

osteogenesis, which is commonly used with various delivery strategies for bone repair106. 

However, a high dose application of BMP-2 because of its short half-life and poor vehicle 

ability produces many side effects4. Therefore, direct immobilization of BMP-2 in a 

hydrogel scaffold is an appealing strategy to prolong BMP-2 stability and release. BMP 

immobilized methoxy polyethylene glycol-polycaprolactone block copolymer hydrogel 

could mineralize calcium and induce osteogenic differentiation in a mouse subcutaneous 

implant107. BMP conjugated fibrin-hyaluronic acid hydrogel showed no side effects, such as 
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heterotopic bone formation in a goat mild intervertebral disc degeneration model108. 

However, direct conjugation of BMP is costly. Therefore, a peptide that mimics BMP is an 

alternative strategy to keep the osteogenic potency of BMP protein with a simpler 

conjugation. BMP-2 mimicking peptide conjugated alginate hydrogel could initiate BMP-2 

signaling and increase mineral deposition of murine MSCs109.

2.1.6. Nucleic acids—Nucleic acids can modulate cellular function at the gene level by 

enabling specific protein expression with the addition of DNA and mRNA, or knocking 

down target genes with the incorporation of siRNA and miRNA. Delivery of nucleic acids 

using nanoparticles is an extensively studied field. In comparison to nanoparticle-based 

delivery, carrier-free delivery of genes is not a typical strategy because of its low cellular 

uptake. However, lipophilic modification of genes could effectively improve siRNA 

uptake110, such that it enables direct delivery of naked genes by conjugation in a hydrogel 

network. Recent studies showed that covalently tethered siRNA in a dextran hydrogel could 

control and prolong its localized release and improve RNA bioactivity111.

2.2. Composite-hydrogel

Beside chemical conjugation of hydrogels, a composite strategy driven by non-chemical 

interactions is also beneficial for hydrogel functionalization. Composite-hydrogels can 

exhibit synergistic effects by counterbalancing the drawbacks of each of the combined 

materials112. A hydrogel network provides a continuous phase in composite-hydrogels, and 

a dispersed phase created by other incorporated molecules can add bioactivities as well as 

reinforcement113.

2.2.1. Inorganic fillers—Inorganic substance in bone tissue plays a role in supporting 

and protecting the structure of the organic portion. A composite hydrogel constructed with 

inorganic fillers and an organic hydrogel mimics native bone structure.

1) Calcium phosphate: The main organic and inorganic composition of bone is collagen 

and hydroxyapatite, a crystal form of calcium phosphate. Therefore, direct incorporation of 

calcium phosphate in various hydrogels is a common fabrication method for BTE 

applications. This approach is seen in diverse hydrogels, such as chitosan-gelatin114, whey 

protein isolate-gelatin115, PEG116, polyacrylic acid-polyaspartic acid117, and methacrylated 

gellan gum118. Calcium phosphate can be self-assembled in a hydrogel network by 

incorporating calcium intriguing molecules, such as poly-L-glutamic acid119 or 2D black 

phosphorus nanosheets120. These hydrogels have increased mechanical strength with better 

mineralization compared with the unmodified hydrogels.

2) Nanoclay: Clays and clay minerals, such as montmorillonite and laponite, are 2D 

silicate sheets with large surface area, which can adsorb biomolecules such as proteins, 

peptides, or protons. A montmorillonite-chitosan nanocomposite hydrogel could induce 

osteogenic differentiation of the encapsulated cells and enhance bone healing in a mouse 

calvarial defect model without additional therapeutic agents or stem cells121. Laponite-

bisphosphonate functionalized HA hydrogel could facilitate self-assembly of hydrogel and 

BMP-2 localization in vivo122. Laponite-guanidylated chitosan hydrogel induced 
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osteoinductivity by enabling osteogenic differentiation via activation of the Wnt/β-catenin 

signaling pathway123. Addition of nanoclay molecules in hydrogels enhanced stiffness and 

released biochemical cues for osteogenesis over time during degradation.

3) Bioactive glass: Bioactive glass is an osteoinductive glass-ceramic surface decorated 

with silicon-OH groups. The surface of bioactive glass can deposit calcium phosphate and 

lead hydroxyapatite formation. The functional groups on the surface of bioactive glass can 

be used in grafting BMP-2 and form a composite hydrogel with methacrylate gelatin to 

promote bone regeneration in a rat calvarial defect124. It can form a composite hydrogel with 

chitosan-silk fibrin-glycerophosphate and support bone repair in a rat calvarial defect125. 

Bioactive glass can be mixed with other ceramic powders to produce bonelike granules and 

combined with a dextrin hydrogel for application in goat tibial fractures126.

4) Others: Bone cement consisting of tricalcium silicate and calcium sulfate hemihydrate 

in an alginate hydrogel enabled apatite mineralization with excellent cytocompatibility of rat 

bone marrow stem cells127. Another inorganic filler, such as eggshell, was also able to form 

a composite with a gelatin hydrogel and successfully regulate osteogenic differentiation of 

human dental pulp stem cells128.

2.2.2. Organic fillers—Composite-hydrogels can be fabricated using not only inorganic 

but also organic fillers, such as various polymers. A polymer-based composite-hydrogel has 

an entangled network because of the elongated structure of the polymer, which can support 

physical stiffness, and influence the swelling and deswelling response.

A polymer-based composite-hydrogel can be fabricated with a simple mixture of different 

polymers. Usually polymers with different surface charges can be stably incorporated 

because of electrostatic binding leading to stable network formation. A composite-hydrogel 

of fibrin and HA minimized cell-contractile forces, which accelerated fibrin degradation and 

maintained a three-dimensional structure that supported cell proliferation129. Another 

composite-hydrogel of chitosan and heparin-mimicking sulfonated polymers, such as poly-

vinylsulfonic acid or poly-4-styrenesulfonic acid, were stably incorporated in a chitosan 

network with homogenous distribution29. These polysulfonate fillers were also able to 

stabilize and enhance BMP activity similar to heparin. There are also other examples of 

polymer-polymer composite hydrogels in BTE, such as chitosan-collagen71 or chitosan-

alginate70 composites.

