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A diagnostic host response biosignature for COVID-19 
from RNA profiling of nasal swabs and blood
Dianna L. Ng1,2*, Andrea C. Granados2,3*, Yale A. Santos2,3*, Venice Servellita2,3*,  
Gregory M. Goldgof2, Cem Meydan4,5,6, Alicia Sotomayor-Gonzalez2,3, Andrew G. Levine2, 
Joanna Balcerek2, Lucy M. Han1, Naomi Akagi1, Kent Truong1, Neil M. Neumann1,  
David N. Nguyen7, Sagar P. Bapat2,7,8, Jing Cheng9,10, Claudia Sanchez-San Martin2,3, 
Scot Federman2,3, Jonathan Foox4,5,6, Allan Gopez2,3, Tony Li11, Ray Chan2, Cynthia S. Chu2,  
Chiara A. Wabl2,3, Amelia S. Gliwa2,3, Kevin Reyes2,3, Chao-Yang Pan12, Hugo Guevara12, 
Debra Wadford12, Steve Miller2,3, Christopher E. Mason4,5,13,14, Charles Y. Chiu2,3,8†

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease-19 (COVID-19), 
has emerged as the cause of a global pandemic. We used RNA sequencing to analyze 286 nasopharyngeal (NP) 
swab and 53 whole-blood (WB) samples from 333 patients with COVID-19 and controls. Overall, a muted immune 
response was observed in COVID-19 relative to other infections (influenza, other seasonal coronaviruses, and 
bacterial sepsis), with paradoxical down-regulation of several key differentially expressed genes. Hospitalized 
patients and outpatients exhibited up-regulation of interferon-associated pathways, although heightened and 
more robust inflammatory responses were observed in hospitalized patients with more clinically severe illness. 
Two-layer machine learning–based host classifiers consisting of complete (>1000 genes), medium (<100), and 
small (<20) gene biomarker panels identified COVID-19 disease with 85.1–86.5% accuracy when benchmarked 
using an independent test set. SARS-CoV-2 infection has a distinct biosignature that differs between NP swabs 
and WB and can be leveraged for COVID-19 diagnosis.

INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
the cause of coronavirus disease-19 (COVID-19), emerged in 
December 2019 and has resulted in more than 56 million cases and 
more than 1.3 million deaths globally as of mid-November 2020 (1). 
Although the majority of patients with COVID-19 are asympto-
matic or have mild symptoms, approximately 16 to 19% of patients 
develop acute respiratory failure, and 0.4 to 11.1% die from the 
disease (2–7). The exact mechanisms underlying the development 
of severe disease remain unclear, although cytokine storm and dys-
regulated cellular immune responses are thought to play important 
roles (8, 9). Currently, diagnostic testing relies on reverse transcrip-
tion quantitative polymerase chain reaction (RT-PCR), which can yield 
false-negative results as viral loads in patients may be low and fluc-
tuate substantially during the course of the illness (10–12). Host 

response–based testing may be useful as a complementary tool for 
differential diagnosis of SARS-CoV-2 and other respiratory viral or 
bacterial infections (13–16).

Here, we apply transcriptome profiling to evaluate and compare 
host responses among patients with COVID-19, other viral and non-
viral acute respiratory illnesses (ARIs) from nasopharyngeal (NP) 
swab samples, and with COVID-19, influenza, and bacterial sepsis 
from whole-blood (WB) samples. Host response data are also com-
pared between outpatients with mild COVID-19 disease and hospital-
ized patients with severe COVID-19, including intensive care unit 
(ICU) patients requiring mechanical ventilation. Several studies have 
previously demonstrated that gene expression profiles using NP 
swabs and/or WB can identify patients with viral or bacterial infec-
tions (17–23). We therefore used the host response data to generate 
a classifier for differential diagnosis of SARS-CoV-2 infection.

