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C A N C E R

INFORM: INFrared-based ORganizational 
Measurements of tumor and its microenvironment 
to predict patient survival
Saumya Tiwari1*, Andre Kajdacsy-Balla2, Joshua Whiteley1, Georgina Cheng3†‡,  
Stephen M. Hewitt4, Rohit Bhargava1,5,6§

The structure and organization of a tumor and its microenvironment are often associated with cancer outcomes 
due to spatially varying molecular composition and signaling. A persistent challenge is to use this physical and 
chemical spatial organization to understand cancer progression. Here, we present a high-definition infrared 
imaging–based organizational measurement framework (INFORM) that leverages intrinsic chemical contrast of 
tissue to label unique components of the tumor and its microenvironment. Using objective and automated com-
putational methods, further, we determine organization characteristics important for prediction. We show that 
the tumor spatial organization assessed with this framework is predictive of overall survival in colon cancer that 
adds to capability from clinical variables such as stage and grade, approximately doubling the risk of death in 
high-risk individuals. Our results open an all-digital avenue for measuring and studying the association between 
tumor spatial organization and disease progression.

INTRODUCTION
A critical gap in predicting tumor behavior lies in determining how 
the structure and organization of tumor (ranging from well organized 
to disorganized) affects its ability to interact with the surrounding 
microenvironment. Access to inflammatory cells that can provide 
protumorigenic signals (1), access to nutrients (or lack of it, which 
can make tumors switch their metabolic pathways) (2, 3), changes 
in pH (4), and interaction of tumor cells with specific types of colla-
gen that can be associated with tumors acquiring a more aggressive 
mesenchymal phenotype (5) are some of the variables that influence 
how the tumor progresses. Several of these interactions are depen-
dent on the shape and structure of the tumor (called as tumor and 
tumor microenvironment spatial organization) that influence the 
ability of individual tumor cells to interact with the tumor microen-
vironment. This spatial modulation can affect the availability of sig-
naling factors, nutrients, and oxygen in the tumor microenvironment 
(6). It can also influence how rapidly prometastatic signals transmit 
between tumor cells and the tumor microenvironment and subse-
quently determine how rapidly the tumors progress. The primary 
limitation in understanding this spatial modulation is the lack of 
methods to estimate the tumor structure and organization accurately. 
There is need for high-precision identification of tumor and several 

of its microenvironment components in tissue images for every pixel 
to make this estimation feasible.

Pixel-level tissue component identifications by pathologists are 
labor and time intensive. Such identifications are not feasible for 
several hundreds of tissue images needed to robustly measure tumor 
spatial structure and organization. One of the largest annotated image 
datasets comes from the Cancer Metastases in Lymph Nodes Chal-
lenge (CAMELYON), where 400 images were annotated by pathologists 
identifying only the normal areas and metastatic tumors in lymph 
node images (7). The tumor microenvironment is much more com-
plex, changing dynamically with tumor development. Estimating 
tumor structure and organization in relation to this microenviron-
ment would require identification of each unique histological 
component (HC) in the tissue image (10 or more in colon tissue), 
as it is difficult to determine a priori which specific tumor microenvi-
ronment components play a prognostic role. It is especially important 
to differentiate between normal stroma, reactive stroma (RS), and 
immune cell–infiltrated stroma, which have been previously im-
plicated to have prognostic role (8). Hand annotation of these many 
components on several hundreds of tissue images is infeasible and 
would also suffer from interobserver variability (9, 10).

Machine learning–based classifiers can greatly aid in accurate 
pixel-level annotations of tissue images, which can subsequently be 
used to estimate tumor spatial organization but have not been suc-
cessfully developed so far. There is a wealth of biochemical signals 
in tissues, but efforts to segment tissue have been limited to a few 
components. This limitation is due to the contrast limits of tradi-
tionally used methods such as hematoxylin and eosin (H&E), which 
serve as inputs to the machine learning models. Traditionally used 
methods for tissue assessment fail to combine detailed biochemical 
measurements with spatial localization. H&E-stained slide images 
(11) are poor candidates for machine learning classifiers when more 
than a few components need to be identified. H&E images provide 
limited tissue contrast and are affected by experimental and imaging 
variations that further degrade the performance of machine learn-
ing classifiers (12). In addition, such stains may not capture subtle 
chemical changes that have not yet manifested in gross structural 
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features. Immunostaining can increase contrast in tissue by target-
ing specific tissue components but is limited to a few markers per 
slide and impractical due to need for extensive sample processing. 
Complex workflows also present a barrier to adoption and are an 
opportunity for error. Mass spectrometric imaging enables multi-
plexed imaging measurements of the proteome and metabolome 
and has been shown to be useful in detection and classification of 
cancers (13–16) and for prognostic measurements (17–19). While 
mass spectrometric imaging methods provide a detailed overview 
of the biomolecules in the tissue, they are typically limited in spatial 
resolution that can be achieved (20), prohibiting their use for study-
ing tumor structure. An ideal assay should instead balance multi-
plexed content readout with high imaging detail without the need 
for multiple processing steps. It should also capture the essential 
features of the tissue structure and organization in a manner simple 
and robust enough to be routinely adopted.