Polymer-based composite-hydrogels can be diversified using various fabrication techniques, 

such as electrospinning or self-assembly. Electrospinning is a typical method for generating 

nanofibers, with a high aspect ratio, greater than 50130, in comparison to bulk native polymer 

chains, with an aspect ratio of 2-3131. Therefore, nanofiber incorporation in hydrogels can be 

a reinforcing material, which enhances the mechanical properties of the composite-hydrogel. 

Poly (lactic-co-glycolic acid) (PLGA) stiffened PEG hydrogel could improve the mechanical 

strength of the hydrogel compared with unmodified hydrogel and support cell viability and 

proliferation132. A nanofiber is also able to form a porous structure, which is favorable for 

cell adhesion and migration. Chitosan nanofiber incorporated PEG hydrogel could provide 

mechanical strength and support osteoblast attachment and growth133.
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2.2.3. Interphase in composite-hydrogels—A composite-hydrogel has two or more 

heterogenous phases, and the interaction of hydrogel and fillers at the interphase determines 

the long-term stability and mechanical support of the composite-hydrogel. The nature of the 

interphase depends on the two inorganic and organic filler types. There are three types of 

interphase between hydrogel and inorganic filler, 1) filler dispersed in hydrogel network, 2) 

filler acting as a crosslinker, and 3) filler adsorbed on the hydrogel surface. There are two 

types of interphase between hydrogel and organic filler, 4) interpenetrating network (IPN) 

and 5) semi-IPN.

Inorganic fillers in a composite-hydrogel can support mechanical stiffness by providing 

additional crosslinking points in the polymer network. It is possible to have no interactions 

with the polymer network in 1) or hinder crosslinking between polymer chains by changing 

polymer dispersion by adsorbing onto the surface corresponding to 3). Nanoclay121 or 

hydroxyapatite135 are good examples that can provide additional anchoring points in a 

hydrogel network corresponding to 2) by intercalation chemistry. However, when the 

addition of hydroxyapatite increased, it decreased the elasticity of the hydrogel network and 

showed heterogenous mechanical properties at mesolength and macroscopic range scale136.

Organic fillers in a composite-hydrogel can also stiffen mechanical strength by presenting 

additional conflicting points in the hydrogel network. IPN structure is generated by two 

independently crosslinked networks corresponding to 4), or entrapping a linear polymer in a 

crosslinking network corresponding to 5). Two independent networks can be formed by 

different crosslinking technologies, such as a combination of chemical and physical 

crosslinks. A mixture of gelatin methacrylamide and alignate successfully formed a double-

crosslinked IPN structure using step by step UV irradiation and calcium ion absorption137.

2.3. Hydrogels as delivery vehicles for bioactive molecules

Multiple bioactive molecules including growth factors (large proteins, cytokines, hormones), 

genes, and small molecule drugs play an important role in cellular signaling and tissue 

development. Each category of molecules has its own physicochemical characteristic and 

requires an accurate delivery system. A hydrogel could be a candidate for a delivery carrier, 

but many molecules still need additional vehicles for maintaining a proper release profile138.

An osteoinductive growth factor, BMP-2, was tactically integrated in a hydrogel via various 

vehicles including liposomes139, microfibers140, nanofibers141, poly(phosphazene) 

nanoparticles142, coacervates, and gelatin microparticles143. These BMP-2 incorporated 

hydrogels showed great osteoinductive potentials in vitro and in vivo. Parathyroid hormone 

(PTH) is an FDA approved anabolic treatment of osteoporosis, which can improve bone 

mineral density in female patients144. A PTH-PEG hydrogel coated onto a poly(propylene 

fumarate) scaffold supported bone healing in rat femoral defects by bridging full bone or a 

combination of bone and cartilage145.

Gene transfection is an attractive strategy for inducing osteogenesis. Both viral and non-viral 

vectors, which help effective transfection, incorporate homogenously in a hydrogel network 

for osteoinductive functionalization. RNAi strategy using siRNA or miRNA to downregulate 

a BMP antagonist, such as noggin or chordin, could enhance osteogenic differentiation in 
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vitro and in vivo146, 147. There are several studies that integrate these siRNAs in a bulk 

hydrogel to promote osteogenesis including siNoggin-chitosan-calcium phosphate in a 

chitosan hydrogel148, siNoggin-sterosome in a chitosan hydrogel149, siNoggin-PEI in a PEG 

hydrogel150, and miRNA-20a-PEI in a PEG hydrogel151. Additionally, siRNA152 or 

miRNA153 sequestration could be carried out by hydrophobic moieties in RNA and HA 

hydrogel, which successfully control and prolong its release.

Multiple small molecule drugs have been studied for applications in bone repair, such as 

dexamethasone, phenamil, simvastatin, purmorphamine, and hydroxycholesterol. Many 

small molecule drugs are hydrophobic, which makes it difficult to directly integrate them in 

a hydrophilic hydrogel network, therefore, appropriate carriers are required to disperse these 

molecules homogenously in a hydrogel. These drugs could be applied in various forms with 

great osteogenic properties like nanodiamond-dexamethasone in a gelatin hydrogel154, 

liposome-phenamil in a chitosan hydrogel155, maltodextrin based micelle-simvastatin in a 

maltodextrin hydrogel156, mesophorous silicate nanoparticle-purmorphamine in a HA 

hydrogel157, and sterosome formed with hydroxycholesterol and sterylamine in a chitosan 

hydrogel158.

Demineralized bone matrix (DBM) is an allograft processed to remove the mineral of native 

bone to better expose osteoinductive factors such as BMP-2. However, the use of DBM is 

limited because of its handling issues and batch-to-batch variability in 

osteoinductivity159, 160. Although commercially available DBM products commonly use 

HA, sodium alginate, glycerol, and calcium sulfate as delivery carriers, these are still easily 

dispersed in the body and can potentially induce inflammation and lower the osteogenic 

effects161, 162. Several studies have investigated a new carrier hydrogel to deliver DBM and 

improve its osteogenic efficacy such as pentenoate-modified hyaluronic acid163, heparinized 

chitosan105, and laponite-chitosan hydrogel123.

3. Strategic approaches to improve osteogenic capacity

A conventional hydrogel provides a homogenous and steady microenvironment, which 

enables the stable incorporation of cells and bioactive molecules initially. However, actual 

tissue growth is not a static but dynamic process involving surrounding tissue architecture, 

cells, and bioactive molecules. Therefore, hydrogels reflecting these physicochemical 

dynamics are required for advanced BTE. Various strategies to improve osteogenic capacity 

will be discussed in the following section (Figure 4).