RESULTS
Population characteristics and sequencing metrics
A total of 380 remnant NP swab samples from 351 individuals 
(138 SARS-CoV-2–positive patients, 213 SARS-CoV-2–negative 
patients, including 88 with documented influenza or seasonal 
coronavirus infection, and 11 donor controls) and 53 WB samples 
from 53 individuals (7 SARS-CoV-2–positive patients, 26 SARS-
CoV-2–negative patients with influenza or bacterial sepsis, and 
20 donor controls) were collected for RNA sequencing (RNA-seq) 
analysis (Fig. 1A). Of the 351 NP samples, 286 remnant NP swab 
samples from 286 individuals (137 SARS-CoV-2–positive patients 
and 149 SARS-CoV-2–negative patients) and all the WB samples 
were initially used to evaluate the host response. To ensure more 
balanced numbers across the categories for subsequent classifier 
generation, we included an additional 65 NP samples, composed of 
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Fig. 1. Overview of sample collection and metatranscriptomic analysis. (A) Flowchart of NP swab and WB sample collection. (B) Box and whisker plots of RT-PCR cycle 
threshold (Ct) values of SARS-CoV-2–positive individuals who are outpatients (n = 55) were compared with those who are hospitalized, non-ICU (n = 17), or in the ICU 
(n = 7). There was no difference in viral load, inversely related to the Ct value, regardless of disease severity [P = 0.89 by analysis of variance (ANOVA)]. (C to E) Box and 
whisker plots of abundance (C), Chao richness (D), and Shannon diversity (E) of the viral metatranscriptome in patients with SARS-CoV-2 (COVID-19) (n = 137), respiratory 
viruses (“Other virus”) (n = 41), and without respiratory viruses (“No virus”) (n = 108), stratified by the inclusion (“Including respiratory viral reads”) or exclusion (“Exclusion 
respiratory viral reads”) of respiratory viral reads. (F to H) Box and whisker plots of abundance (F), Chao richness (G), and Shannon diversity (H) of the bacterial metatran-
scriptome. (I) Distribution of viral families in each group, expressed as log10-normalized RPM. (J) Distribution of the top 10 bacterial families in each group. For box and 
whisker plots, the median is represented by a dotted line, boxes represent the first to third quartiles, whiskers represent the minimum and maximum values, and jitters 
represent the distribution of the population. For (C) to (H), statistical analysis was conducted by Kruskal-Wallis test, followed by the Nemenyi test for post hoc analysis.
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1 SARS-CoV-2–positive sample and 64 other acute viral respiratory 
illness samples.

Clinical history was available from 177 of 340 (52.1%) patients 
with NP swabs, and for all 33 patients with WB samples (tables S1 
and S2). Clinical history was unavailable for the remaining 163 NP 
samples collected from non–University of California, San Francisco 
(UCSF) institutional partners in outreach settings or from the California 
Department of Public Health (CPDH). Only demographic information 
was available from the 20 WB control donors (table S3).

Among patients with COVID-19, there was a median of 5 ± 11 days 
(range, 0 to 65 days) between symptom onset and NP sample collec-
tion, and a median of 9 ± 29 days (range, 6 to 72 days) between symp-
tom onset and WB sample collection. Six patients with COVID-19 
had paired NP swabs and WB available for comparison. As a surrogate 
indicator for disease severity, patients with COVID-19 were also 
stratified according to the highest level of care received (outpatient, 
hospitalized but not requiring intensive care, and ICU admission). 
The median age for patients with COVID-19 was 49 years versus 
44 years for non–COVID-19 patients, with proportionally fewer 
women in the COVID-19 group (P = 0.0021) (table S1). Patients 
with COVID-19 were more likely to have fever (P < 0.0001), chills 
(P = 0.003), malaise (P = 0.0009), and anosmia (P = 0.0002) than 
non–COVID-19 patients with ARI (table S1). Hypertension and 
hyperlipidemia were significantly associated with patients with 
COVID-19 (P = 0.0406 and P = 0.0128). The presence of fever 
(P = 0.004) and cough (P = 0.0008) appeared to correlate with high 
viral loads as indicated by low cycle threshold (Ct) values by PCR 
(<18). In contrast, viral loads in more severely ill hospitalized patients, 
including patients in the ICU, were not significantly different from 
those in outpatients (P = 0.72) (Fig. 1B).

A total of 22.0 billion and 3.4 billion raw reads were sequenced 
from 351 NP swab and 53 WB samples, respectively. For the NP 
swab samples, the median human transcriptome coverage achieved 
was 53.5 ± 17.8% (range, 0.69 to 84.7%), corresponding to 14,037 of 
26,486 genes from the University of California, Santa Cruz (UCSC) 
Genome Browser Database (24). A median of 29.6 ± 87.0 million 
reads (range, 0.061 to 604 million reads) were generated for each 
sample (fig. S1, A and B). Of these NP swab samples, 286 were 
sequenced initially and used to evaluate the host response and meta-
transcriptome, from 19 billion raw sequencing reads, with a median 
transcriptome coverage of 58.5 ± 15.1% (range, 4.4 to 84.7%), gen-
erated from a median of 28.8 ± 96.1 million reads (range, 0.45 to 
604 million reads). For the WB samples, the median coverage 
achieved was 37.5 ± 1 6.2% (range, 20.8 to 89.2%), generated from a 
median of 30.8 ± 41.7 million reads (range, 16.5 to 182 million reads) 
(fig. S1, C and D).

All 351 samples (138 SARS-CoV-2 positive, 93 nonviral ARI, and 
120 viral ARI) were then used to generate a machine learning–based 
classifier. Samples from each of the three disease groups were ran-
domly but proportionally assigned into a training set (80%) or inde-
pendent test set (20%). There was no statistical difference between 
transcriptome coverage and raw read counts in the training set 
(P = 0.09) nor in the test set (P = 0.11) (table S4).