High-definition Fourier transform infrared (HD-FTIR) spectro-
scopic imaging is a technique that seeks to measure both the spatial 
and chemical content of samples without the need for staining (21–23). 
Specifically, infrared (IR) spectroscopy enables the measurement of 
abundance classes of molecules, including lipids, proteins, nucleic 
acids, and carbohydrates. This abundance is read out as the absorb
ance of IR-absorbing molecular species such as aliphatic groups, 
amides, phosphates, and ester carbonyl at specific vibrational fre-
quencies dependent on their composition, macromolecule structure, 
and local environment. The spectrum acts as a bar code of normal 
or diseased tissues. Previous works have shown that the tissues un-
dergo critical biochemical changes when transforming from normal 
to cancerous states. For example, changes in lipid composition (24), 
protein glycosylation (25), and carbohydrate distribution (26) in 
cancer development have been documented. HD-FTIR combines the 
optical microscopy capability of providing spatial detail with spec-
troscopic measurements of the inherent molecular content at every 
pixel. The molecular content in situ is measured as the increase in 
absorbance of resonant frequencies corresponding to the characteristic 
structures of the molecules in the IR range. With recent advancements 
in HD-FTIR imaging, both the tumor and microenvironment can 
be measured with subcellular pixel sizes of approximately 1 m (21), 
reducing the pixel size by almost sixfold compared with conven-
tional IR imaging instruments (27). This improved definition better 
localizes spectral signal and provides a higher-quality image, enabling 
a precise labeling of tumor and microenvironment components on 
the tissue image and improving the performance of computational 
algorithms downstream. The spatial-spectral data collected in this 
manner are highly amenable to machine learning algorithms (27, 28). 
The unique chemical composition of different histological classes in 
the tissue gives the contrast necessary for the machine learning–
based classification algorithms to perform with high accuracies. 
High definition of images achieved with this technique further aids 
in getting accurate estimates of tissue structure and organization.

In this work, we focus on the spatial constraint that is measured 
by the shape and structure of tumor, which can, in turn, affect how 
individual tumor cells are able to interact with the tumor micro-
environment and specific changes in the tumor stroma (reactive 
and nonreactive stroma and presence of inflammatory cells). We 
postulated that with HD-FTIR spectroscopic imaging coupled with 
machine learning, we can accurately and precisely identify tumor 
and tumor microenvironment components in tissue images. Build-
ing on this pixel-level recognition, we demonstrate that the spatial 

organization of tumor and its microenvironment is predictive of 
outcome in patients with cancer (Fig. 1).

RESULTS
HD-IR imaging–based segmentation of colon tissue into  
10 unique HCs
In this work, we imaged eight colon tissue microarrays (TMAs) 
with HD-FTIR spectroscopic imaging. This cohort consisted of 604 
samples from 320 patients with characteristics described in Table 1. 
Our first goal was to use the spectral contrast within the tissue to 
segment the colon tissue into 10 major HCs. These HCs were epi-
thelium (mature), mucin, epithelium (proliferative), necrosis, RS, 
blood, inflammatory cells, nonreactive stroma, muscle, and loose 
stroma. To do this 10-class classification (schematically shown in 
fig. S1A), we acquired ~1 billion spectra with 1506 IR bands per 
spectrum. One IR spectrum was acquired for every 1 m × 1 m 
pixel from samples approximately 1 mm in diameter. We obtained 
pathologist annotations on serially acquired H&E images, marking 
areas that could be identified as an HC with high confidence. These 
annotations were transferred to HD-IR images to develop ground truth 
for the classifier. In this manner, we annotated approximately 6900 
regions of interest on 419 samples with over 4.3 million spectral pixels.

Average spectra from the 10 HCs (Fig. 2A) indicate the chemical 
constitution differences between these classes. For instance, the most 
substantial differences were observed in the fingerprint region 
between 982 and 1480 cm−1, with mucin and mature epithelium 
showing starkly distinct features in 980 to 1182 cm−1. Mucin is a 
glycosylated protein that shows a strong absorption at 1038 cm−1 
(29). Mature epithelium (goblet cells) containing cytoplasmic mucin 
also register glycoprotein-associated absorbance but with a distinct 
protein composition. As seen from the spectra, and the images of 
adenocarcinomas (Fig. 2B), this functional property of mature epi-
thelium is frequently lost in the malignant or proliferative epithelium. 
This functional loss results in a difference between the spectra 
collected from proliferative epithelium and mature, normal-type 
epithelium. While some of the spectral differences shown in Fig. 2A 
arise because of differences between histologic components, we also 
accounted for other sources of variations. Some such sources of 
variation were experimental variations (array preparation based), 
patient heterogeneity, and within-patient heterogeneity (fig. S1B). 
After accounting for these variations, we retained 50 spectral fea-
tures between 1053 and 1593 cm−1 and between 2939 and 2987 cm−1 
that were eventually used for machine learning classifier.