3.1. To enhance mechanical performance

3.1.1. Tough hydrogels—A hydrogel typically has low mechanical strength, which 

makes it difficult to apply in load-bearing tissues like bone. Mechanical strength of tissues 

vary from 0.01-1.0 kPa for fat, brain, or natural ECM, 1-10 kPa for skin, lung, or kidney, 

10-100 kPa for muscle, 100-1,000 kPa for cartilage, and over 1,000 kPa for bone169. Many 

hydrogel matrices can diversify their mechanical properties to 0.1-100 kPa by simple 

modification169. Although it is impractical to achieve over 1,000 kPa of initial mechanical 

strength in a hydrogel environment, the fate of stem cells could be modulated by relatively 

soft tuning of mechanical properties of the hydrogel.
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Multiple studies have already demonstrated that neurogenesis, myogenesis, and osteogenesis 

of stem cells varied by mechanical strength of the 2D hydrogel surface, 0.1–1 kPa, 8–17 

kPa, and 25–40 kPa170–173. In a 3D environment, matrix stiffness also influenced the fate of 

stem cells such that hMSCs are likely differentiated to neuronal cells at 1 kPa, while they are 

transformed to a glial lineage at 10 kPa174. Murine MSCs also differentiated to an 

adipogenic lineage at 2.5-5 kPa and an osteogenic lineage at 11-30 kPa, respectively175. In 

general, softer hydrogels are favorable for the differentiation of soft tissues, such as brain, 

fat, and muscle, while stiffer hydrogels are favorable for the differentiation of hard tissues, 

such as cartilage and bone175.

Many studies have investigated various strategies to overcome the mechanical weakness176 

of hydrogels by enhancing homogeneity of the hydrogel network, dissipating energy, or a 

combined approach. Homogeneity of a hydrogel network can evenly distribute the stress and 

is achieved by various functionalization techniques. Energy dissipation can prevent 

macrocrack propagation and is acquired by network entanglement, such as with an IPN 

structure. A double-network hydrogel composed of both rigid-brittle and soft-stretchable 

materials is tough-rigid177. A brittle network dissipates energy during deformation, and the 

elastic network allows it to return to its original form. A combined approach can be carried 

out by various composite-hydrogel forms.

An alginate hydrogel functionalized with RGD, methacrylate, and dopamine has shown 

enhanced tensile strength and great bone repair capacity in a rat peri-implantitis model178. A 

silk fibroin and gelatin hydrogel with dual crosslinking network also showed great 

improvement in compressive and tensile strength with promising bone healing ability in a rat 

calvarial defect. A composite-hydrogel of acrylamide and urethacrylate dextran with 

hydroxyapatite mineralization exhibited strengthened mechanical properties with 

osteoconductivity179. A ternary composite-hydrogel with chitosan, graphene oxide, and 

hydroxyapatite provided an oriented microstructure with high mechanical strength and good 

biocompatibility180.

3.1.2. Self-healing hydrogels—Self-healing hydrogel recovers its mechanical 

properties upon destruction, which is beneficial for preserving the structure in a dynamic 

tissue healing environment. Briefly, the self-healing mechanism depends on crack closure 

ability mediated by mass transfer and reconnection of broken networks in a hydrogel matrix. 

Various mechanisms that mediate self-healing properties are studied including noncovalent 

and dynamic covalent bonds181.

A silk fibroin-calcium phosphate-HA composite-hydrogel exhibited self-healing properties 

by metal-ligand coordination and supported bone healing in a rat calvarial defect165. 

Laponite nanosilicate is a well-known thixotropic modulator and showed self-healing 

properties by forming composite-hydrogels with gelatin182, chitosan123, and HA122. A 

DNA-alginate composite-hydrogel with laponite provided two self-healable links, a dynamic 

imine bond and electrostatic interactions with nanosilicate183. Both Diels-Alder and 

cyclodextrin-adamantane interactions provide dynamic covalent bonds that support self-

recovery of hydrogels. A chondroitin sulfate-PEG hydrogel with both Diels-Alder and guest-
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host interactable moieties could form a dual crosslinked network and support bone repair in 

a mouse limb defect61 and a rat cranial defect184.

3.2. To mimic the tissue architecture

Native bone tissue is a highly complex structure composed of nanofibrous entanglement and 

microporous channel arranged in a macroscopic network. The defined structure of hydrogels 

can affect cell-matrix interactions in the presence of soluble cues at nano-, micro-, and 

macro-scales for bone repair and regeneration.

3.2.1. To mimic nanoscale tissue structure—Polymeric hydrogels often incorporate 

linear nanofibers but the simple linear structure is not sufficient to provide a stable hydrogel 

network for cell encapsulation or growth factor delivery. Therefore, self-assembling peptides 

were widely used to create stable 3D hydrogels driven by physicochemical crosslinking of 

amphiphilic peptides185. In addition, their 3D structure could be easily modulated by 

altering the sequence of peptides. A recent study has shown that the nanofiber hydrogel 

made by synthetic D-form and L-form self-assembling peptides formed stable hydrogels and 

facilitated the release of growth factors to promote the rat femoral bone repair186. 

Additionally, various electrospinning techniques have been applied to improve the 

alignments, orders, and structure of nanofibers in the hydrogels187. Another study reported 

an electrospun organic-inorganic hybrid hydrogel that could constantly mineralize on its 

surface and promote osteogenic differentiation188.

3.2.2. To mimic microscale tissue structure—Tissue reformation requires mass 

transport to support cell migration, infiltration, and proliferation which lead to 

differentiation and vascularization over time. However, a traditional nano-porous hydrogel 

network interferes with these activities because of restricted room for cell movement. 

Modulation of a conventional nanoporous hydrogel with various functionalizations or recent 

progress to fabricate hydrogel microparticles are widely applied to produce microporous 

structures.

The conventional method to generate a porous hydrogel is the use of freeze-drying 

technology or the incorporation of a porogen. A hybrid hydrogel of silk fibroin and 

organosilane fabricated by unidirectional freeze-drying showed high porosity and bone-type 

anisotropic structure. It could trigger osteoblast proliferation and exhibited successful 

osseointegration in rat femur189. An alginate hydrogel incorporating hydrolytically 

degradable porogens could deliver MSCs and recruit endogenous cells to regenerate a 

critical-sized rat femoral defect34.