Viral coinfections in patients with SARS-CoV-2
Of 286 NP swab samples, 137 (47.9%) were SARS-CoV-2 positive 
and 108 (37.8%) were negative for any respiratory virus (including 
NP swab samples from the 11 donor controls). A respiratory virus 
was identified by metatranscriptome analysis in 41 cases (14.3%), 

including 27 patients with previously confirmed influenza or sea-
sonal coronavirus infection by RT-PCR testing. These respiratory 
viruses included seasonal coronavirus, influenza virus, human rhino-
virus, human parainfluenza virus, and human metapneumovirus 
(fig. S2). Coinfections were identified in 10 of 137 (7.3%) SARS-
CoV-2–positive and 4 of 41 (9.76%) SARS-CoV-2–negative indi-
viduals (P = 0.61), while 2 of 137 SARS-CoV-2–positive (1.5%) and 
2 of 41 SARS-CoV-2–negative (4.88%) individuals were infected by 
three viruses (P = 0.20) (table S5). These triply infected individuals 
had additional infections from human rhinovirus (multiple geno-
types) and human metapneumovirus.

Analysis of WB samples identified anelloviruses and human 
herpesvirus 6B in SARS-CoV-2–positive individuals (but no SARS-
CoV-2 reads), and hepatitis B virus, HIV, and anelloviruses in pa-
tients with influenza (table S6). The absence of SARS-CoV-2 viremia 
is consistent with the results from other published studies showing 
that viremia is rare in acutely infected individuals (25).

Impact of SARS-CoV-2 infection on the NP 
metatranscriptome
We next investigated the effect of SARS-CoV-2 infection on the NP 
viral and bacterial metatranscriptome. We compared the virome of 
SARS-CoV-2–positive individuals (COVID, n = 137) to SARS-
CoV-2–negative individuals either with another respiratory virus 
(seasonal coronavirus, influenza, human rhinovirus, and human 
metapneumovirus) detected by sequencing (“Other virus”; n = 41) 
or with no virus detected (“No virus”; n = 108) (Fig. 1, C to E). Addi-
tional detected respiratory viruses included all four seasonal corona-
viruses (229E, HKU1, NL63, and OC43), influenza virus, human 
rhinovirus, human parainfluenzavirus 2, and human metapneumo-
virus. Relative abundance (P < 0.001) and richness (Chao Richness 
Score) (P < 0.001) of respiratory viruses, as calculated from the viral 
sequencing reads, were higher in patients with SARS-CoV-2 and 
patients infected with other respiratory viruses than in patients 
without respiratory viral infection. In comparison to patients in-
fected with another respiratory virus, patients with SARS-CoV-2 had 
no difference in abundance (P = 0.26) and a decrease in richness 
(P = 0.02) (“Including respiratory viral reads,” Fig. 1, C and D). 
There was no difference in diversity in any population (P = 0.06) 
(“Including respiratory viral reads,” Fig. 1E). If respiratory viral reads 
are excluded (“Excluding respiratory viral reads,” Fig. 1, C to E), pa-
tients with SARS-CoV-2 infection showed no difference in abun-
dance (P = 0.06) or diversity (P = 0.08) but revealed an increase in 
richness (P < 0.001) relative to individuals without a respiratory virus. 
In comparison to patients infected with another respiratory virus, 
patients with SARS-CoV-2 had decreased abundance (P = 0.04) and 
diversity (P = 0.008) but increased richness (P < 0.001) in their viral 
metatranscriptome.

There was no difference in relative abundance, richness, or alpha 
diversity of the bacterial metatranscriptome in SARS-CoV-2–positive 
individuals compared with those without a virus or with another 
respiratory virus (Fig. 1, F to H). Furthermore, infections from 
SARS-CoV-2 or other respiratory viruses did not appear to affect 
the overall distribution of families in the bacterial metatranscriptome 
(Fig. 1I). On the basis of the relative distribution of viral families 
found in the nasopharynx, patients with SARS-CoV-2 had an increase 
in the proportion of Siphoviridae (95%; Fig. 1J) compared with those 
infected with another respiratory virus (90%) or without a respiratory 
virus identified (86%). These findings are consistent with a study 
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evaluating the microbiome using NP swabs in patients with mild 
SARS-CoV-2 infections (26).