Using the spectral signatures isolated from the colon HCs, the 
HD-IR machine learning classifier demonstrated high classification 
performance to segment colon tissue. We trained and optimized 
random forests–based supervised learning algorithm to segment 
10 colon HCs from HD-IR spectroscopic imaging data (fig. S1C). 
This classifier was trained on four arrays (a1 to a4) (fig. S2, A to D) 
and 126,946 spectra per class, calibrated on two additional arrays 
(a5 and a6) (fig. S3, A and B), and tested on two independent arrays 
(a7 and a8) (fig. S4, A and B). For both training and testing, the area 
under the curve (AUC) of the receiver operating characteristic (ROC) 
curve was evaluated. High specificity and sensitivity were obtained 
in both training and independent validation data, yielding an average 
AUC of 0.94 (fig. S5) and 0.93 (Fig. 2C), respectively.

The cohort used for training in this study comprised paraffin-
embedded colon tissue cores, where normal-appearing colorectal 



Tiwari et al., Sci. Adv. 2021; 7 : eabb8292     3 February 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 10

mucosa and lymph node metastases were also sampled. Figure 2B 
compares the H&E images with corresponding HD-IR histologic 
images for normal colorectal mucosa, invasive tumors, and lymph 
node metastases. We were also able to identify and localize the pres-
ence of malignant cells in samples from lymph node metastases. 
Prior landmark work (30) had described a deep learning method 
that was used to perform whole-slide image classification and tu-
mor localization in the lymph node H&E images with AUC of 0.925 
and 0.705, respectively. In comparison, we consistently got >0.93 
AUC for both whole-slide classification and tumor localization in 
the lymph node using our classification algorithm, indicating a su-
perior classification performance compared with previously reported 
H&E benchmarks as measured by the ROC AUC values. We also 
tested the performance of this classifier on an additional 27 surgical 
resection samples, which showed good correspondence with the 
H&E images (Fig. 2D and fig. S6).

Tumor spatial organizational measurements predict survival 
in the presence of RS
We next focused on characterizing and using the tumor structure 
and organization for prognostication. To reduce the complexity of 
the tumor microenvironment to measurable quantities, we focused 
on three main components of the tumor microenvironment—RS, 
where the desmoplastic reaction was present; nonreactive stroma, 
where the desmoplastic response was absent; and lymphocytes. The 
desmoplastic reaction was identified using previously established cri-
teria, namely, enrichment of “reactive” fibroblasts, the molecular organi-
zation of stroma, and presence of other cell types (31, 32). In each 
case, the pathologist providing the ground truth categorization was 
blind to all accompanying clinicopathological data, including stage. 
For this analysis, we selected TMA cores with at least 5% malignant 
epithelium by area, retaining a total of 245 patients in the study. Of these 
245 patients, our model was developed and evaluated on 220 patients, 
and 25 patients were left out for validation of risk stratification.

We used the annotated images to measure quantitative spatial 
features that estimate the tumor structure and organization in the 
context of the microenvironment. For this analysis, we downsampled 
the image to a third to approximate the pixel size to a single tumor 
cell and to improve computational time. We defined the tumor 
structure using the apparent distance between tumor and a nontumor 
HC (dHC). This distance feature dHC is a measure of the distance 
between tumor cells and a nontumor HC. Specifically, because we 
want to understand tumor structure in the context of its microenvi-
ronment, dHC varies depending on the presence and proximity of 
the HC used to calculate dHC. To demonstrate how structure is cap-
tured with dHC, we simulated cases where the tumor area was kept 
constant while varying the tumor shape from cylindrical to spherical 
(Fig. 3A). On the basis of dHC values, cylindrical tumors have lower 
dHC as compared with spherical tumors. Although tumor structure 
is an important component, tumor structure does not capture the 
abundance of the HC that also influences tumor behavior. There-
fore, we defined the microenvironment HC density (NHC) as the 
density of an HC in a radius R from tumor cells as the center. There-
fore, the final spatial organization of tumor and its microenviron-
ment was captured as the interaction product between dHC and NHC 
(IHC) for each tumor cell (Fig. 3B).