A nanoporous hydrogel network was able to enlarge its pore size by degradation of the 

hydrogel network. A lysozyme conjugated chitosan hydrogel could increase its pore size by 

degradation and induce cell migration throughout the bulk hydrogel166. It was also able to 

increase osteogenic differentiation and bone healing in a mouse calvarial defect. A 

nanocomposite-hydrogel also enables the generation of a microporous structure by changing 

network orientation. A chitosan-MMT hydrogel-composite exhibited an interconnected 

microporous network by intercalation chemistry and the presence of nanosilicates also 

successfully promoted bone healing in a mouse calvarial defect121. A composite-hydrogel 
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including chitosan, HA, and hydroxyapatite also exhibited porous structure associated with 

hydroxyapatite aggregation in a hydrogel network with good cytocompatibility190.

3.2.3. To mimic macroscale tissue structure—3D printing is an emerging 

technique to construct BTE hydrogels. It allows fabricating a precise, complex, and highly 

customizable architecture mimicking native bone microstructure, and provides great cell 

support and infiltration191. The physicochemical properties of hydrogels can be readily 

controlled by different 3D printing processes and the selection of bioinks. The current 

printing techniques are based on laser, nozzle, or inkjet. Hydrogel inks can be prepared by 

polymer composite or reinforced filler192, which are beneficial to improve mechanical 

properties of the final products. The hydrogel consisting of chitosan and hydroxyapatite 

could be successfully 3D printed and supported the osteogenic differentiation of 

preosteoblasts193.

Moreover, 3D printing enables the construction of more complicated structures such as 

layered, graded, multicellular, or even customized shape of hydrogels. For example, bone 

defects in the subchondral region requires a sophisticated approach to treat the complex 

osteochondral tissue with appropriate mechanical loading. A 3D printed tri-layered hydrogel 

with diverse gelatin and hydroxyapatite ratio was successfully integrated with the 

surrounding tissue and enhanced the osteochondral regeneration in a rabbit osteochondral 

defect model194. A 3D printing of thermosensitive copolymerized N-acryloyl glycinamide, 

and N-[tris(hydroxymethyl)methyl] acrylamide could prepare a gradient hydrogel due to 

rapid sol-gel transition of the materials195. The 3D printed gradient hydrogels promoted 

cartilage and subchondral bone regeneration in a rat model195. Additionally, the hierarchical 

haversian bone structure could be built up by 3D printing196. A recent study exhibited great 

potential of 3D printing to arrange the spatial distribution of different types of cells and 

create multicellular tissue, thereby increasing bone repair with blood vessel formation196. 

Lastly, cell-laden-hydrogels can be an ideal candidate for bioinks to be used in 3D 

bioprinting due to its highly cell-friendly nature. Bioinks with different properties can 

readily be obtained by blending different biopolymers. Although 3D bioprinting enables 

fabrication of customized bone grafts, many challenging points still remain to obstruct the 

clinical translation; the restricted size of printed constructs, a lack of long-term stability, and 

slow host tissue integration, among others197.

Recent advances in 3D printing technology also open the field of 4D printing. 4D printing 

incorporates the fourth dimension, time, by facilitating stimuli-responsive smart hydrogels. 

The 4D printed constructs transform their shapes and orientations by responding to the 

external stimuli, which is also beneficial to on-demand biomedical applications such as drug 

delivery198.

3.3. To enhance the release of bioactive molecules

A hydrogel implanted in bone tissue encounters diverse stimuli derived from physical, 

chemical, and biological cues. Without proper response to these stimuli, the hydrogel might 

undergo unexpected consequences, such as fast degradation or burst release of encapsulated 

cells and bioactive molecules. Additionally, because of the dynamic remodeling 

Kim and Lee Page 17

Chem Mater. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



environment, a hydrogel sustains defects, which may disrupt the structure and lead to failure 

of the implant. Therefore, an optimal stimuli-responsive hydrogel must be engineered and 

advances made in engineering hydrogels have provided a number of potential candidates. 

Lastly, these stimuli-responsive hydrogels also enable 4D cell culture mimicking the 

dynamic heterogeneity of an in vivo environment199.

3.3.1. Physical stimuli-responsive hydrogels—Physical stimuli include various 

signals including light, temperature, and magnetic field. Photoresponsive hydrogels usually 

incorporate photoreactive molecules or functional groups in the hydrogel backbone. A 

variety of photo-crosslinkable hydrogels modified with vinyl groups are good examples200. 

Photodegradation is also a common mechanism used to modulate hydrogel structure. For 

instance, black phosphorous nanosheet incorporated gelatin hydrogel could enhance the 

phosphate release profile with light activation, including natural and near infrared light, and 

improved bone healing in a rabbit calvarial defect201. An azobenzene derived crosslinker 

reversibly changed its chemical isomerization with UV and visible light activation to act as a 

photo-switchable crosslinker and modulated hydrogel stiffness by light activation202.

A thermo-responsive hydrogel is also very commonly used in bone tissue engineering. 

PNIPAM based thermal gel is a well-known thermo-crosslinkable hydrogel40. PNIPAM 

conjugated HA hydrogel exhibited reversible gelation203, and effectively delivered bioactive 

microvascular fragments with enhanced vascularization in a mouse femur defect 

model204, 205. Alginate conjugated with temperature-responsive poly(ε-caprolactone-co-

lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) and O-

phosphorylethanolamine transformed to a stable hydrogel at 37 °C and showed in situ 
mineralization in a rat subcutaneous injection with BMP-2 loading206.

A magnetic-responsive hydrogel incorporates paramagnetic or ferromagnetic molecules in a 

hydrogel network. A super paramagnetic Fe3O4 nanoparticle incorporated hydrogel of 

methoxy(polyethylene glycol)-polyalanine and hydroxyapatite could enhance osteogenic 

gene expression under both static and moving magnetic fields207. Iron oxide, Fe3O4, 

incorporated bisphosphonate modified HA hydrogel exhibited heat-generation controlled by 

a magnetic field and showed good biocompatibility167. In addition, a recent study has shown 

that a ferrogel loaded with BMP-2 could successfully control the timing of the protein 

release using remote magnetic stimulation in an immediate or delayer manner208.