Comparison of cell types and proportions between  
SARS-CoV-2 and other infections
Cell type and proportion analyses of NP swabs and WB were per-
formed using the Multi-Subject Single Cell (MuSiC) deconvolution 
algorithm (figs. S3 and S4) (27). SARS-CoV-2–positive patients had in-
creased ciliated epithelial cells relative to influenza (P = 0.03) and 
seasonal coronavirus (P  = 0.02), increased neutrophils relative to 
nonviral ARIs (P  <  0.0001), and increased eosinophils relative to 
donor samples (P = 0.008) and nonviral ARIs (P < 0.0001). SARS-
CoV-2–positive patients had decreased fibroblasts relative to influenza 
(P = 0.008) and seasonal coronaviruses (P = 0.01), and decreased 
macrophages relative to influenza (P = 0.02) and other respiratory viruses 
(P = 0.04). Endothelial cells and other cells (mast, myeloid, basal, 
plasma, and glandular epithelial cells) were also lower in SARS-CoV-2 
relative to influenza (P = 0.02) and other viruses (P = 0.04). Influenza 
had increased fibroblasts (P < 0.0001), macrophages (P < 0.03), and 
neutrophils (P < 0.0001), but decreased ciliated epithelial cells (P = 0.02), 
endothelial cells (P = 0.03), and other cells (P = 0.03) relative to non-
viral ARIs. Seasonal coronaviruses had increased neutrophils (P < 0.0001), 
fibroblasts (P < 0.0001), and other cells (P = 0.04), but decreased 
ciliated epithelial cells (P < 0.0001) compared with nonviral ARIs. 
There was no difference in the proportion of cell types among dif-
ferent levels of severity of SARS-CoV-2 infection (fig. S3B).

When looking at cell proportions in WB, there was an increase 
in basophils and smooth muscle cells in SARS-CoV-2 relative to 
influenza (P = 0.007 and P = 0.003, respectively), sepsis (P = 0.008 
and P = 0.008, respectively), and donor controls (P = 0.0002 and 
P = 0.001, respectively) (fig. S4). There were also increased bone 
marrow progenitor cells (P = 0.002) and platelets (P = 0.004) in 
SARS-CoV-2 relative to influenza and decreased CD8+ T cells 
(P = 0.004) and erythrocytes (P = 0.004) relative to donor controls. 
Compared with sepsis, SARS-CoV-2 had decreased neutrophils 
(P = 0.03) and increased platelets (P = 0.002).

NP swab transcriptome analysis
Pathway analysis of differentially expressed genes (DEGs) in NP swabs 
from patients with COVID-19 relative to uninfected donor controls 
showed prominent activation of genes related to interferon (IFN) 
signaling and IFN-stimulating genes (ISGs) (including IFI6, IFIT1–3, 
and ISG15), but inhibition of interleukin-6 (IL-6) and IL-8 signaling 
genes (including IRAK1 and MAP2K7) (Fig. 2A). Patterns of activation 
and inhibition associated with COVID-19 were markedly different 
from those associated with influenza or other viral infections (Figs. 2A 
and 3, A to F). In particular, patients with COVID-19 showed acti-
vation of pathways involved primarily in cell death and survival, and 
both activation and inhibition of pathways associated with organismal 
injury and survival and inflammatory response (Fig. 3, A to C). Relative 
to donor controls, influenza and other viral respiratory infections 
shared IFN signaling activation pathways in common with COVID-19 
(Figs. 2A, 3D, and 6A, and tables S7 and S8). However, other immune 
response pathways that were activated by influenza and other viral in-
fections, such as acute phase, B cell receptor, and Toll-like receptor signal-
ing (including genes IRAK1, MAPK12, and MAP2K7), and chemokine 
signaling (including IL-6 and IL-8) were inhibited in COVID-19.

Hierarchical clustering of DEGs generated from pairwise com-
parisons of the NP swab transcriptome in patients with SARS-CoV-2 

infection and other viral ARI relative to individuals with nonviral 
ARI revealed three distinct gene groups (Fig. 5A and table S9). 
Group A (n = 35; including IFIT2, IFI6, and OAS2) was enriched in 
immune signaling genes and was up-regulated in SARS-CoV-2 in-
fections but not other viral and nonviral ARIs. Group B consisted 
mostly of genes related to cell metabolism, signaling, and transport, 
as well as many uncharacterized genes (n = 41; including SOX3, 
CLCN1, and CCL2), and was increased in viral infections other than 
SARS-CoV-2, particularly influenza and seasonal coronavirus, com-
pared with nonviral ARIs. Group C (n = 24; including COX15, FLI-1, 
and POLD1) was enriched in immune signaling, cell signaling, and 
cellular metabolism genes and was increased in viral infection, in-
cluding from SARS-CoV-2.

Differential NP host responses in COVID-19 hospitalized 
patients versus outpatients
Hospitalized patients with COVID-19, including those requiring inten-
sive care, had overlapping but heightened inflammatory responses 
compared with outpatients, relative to donor controls (Figs. 2B and 
3, B and C), with up-regulation of DEGs implicated in innate antiviral 
immunity, such as triggering receptor expressed on myeloid cells 1 (TREM1) 
signaling and proinflammatory cytokines related to interleukin-6 (IL-6) 
and interleukin-8 (IL-8) signaling, including CXCL2, CXCL8, and IL6R 
relative to uninfected donor controls (Fig. 2B). In a direct comparison 
between hospitalized patients and outpatients with COVID-19, 
there was increased activation of pathways involved in hematological 
development and function, cellular movement, immune cell trafficking, 
inflammatory responses, and cell-to-cell signaling (Fig. 4A).