To determine whether the quantitative spatial features defined 
here associated with outcome, we compared the survival of patients 
against dHC, NHC, and IHC for each of the microenvironment HC, 
namely, RS, lymphocytes, and normal stroma. We dichotomized each 
of these candidate features by splitting at the median value, giving 
us two patient groups per feature per microenvironment component 
tested. We performed the univariate log-rank test to determine whether 
there was a statistically significant difference in the overall survival of the 
two groups (Table 2). From the two tests, only features measured with 
RS as the microenvironment component showed a statistically signifi-
cant difference in overall survival. In addition, only the interaction 
feature (IRS) was significant after correcting for multiple hypothesis test 

Fig. 1. Comparison of artificial intelligence–powered high-definition IR spectroscopic imaging with the conventional pipeline for diagnosis and outcome pre-
diction. A biopsy or surgical resection is typically (top) stained, imaged using a light microscope and examined by a human for diagnoses. (Bottom) IR spectroscopic 
imaging does not use dyes or labels but measures the chemical composition of tissue, which can be used by computational algorithms to diagnose disease and its severity.
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using Bonferroni correction, with P value <0.0005. From this 
analysis, we prioritized RS as the microenvironment component of 
interest. In addition, the Kaplan-Meier survival curves for overall sur-
vival and disease-free survival showed significantly different outcomes 
for patients stratified with dichotomized IRS scores (Fig. 3, C and D) 
with P values of 0.0003 and 0.0274 and at powers 0.93 and 0.40, respec-
tively. Although IRS shows significant patient stratification in deter-
mining disease-free survival in univariate analysis, our dataset is not 
powered for predicting disease-free survival. Given the low power 
in the current dataset to determine recurrence, it is unclear whether IRS 
is predictive of disease-free survival. Results of overall survival were 
validated on an independent set of patients not used in the discovery 
set, which showed a similar trend in stratifying overall survival (fig. S7).

Last, to determine whether spatial features add to currently known 
prognostic markers such as stage and grade, we evaluated multivariate 
Cox regression model of time to death (Fig. 3E and table S1). We 
modeled overall survival on the interaction feature IRS, correcting 
for stage, grade, age, sex, and source of tumor. The interaction fea-
ture IRS showed an independent effect on increasing hazard of death 
for the patients with a P value of 0.011. The P values for three tests 
testing the fit of the model, the likelihood ratio test, Wald test, and 
log-rank test were all less than 4 × 10−11, rejecting the null hypothe-
sis that all of the coefficients () are equal to 0. In the multivariate 
Cox regression analysis, the hazard ratio, evaluated as exp.(), 
ranged between 1.15 and 3.07, indicating a strong effect size. Other 
features that showed significant association with risk of death were 
stage and age, as expected. By contrast, the tumor grade evaluated 

on whole surgical specimen by pathologists did not show significant 
association with increased risk when modeled with other covariates.

Aggressive tumors are often detected in later stages, resulting in 
worse prognosis for patients. We tested whether there was an asso-
ciation between tumor aggression, as measured by the spatial fea-
tures defined here with stage of the tumor. By performing two-sample 
t test on continuous interaction feature IRS grouped by stage, we 
found that low-stage (stage 1 and stage 2) tumors had significantly 
lower IRS compared with high-stage (stage 3 and stage 4) tumors 
(Table 3). Two-sample t test on combining these groups had a P value 
of 0.0012 at 0.90 power. The mean value of IRS was also significantly 
different between stage 2 and stage 3 at 0.05 significance level (P = 
0.00142 and power = 0.9) and between stage 2 and stage 4 (P = 0.00243 
and power = 0.87). We did not observe statistically significant dif-
ference between stage 1 and stage 4 cases because of the low number 
of cases in each of these stages. This resulted in low power (0.22) 
to perform the statistical test. Mann-Whitney test, which does not 
assume normal distributions and tests whether the patients are sam-
pled from populations with identical distributions, showed similar 
results.

Given the predictive power of the interaction feature, we hypo
thesized that visualizing the continuous risk score on tissue samples 
can provide a spatial measure of risk that can be easily correlated by 

Fig. 2. Pixel-level precise segmentation of tissue components using IR spec-
troscopic imaging. (A) Intrinsic chemical contrast in tissue produces unique IR 
spectrum for each of the 10 histologic classes. (B) Performance of the artificial intel-
ligence classifier in segmenting normal and invasive tumor containing lymph node 
tissue cores. (C) ROC curve demonstrating high performance of artificially intelli-
gent classifier in segmenting tissue into 10 unique components as compared with 
an experienced pathologist. (D) Demonstration of segmentation accuracy on a 
surgical resection. The color key is common across panels.

Table 1. Patient characteristics.  