3.3.2. Chemical and biological stimuli-responsive hydrogels—Chemical and 

biological stimuli involve alterations in pH or enzymes. A pH-responsive hydrogel contains 

functional moieties, which can accept or donate protons with pH alteration. A composite 

hydrogel of chitosan and PEG reinforced with bone ash could modulate incorporated 

amoxicillin release at different pH 1.2 and 7.4, which are close to the gastric and intestinal 

environment pHs, respectively because of the polyelectrolyte properties of chitosan209. A 

chitosan-calcium phosphate-glucono δ-lactone composite-hydrogel demonstrated pH-

triggered self-assembly and induced ectopic bone formation in mouse with BMP 

incorporation168.
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Enzyme-responsive hydrogels containing substrates are triggered by endogenous enzyme 

activity in the human body. Chondroitin sulfate-PEG hydrogel modified with 

transglutaminase factor XIII specific substrate sequences could tune hydrogel network 

properties by altering transglutaminase concentration210. It also exhibited controlled release 

of BMP-2 and promoted the osteogenic differentiation of BMSCs. Matrix metalloproteinase 

(MMP) cleavable crosslinker is also a well-known enzyme-sensitive group widely used in 

BTE. MMP-sensitive PEG hydrogels could support cell maturation from osteoblast to 

osteocyte and bone ECM deposition211.

4. Evaluation of osteogenic hydrogels

Osteogenic potential of the newly developed hydrogel can be evaluated under diverse 

conditions including in vitro, ex vivo, in vivo, and clinical settings. However, direct 

translation to the clinical assessment costs hugely, and it is sometimes difficult to understand 

the results because of the complexity of the system. Therefore, researchers have investigated 

various preclinical models to assist the clinical studies. In this section, we will discuss the 

characteristics of each evaluation model.

4.1. In vitro evaluation

The intimate interaction of hydrogels with bone tissue is critical to the success of 

implantation. Therefore, it is necessary to evaluate molecular and cellular level phenomena 

in the immediate environment of bone forming cells212. Bone tissue possesses a variety of 

cells including osteoblasts, osteoclasts, mesenchymal stem cells, and different types of 

immune cells. Osteoblastic cell lines are well-established and available for in vitro 
investigation. It usually begins with a typical characterization of cell adhesion and growth, 

followed by the analysis of osteogenic differentiation phenotype markers. However, true 

bone regeneration is not a one-pot reaction, but followed by a dynamic sequential order or 

crosstalk between different cell types.

Bone response to implanted biomaterials is a highly concerted process involving blood 

clotting, secretion of inflammatory cytokines, initiation of vascularization, and woven bone 

formation. To simulate these complex dynamic environments in vitro, recent studies have 

tested biomaterials with co-cultures of immune cells, osteoclasts, and endothelial cells, or 

step-by-step inclusion of stimulating factors213. The effect of a periosteal ECM derived 

hydrogel on the different stages of bone healing was evaluated in vitro by demonstrating its 

ability to promote the M1-to-M2 transition of macrophages and induce angiogenesis and 

osteogenesis214. The bioactivity of a silica-collagen hydrogel was characterized in a human 

co-culture model by evaluating its ability to control the ratio of osteoblasts and 

osteoclasts215. A collagen-fibrin gel was tested in the co-culture system of endothelial cells 

and MSCs to recapitulate vascular formation in vitro216.

Additionally, advances in nano- and pico-technology provide new methods to characterize 

the surface and internal morphology of hydrogels in vitro. Conventional methods to 

characterize materials are occasionally not appropriate for hydrogels due to their high-water 

content or soft nature. Cryo-imaging has been adopted to observe the hydrated hydrogel 

network and its mesh size, which is difficult to detect after dehydration166, 217. Additionally, 
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the development of spectroscopy such as Brillouin or Raman enabled nondestructive 

observation of nanostructured hydrogel networks in a noninvasive manner136. Diverse 

nanoindentation methods including atomic force microscopy could measure poroelastic 

properties of hydrogels218, 219.

4.2. Ex vivo evaluation

Even though both in vitro and ex vivo models represent the tests conducting outside of the 

living body, in vitro is usually related to the test tube experiments and ex vivo covers more 

broad range. Traditionally, ex vivo bone organ culture was accompanied by the retrieval of 

bone tissue and treatment with biomaterials, cells, or stimulating factors220. The 

cytoarchitecture and intercellular connections are well retained in ex vivo systems, which 

can mimic and replace ethically challenging in vivo models221. For instance, an organotypic 

chick femur defect culture system was adopted as a critical size defect model to evaluate 

bone augmenting abilities of hydrogels releasing osteogenic growth factors222, 223. Human 

ex vivo bone defect model prepared by cylinder-cut of femoral heads also remained viable 

for 28 days and exhibited bone repair processes with the incorporation of collagen 

hydrogels224. Moreover, recent development of microfluidics systems create the organs-on-

a-chip models which bridge the gap between traditional ex vivo and in vivo studies225. 

Bone-on-a-chip enables the spontaneous growth of miniaturized bone and periodic sampling 

in a physiologically relevant model226. The ex vivo bone models allow rapid screening of 

therapies, high reproducibility, and low cost, which are beneficial in comparison to in vivo 
studies. However, ex vivo models are not appropriate for long-term culture and do not 

completely mimic the in vivo state in the perspective of nutrients supply or missing 

mechanical stimulation.

4.3. In vivo evaluation

In vivo models have been the long-established sources to elucidate safety and activity of 

biomaterials in a living organism prior to human clinical trials. The in vivo bone repair 

ability of osteogenic hydrogels can be studied using diverse animal models. Animal studies 

are more suitable for estimating results before translating them to clinical settings in 

comparison to in vitro experiments. Animal models are selected using multiple criteria 

including size, cost, handling, surgery resistance, infection, biological similarity to humans, 

and bone structure and composition etc. Diverse animal models to assess bone healing 

capacity will be discussed in the following section (Table 4).