Hierarchical clustering of DEGs based on direct comparison be-
tween outpatients versus hospitalized patients with COVID-19 
revealed three distinct groups (Fig. 5C and table S10). The groups 
consisted of genes related to cell signaling, cellular metabolism, im-
mune signaling, and innate immunity (group L) (n = 52; including 
IL1R1, IL6R, and CXCL2); cellular metabolism, immune signaling, 
and innate immunity (group M) (n = 13; including CXCL1, CXCL8, 
and VEGFA); and cellular metabolism and transport (group N) 
(n = 2; including SAT1 and FTH1). Genes from all three groups had 
increased overall expression in hospitalized patients relative to out-
patients. Relative to donor controls, 26% (44 of 171) of DEGs were 
shared between outpatients and hospitalized patients (Fig. 6C and 
table S11), of which 21 of 44 (48%) were related to IFN signaling 
and innate immunity, including IFIT1, IFIT3, ISG15, EIF2AK2, 
and MAPK2K7.

WB transcriptome analysis
Pathway analysis of WB from patients with COVID-19, all of whom 
were hospitalized, compared with patients with influenza or bacte-
rial sepsis showed notable inhibition of genes in multiple pathways 
associated with immune cell signaling and antiviral IFN responses, 
particularly genes in the nuclear factor B and TREM1 signaling 
pathways (IL-1B,TLR1, TLR4, and TLR6), as well as natural killer 
cell signaling pathways (FCGR2A, FCGR3A, and FCGR3B) (Fig. 2D 
and tables S12 and S13). Up-regulated pathways in COVID-19 were 
primarily related to cell signaling [extracellular signal–regulated 
kinase (ERK)/mitogen-activated protein kinase (MAPK) and GP6 
signaling], tissue development, cellular function and proliferation, 
and organismal injury and included only a few immune pathways, 
such as phosphatidylinositol 3-kinase (PI3K) signaling in B lympho-
cytes, CXCR4 signaling, and IL-15 production (Figs. 2D and 4, B to D). 
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In contrast, bacterial sepsis was characterized by generalized 
up-regulation of immune-mediated pathways as well as multiple 
additional pathways associated with hematological development and 
other cellular functions (Figs. 2D and 3C). Hierarchical clustering 
of DEGs among patients with COVID-19, influenza, or bacterial 
sepsis based on comparisons to donor controls revealed six distinct 
groups (Fig. 5B and table S14). Groups D (n = 20) and E (n = 36) 
were up-regulated in COVID-19 and were primarily composed of 
genes related to cell death, cell metabolism, cell signaling, and multiple 
additional pathways, including DUSP8, CCR3, STX1A, and HBEGF. 
Groups H (n = 13) and I (n = 12) were up-regulated in bacterial 
sepsis and were enriched in genes related to innate immunity, 
immune signaling, cell signaling, and cell metabolism, including TLR8, 

DDIT4, IFIT1, and MMP9. Influenza showed mild up-regulation of 
all pathways.

Comparison of COVID-19 host responses between NP swabs 
and WB
COVID-19 host responses in NP swabs and WB shared common 
pathways related to antiviral response, innate immunity, ISG signal-
ing (e.g., IL-6 and IL-8), and dendritic cell maturation. However, 
the directionality of signaling was discordant between NP swabs and 
WB for multiple additional immune-related pathways, including 
acute phase response signaling (z-score of −1.30 for NP swabs 
versus 0.33 for WB), IL-15 signaling (z-score of 0 versus 1.89), 
CXCR4 signaling (z-score 0 versus 1.63), natural killer cell signaling 
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(z-score 0 versus −1.63), T helper 1 pathway (z-score 0 versus −2.24), 
and B cell receptor signaling (z-score 2.11 versus −0.5) (Fig. 2C). 
Very few DEGs (≤3%) were shared between NP swabs and WB from 
patients with COVID-19 (Fig. 6B and figs. S5, A and B), suggesting 
that the host response was localized and body site specific. In con-
trast, heightened IFN responses in both NP swabs and WB were 
observed for influenza (Fig. 2, A and D), consistent with a systemic 
immune and inflammatory response. Notably, among the 16 DEGs 
shared between NP swabs and WB from patients with influenza, the 
majority of those genes (11 of 16, 69%) were related to innate 
immunity and IFN signaling (Fig. 6D).