Number of patients 320

Median age at surgery (years) 72.6 (35–94)

Median disease-free survival (years) 4 (0–6.6)

Median overall survival (years) 4.2 (0–6.6)

Death 110

Cancer recurrence

No 266

Yes 54

Sex

Male 162

Female 158

Site

Colon 212

Rectum 108

Stage

1 45

2 133

3 102

4 37

Grade

Well 8

Moderate 243

Poor 69
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the practitioner with conventional stained images. This spatial visu-
alization of risk further protects our method against error intro-
duced by anomalous tissue conditions or isolated errors. When 
mapping the measured interaction feature score back onto the tis-
sue, we observe a smooth transition of risk in both TMA core sam-
ples (Fig. 4A) and large surgical resection (Fig. 4B). While the small 
TMA punch areas were fairly homogeneous, we observed a gradient 
of risk score on a much larger surgical resection. It is likely that the 
risk score is specifically predictive on the invasive fronts of the tu-
mor, since most of the TMA punches were selected from invasive 
tumor front areas (33). The utility of invasive fronts in cancer study 
is widely debated. We do not fully understand its role in carcino-
genesis and prognosis, although it is clear that the invasive front has 
some biological relevance. Additional work from surgical resections 
can shed light on the role of invasive front and possibly develop 
models that can correct for the invasive front bias in our work.

DISCUSSION
The mechanism governing tumor invasion and its interaction with 
the surrounding stroma and stromal cells is not easy to capture. Un-

derstanding this spatial constraint is critical to predict the behavior 
of tumor. Structural changes in the tumor and its microenvironment 
at the beginning of metastasis (34) cannot be accounted for in tradi-
tional molecular assays. Furthermore, quantitative image analysis is 
limited by the molecular information of the stain and artifacts in-
troduced at sample preparation, staining, and imaging steps (35). 
While tissue architecture and morphology can be assessed by pa-
thologists, the determination is largely subjective (36–38). Several 
outcome-associated objective image assessment criteria, such as 
nuclear-to-cytoplasmic ratio of molecular markers (39), cellular 
proportions (40), and measuring immune infiltration (41, 42), have 
been proposed. These procedures often require additional patholo-
gist and laboratory work and do not measure tumor geometry.

So far, much of the attention has been paid to the molecular as-
pects of the tumor-tumor microenvironment interaction. Chemical 
signaling via cytokines and chemokines, presence of cancer-activated 
fibroblasts, and modifications of other stromal cells have been shown to 
modulate the behavior of tumors. In addition to chemical signaling, 
restructuring of the extracellular matrix in tumors is linked to the 
transformation of tumor to a more aggressive phenotype. Although 
widely demonstrated, many prognosis-associated features have not 
found a footing in use due to lack of objective assessment criteria. 
Unlike some cancers where molecular markers have established a 
role in determining the outcome and therapy options (43, 44), 
determining patient outcomes in colon cancers is less precise. For 
example, characterizing stroma (31) based on the fibrotic stromal 
response is predictive of 5-year survival rates. Despite the prognos-
tic role of stromal response in colon cancers (45, 46), an objective 
and reproducible scoring system remains undeveloped, largely due 
to the concerns arising from lack of concordance (38).

INFORM (INFrared-based ORganizational Measurements) in-
tegrates molecular information of the tissue with its spatial context (47), 
without extensive sample processing or staining. Therefore, INFORM 
enables us to identify critical biochemical changes in the tissue image. A 
complex set of factors, at multiple scales, determines a tumor response 
that can be assessed by INFORM. The association between stage and 
INFORM-based interaction feature score (IRS) is quite nuanced. In 
a nutshell, INFORM is able to identify changes in early lesions asso-
ciated with aggressive behavior that are not currently captured in the 
clinical approach to staging. Our statistical model that corrected for 
stage (multivariate Cox regression model of time to death; Fig. 3E) 

Table 2. Univariate Cox regression analysis of time to death based on 
risk features. NS, normal stroma; L, lymphocytes. 

Microenvironment 
component Risk variable P value (overall 

survival)

RS

dRS 0.554

NRS 0.006

IRS 0.000

Normal stroma

dNS 0.843

NNS 0.360

INS 0.247

Lymphocytes
dL 0.580

NL 0.496

IL 0.883

Fig. 3. The tumor spatial organization model and its performance. (A) Schematic of tumor 
spatial organization model. “d” represents the smallest distance between a tumor cell 
and the RS. R represents the sampling radius to determine the abundance of RS. 
(B) Relationship between the measured variable “apparent distance” and the tumor shape 
and structure. As the tumors become rounder, the apparent distance increases, even 
when area is kept constant. (C) Stratification of overall survival of patients on the basis 
of dichotomized interaction feature (IRS) with respect to RS as the microenvironment com-
ponent. (D) Stratification of disease-free survival of patients on the basis of dichotomized 
interaction feature (IRS) with respect to RS as the microenvironment component. (E) Multi-
variate Cox regression model shows that interaction feature (IRS) is independently predictive 
of overall survival, even in presence of other clinical variables such as stage and 
grade. *P < 0.05, ***P < 0.0005. 
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still showed differential survival between patients that have higher 
INFORM risk score versus patients that do not. This indicates that 
the INFORM risk score is independent of the stage and potentially 
adds diagnostic value. However, aggressive tumors that get high 
INFORM risk score would often be diagnosed at later stages, which 
we believe may explain an association between stage and INFORM 
risk score but needs to be tested further. Nevertheless, the novelty of 
the approach presented here is that a small (<1-mm diameter) biopsy 
of the tumor contains highly valuable information about the tumor 
aggression, present as a combination of biochemical and spatial data. 
Specially in the case of colorectal cancers where diagnosis is typically 
performed using biopsy taken during colonoscopy and followed up 
eventually with additional testing for staging, this can prove critical 
in determining the response urgency, both in terms of further testing 
and therapy. Notably, from the same biopsy sample, the currently 
prevalent clinical measure is tumor grade, which is underwhelming 
in determining prognosis when compared with INFORM risk score, 
in addition to being subjective and manual. Last, INFORM provides 
a measure that balances the ease of staging and complexity of the 
extensive information in the microenvironment.