4.3.1. Choice of animals—Various animal models ranging from small animals, such as 

rodents and rabbits, to large animals, such as dog, goat, sheep, and pig, are employed to 

evaluate the osteogenic properties of hydrogels. Rodent models are preferred because of 

their numerous advantages in mouse and rat species, respectively. A mouse model is 

commonly used in biological research because of the diversity in the available strains and 

ease of use with relatively high cost efficiency227. However, it has a size limitation, which 

presents challenges for surgery and makes it difficult to perform experiments and create 

proper load-bearing defects. A rat model may overcome the size issue of mice with similar 

organ proportions to humans. However, it has limited strain diversity compared with mice, 

and it is less cost efficient to maintain because of its larger size. A rabbit model has a larger 
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bone structure but is still limited in size compared with a dog, sheep, or pig. Large mammals 

have a much larger skeleton which resembles the high load-bearing human bone 

environment, but each model also has limitations in the existence of gaps between human 

bone composition and healing rate.

4.3.2. Bone regeneration models—In vivo bone healing studies can be divided into 

two models, orthotopic and ectopic bone formation. An orthotopic bone formation model 

usually derives from bone fracture healing. It allows for an actual bone remodeling 

environment with endogenous MSCs, osteogenic growth factors, and mechano-transduction. 

It is composed of multiple models such as the calvarial, long bone, partial cortical, or 

cancellous bone defect228. In contrast, ectopic bone formation models including 

subcutaneous, intramuscular, or kidney capsule implantation have relatively low load-

bearing environments with low bone-related cytokines229. Taking into account the 

differences in each model, an appropriate animal model can be chosen to evaluate a new 

osteogenic hydrogel.

A calvarial defect model is predominantly applied in rodent species by creating a critical-

sized hole, with a diameter of 5 mm for rat and 3 mm for mouse, and implantation of a 

tissue-engineered hydrogel230. The surgical procedure is relatively simple and it does not 

require any additional support to hold the implanted hydrogel because of the stable position 

of calvaria. However, it is unable to provide a load-bearing environment and is difficult to 

use for long-term studies because of the relatively short life-period of the rodent models, the 

most widespread animal species used for calvarial surgery. It also has a large difference in 

size and skeletal loading system in comparison to humans. Additionally, the biological 

consequences of bone growth are different in the calvarial models compared with other bone 

areas. Although common bone growth derives from embryonic mesoderm via a cartilage 

intermediate (endochondral ossification), calvarial bone growth is influenced by the neural 

crest and mesoderm (intramembranous ossification)231.

The maxillofacial/Mandible defect model is also used in rodents and other small animal 

models232–234 Maxillofacial defects are usually found in dental clinics and occur by tooth 

loss, apical cysts, or periodontis etc. The environment of the maxillofacial bone is different 

from the calvarial area in blood supply, mucosal covering, microorgamisms, and mechanical 

loading etc235. Therefore, the mandible defect model establishes its unique scope of bone 

regeneration in comparison to calvarial or long bone defect models.

Long bone segmental defects in large animals are more similar to the clinical setting than 

calvarial defects. It is usually executed by removing a segment of the long bone by using a 

drill or a saw. Fixation devices are often used externally or internally because of the large 

defect size and mobility. The physiological bone condition of humans is close to dogs, 

sheep, goats, and pigs; the most widely used model is sheep because of its similar weight to 

adult humans and relatively low social concern and handling issues236. Although the long 

bone defect model is closer to the physiological condition of humans, the standardized 

critical defect conditions are still disputable because of the complicated aspects of a model 

depending on animal species, age, defect location, presence of periosteum, or metabolic 

conditions.
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The ectopic bone formation model provides a relatively controlled in vivo conditions 

compared with the fracture healing models229. Therefore, it is beneficial for assessing a new 

osteoinductive hydrogel, growth factors, and bone-forming stem cells by ruling out the 

impact of surrounding osseous environments. However, it has poor robust bone growth 

potentially affected by the lack of blood flux and orthotopic environment. It is essential to 

understand the benefits of each model and choose an appropriate system to evaluate a newly 

designed hydrogel.

4.3.3. Mouse models for bone disease research—In addition to simple bone 

regeneration from the fractures, it is also necessary to evaluate bone healing under more 

severe complications such as disease models. Multiple bone disorders have seriously 

impacted the general population, specifically for aging communities. There are many age-

related bone diseases including osteoporosis, osteodystrophy, osteopetrosis, and bone 

cancer230. We will not discuss the details of each bone disorder, but we will explore how to 

develop a specific animal model to understand the disease mechanisms. Bone disorders can 

be generated naturally or can be induced by genetic modification. However, a naturally-

occurring model is very limited in number as well as conditions, so a genetically modified 

animal model is preferable. A genetically-modified mouse model has numerous advantages 

for use in bone disease studies such as availability, well-understood genome, which is 

similar to the human genome, low cost, high reproductive potential, and ease of handling. 

There are other animals available for bone disorder research; however, the mouse model is 

preferred in many applications because of its unique advantages.

4.4. Clinical translation

After pre-clinical studies using in vitro, ex vivo, and in vivo models, a new osteogenic 

hydrogel can be referred for clinical translation. Bone graft substitutes, including osteogenic 

hydrogels, categorized in implants and prosthetics by FDA guidelines, which require them to 

proceed as class II-510(k), or III-Premarket Approvals (PMA) medical devices approvals 

and clearances depending on the specific indications for use. There are 184 bone graft 

substitutes with FDA 510(k) clearance and 96 products with PMA clearance from 2015 to 

2019, which were identified by searching the FDA database. These data suggest that 

numerous new bone substitute products are made available reflecting market demand. Many 

biomaterial-based products incorporate both inorganic and organic substances, such as the 

mixture of hydroxyapatite or silicate granules in various hydrogel matrices. Osteogenic 

properties of these products are mainly governed by inorganic components and the hydrogel 

matrix plays a role in the improvement of handling properties. Therefore, many of these 

products have localized surface functionalization, which potentially limits bone healing7, 250. 

The enhancement of overall osteogenic properties in a hydrogel matrix can broaden 

opportunities for the production of new bone substitute products.

5. Challenges and opportunities

In this review, we have discussed the latest approaches for designing new osteogenic 

hydrogels. Numerous new materials have been studied, but only a limited number of 

products are moved into clinical applications because of several critical challenges.
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First and foremost, the mechanical strength of a hydrogel is insufficient for application in 

large bone defect areas. The soft, elastic, water-enriched environment of a hydrogel is 

beneficial for attracting native cells or growth factors, but the instability from weak 

mechanical strength is a key issue for applications in clinical settings. However, many 

researchers have investigated methods to improve the mechanical properties of hydrogels, 

which makes it possible to broaden the potential applications.