Host response classifier
As transcriptome analysis had revealed distinct patterns of gene ex-
pression in patients with COVID-19 (Figs. 2A and 5A), we hypoth-
esized that we would be able to construct a classifier that accurately 
discriminates between SARS-CoV-2 infection and other viral or 
nonviral ARIs from NP swabs. After randomly partitioning 20% of 
samples into an independent test cohort, we developed a two-layer 
classifier that first differentiates between SARS-CoV-2–positive cases 
and SARS-CoV-2–negative cases for which no pathogen was iden-
tified (layer 1), followed by a second layer that differentiates SARS-
CoV-2 from microbiologically confirmed viral ARIs, including 
influenza and seasonal coronavirus infections, among others (layer 2) 
(Fig. 7A and table S15). The initial set of DEGs for each classifier 
was selected using a Bonferroni-corrected P value of <0.001 for both 

layers. Using read counts corresponding only to the DEGs identified 
from training set samples, we generated optimal binary classifiers 
using fivefold cross-validation to evaluate the performance of 13 can-
didate classification models in differentiating between SARS-CoV-2 
infection and nonviral ARIs (layer 1) (table S16) and between 
SARS-CoV-2 infection and other viral ARIs (layer 2). Samples as-
signed to SARS-CoV-2 by both classifiers were designated positive 
for SARS-CoV-2 infection. The cutoff for the prediction score of 
each classifier was determined by generating receiver operating 
characteristic (ROC) curves for the training data and comparing a 
cutoff based on Youden’s index, an arbitrary 0.5 cutoff, and a manually 
selected threshold that prioritized specificity (“high-specificity thresh-
old”) (tables S17 and S18). After review of the training set results, 
we elected to use the manually selected high-specificity threshold.

The layer 1 classifier, generated using a training set of 110 SARS-
CoV-2–positive and 74 nonviral ARI samples, contained 748 DEGs, 
consisting of genes associated with both cell processes and immune 
signaling (Fig. 7B, top left, and table S19). This classifier had a 
sensitivity of 97.3%, specificity of 97.3%, and an area under the ROC 
curve (AUC) of 0.993 at a threshold of 0.4515 (fig. S6A and table S15). 
The layer 2 classifier, generated using a training set of the same 110 
SARS-CoV-2–positive and 93 viral ARI samples, contained 266 DEGs 
with a smaller proportion of immune signaling genes than in the 
layer 1 classifier (Fig. 7B, bottom left, and table S20). This classifier 
had a sensitivity of 95.5%, specificity of 98.9%, and AUC of 0.999 
at a threshold of 0.6066 (fig. S6D and table S15). On the basis of 
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the training set data, the full 1014-gene two-layer classifier (con-
taining a full complement of 1014 genes) had an overall sensi-
tivity of 95.5%, specificity of 98.2%, and AUC of 0.999 (Fig. 8A and 
table S15).

The performance of the two-layer classifier was then evaluated 
using an independent test set that included NP swab samples from 
28 SARS-CoV-2–positive, 19 nonviral ARI, and 27 viral ARI patients 
(Fig. 7A and table S15). The layer 1 classifier had 82.1% sensitivity, 
89.5% specificity (fig. S7A and table S15), and AUC of 0.944, while 
the layer 2 classifier yielded 92.9% sensitivity, 96.3% specificity (fig. 
S7D and table S15), and AUC of 0.991. On the basis of test set data, 
the full 1014-gene two-layer classifier had an overall sensitivity of 
75.0% [95% confidence interval (CI), 55.0 to 89.0%], specificity of 
93.5% (95% CI, 82.1 to 98.6%), and AUC of 0.933 (range, 0.879 to 
987), yielding an overall accuracy of 86.5% (Fig. 8A).

Because panels containing a smaller number of genes would be 
more practical to translate into a clinical assay, we used lasso regres-
sion analysis to find an optimal set of genes for a medium two-layer 

classifier with an a priori specification of no more than 100 genes 
(tables S21 and S22). The medium classifier consisted of 29 genes 
for layer 1 and 38 genes for layer 2 (Fig. 7B, middle, and tables S23 
and S24). On the basis of the training set, the medium 67-gene 
two-layer classifier had a sensitivity of 88.2%, specificity of 97.6%, 
and AUC of 0.997 (fig. S6 and table S15). When applied to the test 
set, the medium two-layer classifier had a sensitivity of 71.4% (95% 
CI, 51.3 to 86.8%), specificity of 93.5% (95% CI, 82.1 to 98.6%), 
AUC of 0.922 (range, 0.863 to 0.982), and 85.1% overall accuracy 
(Fig. 8B). We then explored narrowing the number of genes to <20 
total by iteratively removing one gene at a time from the 29 genes 
for layer 1 (table S21) and 37 genes for layer 2 (table S22). Maximum 
performance was identified for a small two-layer classifier consist-
ing of 19 genes, 8 genes for layer 1, and 11 genes for layer 2 (Fig. 7B 
and tables S25 and S26). On the basis of the training set, the small 
19-gene two-layer classifier had a sensitivity of 94.6%, specificity of 
94.6%, and AUC of 0.984 for layer 1 (fig. S6 and table S15). When 
applied to the test set, the small two-layer classifier had a sensitivity 
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of 78.6% (95% CI, 76.5 to 99.1%), specificity of 89.1% (95% CI, 59.1 
to 91.7%), AUC of 0.906 (range, 0.837 to 0.974), and 85.1% accuracy 
(Fig. 8C).

There was >50% overlap in the misclassified patients among all 
three classifiers, suggesting internal consistency between them 
(table S27). No obvious clinical factors, including days between 
symptom onset and sample collection (fig. S8), appeared to be asso-
ciated with classifier performance.