An easily interpretable, yet automated and objective method, as 
proposed here, strikes a balance between objective and reproducible 
scoring and interpretability of results. Here, we were not only able 
to associate markers of the microenvironment with outcome but 
also provide guidance to understand how efficacious spatially spe-
cific changes in the tumor microenvironment are in predicting 
patient outcomes. Among the associations between the stromal 
reaction and patient outcome, the links were much more pro-
nounced in our interaction model. Thus, information from the tu-
mor microenvironment can add new information from an avenue 
that has never been explored before. This observation holds poten-
tial for further discovery and more complex models to characterize 
the microenvironment. It is important to note that our method does 

not perturb the tissue in any way and may actually result in reduc-
tion of processing steps if technologies such as stainless staining, in 
which the spectra generate H&E stains computationally (48), are 
adopted. With the extensive testing on multiple TMAs and on pa-
tient surgical resections, the robustness of our approach was estab-
lished. To our knowledge, this is the most thorough HD-IR imaging 
study, providing near optical microscopy detail with chemical spec-
ificity. Further, we are unaware of any other study that has demon-
strated automated, accurate, and precise segmentation of 10 or more 
HCs in tissues accurate to pixel level in diverse TMAs and also sur-
gical resections. This work presents the largest, most diverse tissue 
imaging dataset acquired for chemical imaging of any tissue type.

Although INFORM performs very well in stratifying patients, 
there are many unexplored factors that could potentially stratify 
patients further. For example, emerging approaches in IR spectro-
scopic imaging are increasing spatial resolution as well as the level 
of molecular detail and its fidelity that can be recorded. Finer mo-
lecular differences within the RS and cellular heterogeneity in the 
tumor itself should be probed by combining imaging and molecular 
assessment modalities. We also anticipate that INFORM can pro-
vide key insights into several other cancer types, especially in cases 
where outcome associated molecular markers are lacking. It is also 
likely that modern machine learning algorithms can harness the po-
tential of tumor microenvironment much more accurately than the 
work presented here. Although such methods are powerful, it is dif-
ficult to explain where the prediction is coming from. In this work, 
we have focused on trying to develop easy to interpret measures that 
can be readily understood, communicated and verified by human 
inspection if needed.

Last, primary limitations of this study come from the limited 
sample size and the need to sample the tumor from the invasive fronts. 
Evidence from this study demonstrates that there is power in the struc-
tural determinations of tumor to predict prognosis. However, a rig-
orous validation in a larger cohort is required. We anticipate that 
future studies would be able to expand the results from this work 
further both in terms of sample sizes and the diversity of the tumor 
microenvironment. In addition, although advanced machine learn-
ing models such as deep neural networks have not been applied here 
because of their limited interpretability and need for large sample 
sizes, such models can help in advancing this work to clinics. Last, 
our work demonstrates that combining multiple modalities such as 
imaging, spectroscopy, and computational modeling can prove 
beneficial in understanding and predicting tumor behavior. Further 
integration of modalities that bring complementary information 
such as genomics and metabolomics can further improve our ability 
to predict tumor behavior and make it more individualized.

Tumor stage and grade are crucial information for clinical man-
agement of cancer. However, these rely only on the characteristics 
of cancer cells. Prior studies have missed the opportunity to measure 
the spatial factors that can inhibit or promote tumor progression, 
controlling the spatial availability of signaling factors and nutrients. 
We used IR spectroscopic imaging with machine learning algo-
rithms to reliably identify invasive epithelium and RS with pixel-
level accuracy in addition to eight other unique histologic types. 
Next, we measured the tumor structure with respect to specific tumor 
microenvironment components such as the RS. Last, the interaction 
feature captured both the structure of tumor and the prevalence of 
RS. The 6-year probability of survival in “low-risk” patients was 0.73, 
whereas that in “high-risk” patients was 0.54 at P value of <0.0003. 

Table 3. Results of the two-sample t test and Mann-Whitney test to 
compare values of continuous variable MRS across stages.  