Additionally, many of the commercially available bone graft products are growth factor-

based treatments delivering osteogenic proteins via carrier materials, such as collagen 

sponges, calcium phosphate, and hydrogels. A growth factor-based treatment is an attractive 

strategy, but it also carries well-known clinical side effects mainly because of the 

supraphysiological doses administered. Hydrogels currently used as carriers have limited 

function for physically enclosing the osteogenic molecules to the defect sites, but do not 

interactively communicate with the molecules. A simple modification of a hydrogel carrier 

can enhance the stability and bioactivity of proteins, which can potentially improve the 

efficacy of growth factor-based treatment.

Lastly, many commercially available biomaterial-based treatments rely on inorganic 

substances in the composite-hydrogel. The limited number of accessible inorganic molecules 

such as calcium phosphate or silicate molecules hinder extensive use. These inorganic 

substances are usually more cost-effective than biologies; however, their osteogenic efficacy 

is less favorable. The localized distribution of inorganic substances in the composite-

hydrogel also limits their osteogenic features. Therefore, the improvement of osteogenic 

properties of a hydrogel can potentially enhance the overall bone healing capacity of new 

composite-hydrogel materials.

Although many ongoing challenges remain, multiple interdisciplinary studies are needed to 

engineer new osteogenic hydrogels that can overcome the current challenges and expand 

future opportunities.
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Figure 1. 
Scheme of hydrogel fundamentals. Hydrogel is formed by crosslinking of polymer network, 

and its physicochemical properties can be modulated by the choices of polymers and 

crosslinking methods. Various types of biopolymers, including proteins (collagen, gelatin, 

and fibrin) and polysaccharides (hyaluronic acid, chitosan, and alginate), and synthetic 

polymers are widely used in BTE hydrogels. Diverse crosslinking technologies (chemical 

and physical) support the mechanical stability of hydrogels. The representative scheme of 

the chemical and physical crosslink is a radical crosslinking of methacrylated glycol 

chitosan and an ionic crosslinking of chitosan with glycerol phosphate, respectively.
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Figure 2. 
Scheme of hydrogel biofunctionalization. The osteogenic properties of hydrogels are 

enhanced by various modifications including bioconjugation, composite formation, and 

encapsulation of osteogenic components. Bioconjugation enables covalent tethering of 

numerous functional groups. Composite hydrogel allows non-covalent incorporation of 

functional organic or inorganic fillers. Moreover, diverse osteogenic components (proteins, 

cells, genes, small molecules, or bone grafts) can be encapsulated into hydrogel network.
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Figure 3. 
Biofunctionalization of hydrogel, a) Chitosan hydrogel modified with both cell RGD 

peptide, a cell binding site, and phosphoserine, a calcium binding group. Adapted with 

permission from 31. Copyright 2016 The Royal Society of Chemistry, b) BMP-2 

immobilized hydrogel inducing osteogenesis of human periodontal ligament stem cells. 

Reprinted with permission from 107 without changes under the Creative Commons 

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). 

Copyright 2017 Springer Nature, c) Mussel-inspired catechol functionalized HA hydrogel 

and its gelation. Adapted with permission from 95. Copyright 2016 American Chemical 

Society, d) Supramolecular chitosan hydrogel functionalized with guanidine group, 

nanoclay, and DBM activating Wnt/β-catenin signaling. Adapted with permission from 123. 

Copyright 2020 American Chemical Society, e) Gelatin hydrogel incorporated with 

rhBMP-2 grafted mesoporous bioglass nanoparticles and its crosslinking. Adapted with 

permission from 124. Copyright 2020 American Chemical Society.
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Figure 4. 
Various strategies to improve the osteogenic potentials of hydrogels, a) Tough hydrogel. 

Double-crosslinked (physical and chemical) regenerated silk fibroin/gelatin (RSF/G) 

hydrogel with enhanced mechanical properties (AS: ammonium sulfate, EAS: enzyme-

treated AS). Adapted with permission from 164. Copyright 2019 Wiley-VCH. b) Self-healing 

hydrogel. Silk fibroin-calcium phosphate-HA hydrogel and its self-healing property. 

Adapted with permission from 165. Copyright 2017 Wiley-VCH. c) Porous hydrogel. 

Lysozyme conjugated hydrogel with tunable degradation to generate porous hydrogel. 

Adapted with permission from 166. Copyright 2018 American Chemical Society, d) 
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Magnetic-responsive hydrogel. HA hydrogel incorporating FesCE nanoparticles and its heat 

generation under magnetic stimulus. Adapted with permission from 167. Copyright 2019 

American Chemical Society, e) pH-responsive hydrogel. Carboxymethyl chitosan (CMCh)-

amorphous calcium phosphate (ACP) hybrid hydrogel demonstrating pH triggered self-

assembly. Adapted with permission from 168. Copyright 2019 American Chemical Society.

Kim and Lee Page 42

Chem Mater. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim and Lee Page 43

Table 1.

Comparative table of polymers to fabricate hydrogels for bone regeneration

Polymer Advantages Drawbacks

Collagen - Most abundant ECM in bone
- Providing cell attachment sites
- Natural growth factor reservoir

- Potentially provoking immune response
- Hard to control the quality due to heterogeneity of 
sources

Gelatin - Mimicking bone ECM
- Lower immunogenicity than collagen
- Easy to functionalize

- Fast degradation
- Low mechanical strength

Fibrin - Providing cell attachment sites
- Easy to tune mechanical strength
- Fast gelation

- Significant shrinking during gelation
- Fast degradation
- Low bone specific bioactivity

Hyaluronic acid - Interacting with growth factors
- Low immunogenicity
- Easy to functionalize

- Low mechanical stability without crosslinking
- Fast degradation

Chitosan - Inherent antibacterial properties
- Easy to functionalize
- Low immunogenicity

- Requiring additional modification to improve 
solubility

Alginate - Fast gelation
- Easy to functionalize

- Possibility to lose structure by cation leaching

Nucleic acid - Easy to control structure due to its specific basepairing 
properties

- Difficult to make a bulk hydrogel

PEG - Easy to functionalize
- Stable in physiological condition

- Nondegradable
- Low cell adhesion
- Some immunogenicity

PNIPAM - Temperature sensitive
- Low immunogenicity

- Nondegradable
- Weak mechanical strength
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Table 2.