DISCUSSION
Here, we use RNA-seq to characterize the differential host responses 
to SARS-CoV-2 infection in 286 NP swab and 53 WB samples from 
333 individuals. Both NP swabs and WB from patients with COVID-19 
show distinct patterns of activation or inhibition relative to other 
infections (influenza, seasonal coronaviruses, and bacterial sepsis) 
and to each other. SARS-CoV-2 infection was found to activate 
IFN-mediated antiviral pathways and paradoxically inhibit multiple 
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additional immune and inflammatory pathways, resulting in an 
overall dysregulated immune response. Although overall DEGs and 
pathways were similar between outpatients and hospitalized patients 
with COVID-19, the magnitude of host response was found to in-
crease with clinical severity of disease. We also demonstrated that 

diagnostic two-layer host response classifiers based on RNA-seq data 
can discriminate SARS-CoV-2 infection from other viral and non-
viral ARIs from NP swab samples with an accuracy of 85.1 to 86.5%.

Viral metatranscriptome analyses show that coinfections of 
SARS-CoV-2 with other respiratory viruses are uncommon and occur 
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at similar frequencies among COVID-19 and non–COVID-19 cases. 
They also reveal a decrease in abundance and diversity in SARS-
CoV-2 infection relative to nonviral ARI, with displacement of the 
normal viral flora in the nasopharynx (i.e., anelloviruses and bacte-
riophages). The degree of perturbation of the virome appears to be 
less for SARS-CoV-2 than for other respiratory viral infections. In 
contrast, viral infection, whether caused by SARS-CoV-2 or another 
respiratory virus, did not appear to markedly alter the bacterial meta-
transcriptome of the nasopharynx.

IFN-mediated antiviral responses and chemokine expression are 
critical to host defense against viral infection (28, 29). Notably, the 
specific patterns of activation or inhibition of these pathways in 
COVID-19 are distinct from those associated with influenza or other 
respiratory viruses. Overall, the host response in patients with 
COVID-19 shows increased expression of genes involved in IFN 
responses and ISGs (30–32) but inhibition of multiple other immune- 
mediated pathways including IL-6 and IL-8 signaling. Our finding 
of IL-6 down-regulation in patients with COVID-19 is consistent 
with prior published reports describing the host response to SARS-
CoV-2 in bronchoalveolar lavage and peripheral blood mononuclear 
cell samples (33, 34). Although other reports describe increased cir-
culating plasma IL-6 levels in COVID-19 (35–37), this may be due 
to a negative feedback loop driving IL-6 gene down-regulation. Our 
data also support the hypothesis that tissue-associated neutrophils 
may be an important contributor to severe COVID-19, as suggested 
by the increased relative neutrophil counts estimated in NP swab 
samples by cell deconvolution analysis and induction of CXCL2 and 
CXCL8 cytokines, which are associated with neutrophil chemotaxis 
(38, 39).

Of note, ciliated epithelial cells appear to be major contributors 
to the host transcriptome in NP swab samples versus white blood 
cells in WB. Differing cell types and proportions may thus explain 
the lack of overlap in shared DEGs and pathways between NP swabs 
and WB. Notably, there are no IFN-associated DEGs or pathways 
shared between NP swabs and WB from patients with COVID-19. 
In contrast, activation of IFN-associated pathways in both the upper 
airway and blood of patients with influenza suggests a global, more 
systemic host response relative to COVID-19. Although angioten-
sin converting enzyme 2 (ACE2) has been shown to be the cellular 
receptor for entry of SARS-CoV-2 and has been described as an ISG 
(40, 41), we did not find ACE2 to be up-regulated in patients with 
COVID-19, whether from NP swab or WB samples.

Our findings of a distinct host response biosignature in patients 
with COVID-19 and an augmented response in the setting of more 
severe illness underscore the potential diagnostic utility of host 
response–based classifiers for SARS-CoV-2 infection. Here, we 
present a 19-gene diagnostic classifier with >85% overall accuracy 
(~80% sensitivity and ~90% specificity). The size of the classifier is 
compatible with existing multiplex diagnostic platforms (42, 43). A 
host response–based test may be particularly useful as a complemen-
tary diagnostic tool for SARS-CoV-2 infection. Here, we also identify 
a panel of DEGs associated with more severe COVID-19 disease. No 
correlation is generally observed between viral load and severity of 
disease (Fig. 1B) (44, 45), and a robust biomarker for disease severity 
is not yet clinically available. Validation with additional longitudinal 
samples will be needed to determine the utility of a separate host 
response–based classifier in predicting clinical severity and outcomes.