Group
Two-sample t test Mann-Whitney 

test

P Power P

Stage 1 versus 
stage 2 0.13 0.32 0.22

Stage 1 versus 
stage 3 0.36 0.15 0.27

Stage 1 versus 
stage 4 0.23 0.22 0.21

Stage 2 versus 
stage 3 0.001 0.9 0.002

Stage 2 versus 
stage 4 0.002 0.87 0.005

Stage 3 versus 
stage 4 0.51 0.1 0.61

Low stage 
(stages 1 and 2) 
versus high 
stage (stages 3 
and 4)

0.001 0.9 9.67 × 10−4
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Remarkably, our model was independent of the stage and grade of 
the tumor in Cox multivariate hazards models. By integrating mor-
phometry and biochemistry to define risk, our work provides a new 
technique to predict the tumor behavior. We show that while the 
tumor microenvironment changes are prognostic, an interaction 
model considering the extent of microenvironment modifications 
and the tumor morphology is a better predictor of prognosis. This 
work is especially critical for clinical evaluation of tumors that do 
not have defined patient outcomes associated with molecular features. 
Furthermore, our work defines a new dimension to evidence-based 
pathology and provides interpretable data that can greatly augment 
clinical practice (49). Recent developments in the field of chemical 
imaging enable stainless tissue characterization at clinically desirable 
speeds (50–53). We anticipate routinely applying INFORM in re-
search and clinics, allowing automated diagnosis and outcome pre-
dictions that are interpretable and useful.

MATERIALS AND METHODS
Experimental design
The patient cohort used in this study comprised 320 anonymized 
patients undergoing elective surgery for colorectal carcinoma. Cores 
of 1-mm diameter were sampled for each patient from represent
ative invasive areas of paraffin-embedded blocks and were used to 
construct eight TMAs. For some patients, normal colon mucosa 
samples were also included. This cohort has been used previously 
(54) and described in detail in the cited reference as cohort II.

Sample preparation
For HD-IR spectroscopic imaging, a 10-m-thin section of each of 
the TMAs was obtained on barium fluoride substrate (55). A con-
secutive section was collected on a glass slide for H&E staining. 
Because of the IR absorbance of paraffin at 1462 cm−1 (56), before 
scanning, paraffin was removed by initially dripping the slide with 
cold hexane followed by complete submersion in continually stirred 
hexane for 48 hours at 40°C where the solvent was renewed every 
3 hours. The disappearance of the representative peak over several 
locations on the slide confirmed the dissolution of the embedding 
medium. For supervised classification, data were annotated by labeling 
histologic classes on H&E images by collaborating pathologists. 
These annotations were manually copied on the IR spectroscopic 
images and served as ground truth. For evaluation of surgical resec-
tion, paraffin-embedded blocks of colon tissue were obtained from 
the Carle Foundation Hospital Urbana from anonymized deceased 
patients who underwent excisional surgery, and processed similarly 
to the TMA samples.

Imaging
High-magnification images were recorded on an Agilent 870 imaging 
system in high-magnification mode. This microscope was equipped 
with 128 × 128 element focal plane array Mercury-Cadmium-Telluride 
detector. Each pixel of size 1.1 m was averaged over four scans, and the 
background spectrum was acquired at 120 scans per pixel on a clean area 
of the slide. HD-IR spectroscopic images were collected at a spectral 
resolution of 4 cm−1 and a step size of 2 cm−1 and subsequently 

Fig. 4. Visualization of interaction feature (IRS)–based risk. (A) Visualization of interaction feature (IRS)–based risk on TMA cores. Shown are the comparisons with H&E 
image, HD-IR–classified image, and projection of risk score on tumors. (B) Visualization of interaction feature (IRS)–based risk on large surgical resection shows variation in 
risk across the tissue. Color keys are common across panels for classification colors and risk scores.
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truncated to the lower noise spectral range of 900 to 3800 cm−1, pro-
viding 1506 data points in the spectrum.

Preprocessing
After stitching the image tiles, noise reduction was performed using 
minimum noise fraction transform. Savitzky Golay 9 point smooth
ening, baseline correction, and normalization to amide I peak at 
1650 cm−1 were done for each core in the TMA. The spectral data 
were converted to spectral metrics using methods described previ-
ously (56, 57). Briefly, we calculated spectral metrics as ratios of 
peak heights, peak area and heights, peak areas, and centroid wave 
number locations of the peaks. In total, we defined 418 spectral 
metrics.