Comparative table of crosslinking methods to fabricate hydrogels for bone regeneration

Crosslinking Advantages Drawbacks

Photo-radical - Fast and mild reaction by not altering pH or 
temperature enormously
- Forming a stable crosslinked network

- May damage cells or bioactive molecules depending on the 
light sources
- Irreversible reaction

Schiff base - Reversible reaction with self-healing properties
- Mild reaction condition

- Relatively low stability of pseudocovalent bond
- Need to prepare two separate reactive polymers

Michael addition - Forming a stable crosslinked network
- Self-healing properties under certain conditions 
such as excess presence of thiols

- Potential side reaction to form unexpected disulfide bonds
- Need to prepare two separate reactive polymers

Diels-Alder - Specific bio-orthogonal reaction
- No side reactions and byproducts

- Need to prepare two separate reactive polymers
- Considered as an irreversible reaction under physiological 
condition (reversible at extremely high temperature above 
800K)

Enzyme - Fast and mild reaction with controlled gelation 
kinetics
- Forming a stable crosslinked network

- Short half-life of enzymes
- Enzyme potentially involving in inflammatory reaction by 
activating cytokines
- Irreversible reaction

Ionic - Fast and mild reaction
- Reversible reaction with self-healing properties

- Relatively low stability
- Possibly disrupt the crosslinking by ion bleaching

Hydrogen bond - Fast and mild reaction
- Reversible reaction with self-healing properties

- Relatively low stability
- Require multiple multivalent hydrogen bond to form 
hydrogel

Hydrophobic - Reversible reaction with self-healing properties
- Can form a fixed geometry using a host-guest 
interaction

- Relatively low stability
- Potentially form a brittle network by pushing water from 
hydrogel network
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Table 3.

Biofunctionalization of hydrogel

Biofunctionaliz ation Function Application

RGD peptide - Binding ligand of integrin
- Regulate cell attachment and spreading
- Mediate osteoblast differentiation

- Alginate91

- Chitosan31

- PEG134

Catechol group - Amino acid in mussel adhesive
- Enhance cell adhesion
- Adsorb hydroxyapatite and induce mineralization

-HA95

- Alginate90

Calcium-binding group - Negatively charted PO4
3− or COOH

- Nucleate minerals by capturing calcium ions
- Chitosan31

- OPF98

- Poly acrylamide99

Heparin - High binding affinity on growth factors
- Enhance BMP function by stabilization and protection from antagonists

- Fibrin103, 104

- Chitosan105

BMP/BMP-derived peptide - Key regulating factor in osteogenesis
- Various application in bone repair application

- PEG-PCL107

- Fibrin-HA108

- Alginate109

Nucleic acids - Modulate cellular function in gene level
- siRNA, miRNA, DNA etc.
- Carrier free delivery of genes by direct hydrogel conjugation

Calcium phosphate - Precursor of hydroxyapatite crystal - Chitosan-gelatin114

- PEG116

- Gellan gum118

Nanoclay - 2D silicate sheets adsorbing biomolecules
- MMT, LAPONITE® etc
- Induce osteogenesis by enabling osteogenic signaling

- MMT-chitosan121

- Laponite-HA122

- Laponite-chitosan123

Bioactive glass - Osteoinductive glass-ceramic surfaces
- Possess numerous silicon-OH groups

- Gelatin124

- Chitosan-silk fibrin125

Bone cement Contain tricalcium silicate and calcium sulfate hemihydrate
- Enable apatite mineralization

- Alginate127

Polymeric fillers - Incorporate biomolecules mimicking polymers
- Can form a stable IPN structure for better mechanical support

- Fibrin-HA129

- Chitosan-polysulfonate29

- PEG-PLGA132
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Table 4.

In vivo evaluation of various hydrogels

Animal Defect Hydrogels Size Time Outcome

Mouse Calvarial ciiitosan-MMT121 3 mm 6 weeks - Recruited native cells
- Bone volume increased to 46%

Calvarial PEG-RGD-Lys-glutamine 
receptor237

4 mm 12 weeks - Recruit mesenchymal progenitor cells
- Bone volume increased to 1 mm3

Femur Decellularized adipose tissue-
hydroxyapatite238

3 mm 12 weeks - Increased collagen I and osteopontin expression
- Bone volume increased to 5 mm3

Ectopic Gelatin239 N/A 4 weeks - Coated with cells in osteogenic media
- Increased collagen I and osteopontin expression

Ectopic FIA-Laponite122 N/A 6 weeks - Sustained retention of BMP-2 in vivo

Rat Calvarial Pentonate-HA-devitalized 
tendon240

7.5 mm 8 weeks - Enhanced compressive modulus and calcium
- Bone volume increased to 42%

Calvarial Gelatin-PEO-PPO-PEO241 8 mm 12 weeks - Comparable with autologous bone graft
- Bone surface area increased to 80%

Femur Gelatin-Alginate242 3 mm 3 weeks - Mg particle as a foaming agent induced vascularization
- Bone volume increased to 60%

Mandible PNFPAM-PLGA-PEG-
mesoporous silica 
nanoparticles243

5 mm 10 weeks - Incorporated with miRNA222 and aspirin
- Bone volume increased to 22%

Ectopic HA244 N/A 8 weeks - Acidic F1A enhance BMP-2 sequestering and improve bone 
formation in vivo

Rabbit Mandible Chitosan-Collagen245 8 mm 12 weeks - Incorporated with BMP-2 in gelatin microsphere
- Bone volume increased to 55%

Femur Polyacrylamide-Dextran-
Flydroxyapatite179

5 mm 12 weeks - Inorganic-organic interaction in hydrogel enhanced 
mechanical properties
- Bone volume increased to 8 mm3

Pig Mandible Alginate-HA240 10 mm 9 weeks - Delivered BMP-2 and hBMSCs, and enhanced bone healing

Femur Polyhydroxyethyl 
methacrylate-Collagen-
DBM247

10 mm 8 weeks - Collagen stimulated bone healing by changing biological 
properties of synthetic polymer and enhanced mineralization

Sheep Iliac crest ROD-Alginate-HA248 15 mm 12 weeks - Incorporated with ovine MSCs
- Bone volume increased to 40%

Femur Keratin-Hydroxyapatite249 10 mm 4 weeks - Dental implant coated with hydrogel was implanted
- Bone-implant contact increased to 58.1%
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