Feature reduction
In the first stage of feature reduction, we performed analysis of variance 
(ANOVA) using a nested, random-effects interaction model on 
three arrays (a1, a3, and a4) using ground truth to label classes, 
patient, TMA, and patient core numbers. Because specific patients 
were only found in particular arrays and each patient had multiple 
cores, the nesting order was array, patient, and patient-specific core. 
For this analysis, the classes used were malignant epithelium, ne-
crosis, and RS since these classes were most commonly observed in 
cores. From ANOVA, we determined spectral metrics where inter-
array, interpatient, and intercore variations were significant at the 
0.05 significance level and removed these from the analysis. One 
hundred sixty-two metrics were retained after this stage. In the sec-
ond stage, we used minimum redundancy maximum relevance al-
gorithm (mRMR) in R to further remove redundant and irrelevant 
features. In this model, the feature with maximum mutual informa-
tion is selected first following the equation (58)

	​​ x​ i​​  =  arg ​max​ 
​x​ i​​∈X

​ ​ I(​x​ i​​, y)​	

where xi represents ith feature in full dataset X, y represents the 
output variable (class label), and I represents mutual information 
given by

	​ I(x, y ) = −  ​ 1 ─ 2 ​ ln(1 −  ​(x, y)​​ 2​)​	

The next feature is added to feature vector S by finding the fea-
ture with minimum mutual information with respect to all the prior 
features in S and maximum mutual information with respect to the 
class label. This is represented as

	​​ q​ j​​  =  I(​x​ i​​, y ) −  ​  1 ─   ∣S∣   ​ ​ ​ 
​x​ k​​∈S

​​ I(​x​ j​​, ​x​ k​​)​	

Applying this using the mRMRe package in R, we found a set of 
50 features that were relevant to the classification problem while 
minimizing the redundancy in the data (table S2).

Supervised classification
In the model learning step, we defined pixel labels for each cell type 
by duplicating annotations from H&E-stained sections as marked 
by an expert pathologist onto HD-IR spectroscopic images. Four 
arrays were used for training (a1 to a4). We used a random forest 
algorithm for supervised classification in Matlab 2016a. To address 
fitting issues in the classifier such as high bias or high variance, we 
used two additional arrays (a5 and a6) to perform optimization of 

parameters. The parameters that we optimized in the random forest 
were (i) leaf size, size of the group at which decision tree stops split-
ting further, and (ii) feature size, number of features sampled by the 
tree randomly for performing the split. The parameters were opti-
mized by calculating the error in classification for both training and 
calibration sets for multiple leaf sizes and feature sizes given by

	​ e  = ​   1 ─ 
​​j=1​ n  ​ ​w​ j​​

 ​ ​ ​ 
j=1

​ 
n
 ​ ​w​ j​​ I(​y​ j​​  ≠ ​ ​   y ​​ j​​)​	

Where e represents error, w represents the weight of the class, n 
is the number of classes, y is the true class label, ŷ is predicted label, 
and I is indicator function. Parameters that minimized calibration 
error and maintained low training error were chosen as optimal. The 
leaf size and feature size determined for optimal fit were 500 and 7, 
respectively, with 50 total features and an ensemble of 50 deci-
sion trees (fig. S1C). The fully developed supervised model 
with optimal parameters was validated by two independent arrays 
(a7 and a8).

Statistical analysis
Classified images of invasive carcinoma cores from all eight TMAs 
were used for studying tumor-stroma interaction. A total of 245 patients 
were analyzed using TMA cores containing reactive or nonreactive 
stroma and at least 5% proliferative epithelium by area. If multiple 
cores from the same patient were present, then mean over all avail-
able cores was calculated. Each risk-associated variable was con-
verted to a dichotomous categorical variable by splitting at the 
median and evaluated for significance by univariate log-rank test 
and multivariate Cox regression analysis in R using the package “survival.” 
Power analysis was performed in R using the package “powerSurvEpi.” 
Two-sample t test was performed in OriginPro 2017 to test the hy-
pothesis that the means of groups were equal. Mann-Whitney test 
was performed in OriginPro 2017 as a nonparametric test to test if 
the distributions were different.

Progression analysis
Three risk-associated features were defined to assess the tumor-stroma 
interaction. The first risk variable was distance feature (dHC) and 
measured as the closest encounter distance of the malignant epithelium 
pixel to the stromal element being probed. The microenvironment 
HC density (NHC) was measured as the normalized pixel count of 
the stromal component being probed in a circle of radius R deter-
mined experimentally. Empirical work indicated that any radius 
above ~400 m captured the spatial characteristics between normal 
and invasive cores. We set the R for our analysis to be 600 m. The 
density factor NHC is the number of HC pixels in area R2 to accom-
modate for centers close to the tissue edge. Risk variable interaction 
feature (IHC) was measured as the interaction of the two features d 
and N for each pixel. Five hundred random pixels of malignant ep-
ithelium were chosen from each of the 30% downsampled classified 
HD-IR image to calculate the features. Three stromal elements, the 
RS, lymphocytes, and normal stroma, were evaluated separately for 
their role in determining outcome.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/6/eabb8292/DC1

View/request a protocol for this paper from Bio-protocol.

http://advances.sciencemag.org/cgi/content/full/7/6/eabb8292/DC1
http://advances.sciencemag.org/cgi/content/full/7/6/eabb8292/DC1
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/sciadv.abb8292
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