Although PCR has been shown to have excellent sensitivity and 
specificity overall for the detection of SARS-CoV-2 and other respi-

ratory viruses, host gene expression classifiers may eventually play a 
complementary role in the diagnosis of COVID-19 disease. Studies 
published to date have reported host classifiers that can distinguish 
between bacterial and viral illness (16, 20–22). Here, we present a 
diagnostic host classifier from NP swabs that can distinguish among 
SARS-CoV-2 and other viral and bacterial respiratory infections. 
Future efforts will focus on evaluating the utility of this classifier for 
diagnosis of SARS-CoV-2 infection in presymptomatic or asymp-
tomatic individuals during the incubation period, 38% of whom are 
still PCR negative at time of symptom onset (11, 46), and in gener-
ating classifiers to evaluate and predict COVID-19 severity.

MATERIALS AND METHODS
Ethics
This study was approved by the institutional review board (IRB) at 
the UCSF (IRB number 10-02598) and as a no-subject contact study 
with waiver of consent. Samples from the CDPH were deidentified 
and deemed not research or exempt by the Committee for the Pro-
tection of Human Subjects (project number 2020-30) issued under 
the California Health and Human Services Agency’s Federal Wide 
Assurance #00000681 with the Office of Human Research Protec-
tions. Remnant NP swab and WB samples after clinical testing were 
collected for RNA-seq analysis, and review of the patient electronic 
medical records was performed, with the data presented in aggregate.

NP swab sample collection
The study population consisted of patients with available remnant 
NP samples collected in universal transport media (UTM) or DNA/
RNA Shield (Zymo Research) from the clinical laboratories at the 
UCSF (n = 316). Samples from patients who were positive or nega-
tive by SARS-CoV-2 real-time RT-PCR testing or were positive 
by respiratory virus panel PCR on NP swabs were collected from 
20 September 2014 to 30 April 2020 (Fig. 1A). Patients who tested 
negative by SARS-CoV-2 RT-PCR were selected randomly. In addi-
tion, RNA extracts from patients who had tested positive by SARS-
CoV-2 RT-PCR (n = 4) and UTM from patients with seasonal 
coronavirus or influenza were provided by the CDPH (Richmond, 
CA) (n = 20). NP swabs from donor controls were obtained from 
asymptomatic volunteers at the UCSF (n = 11).

WB sample collection
Remnant WB from patients with COVID-19 was collected from the 
clinical laboratories at the UCSF from 8 March 2020 to 13 April 2020 
(n = 7) (Fig. 1A). Remnant WB from patients with influenza (n = 20) and 
sepsis (n = 6) were collected from 7 March 2018 to 15 November 2018. 
Additional donor controls were obtained from volunteers at the 
UCSF (n = 20).

Nucleic acid extraction
All NP swab samples obtained at the UCSF were pretreated with a 
1:1 ratio of DNA/RNA Shield (Zymo Research) before extraction. 
An input volume of 200 l of NP swab sample was used for all ex-
traction methods performed at the UCSF and eluted in 100 l. NP 
swab samples obtained from the CDPH were extracted using the 
easyMag instrument (bioMérieux) according to the manufacturer’s 
instructions with an input volume of 300 l and elution volume of 
110 l, except for 4 seasonal coronavirus and 3 influenza samples, 
which were extracted using the Mag-Bind Viral DNA/RNA 96 kit 
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(Omega Bio-Tek) on a KingFisher Flex (Thermo Fisher Scientific) in-
strument according to the manufacturer’s instructions. For NP swab 
samples collected at the UCSF, 297 were extracted using the Mag-Bind 
Viral DNA/RNA 96 kit (Omega Bio-Tek) on the KingFisher Flex 
(Thermo Fisher Scientific), and 30 samples were extracted using the EZ1 
Advanced XL (Qiagen) according to the manufacturer’s instructions.

All WB samples (300 l) were pretreated with a 2:1 ratio of 
DNA/RNA Shield (Zymo Research) and extracted using Direct-zol 
RNA MiniPrep kit (Zymo Research) according to the manufacturer’s 
instructions. Samples were on-column deoxyribonuclease (DNase) 
treated with DNase I (Zymo Research) and eluted in 30 l. Extracted 
material was stored at −80°C.

Library preparation and sequencing
Extracted RNA from NP swab samples (25 l) was treated with a 
nuclease cocktail of TURBO DNase (Thermo Fisher Scientific) and 
Baseline Zero DNase (Ambion) for 30 min at 37°C and purified 
using AMPure XP beads (Beckman Coulter) on the epMotion 5075 
(Eppendorf). Purified RNA (7 l) was used for library preparation using 
the SMART-Seq Stranded kit (Takara Bio) and purified using AMPure 
XP beads (Beckman Coulter) on the epMotion 5073 (Eppendorf). 
Libraries were quantified using the Qubit dsDNA HS Assay (Thermo 
Fisher Scientific) on the Qubit Flex (Thermo Fisher Scientific).

WB sample libraries were prepared using 9 l of total RNA and 
TruSeq Total RNA with Ribo-Zero Globin (Illumina) and spiked 
with 1 l of ERCC RNA Spike-In Mix (Thermo Fisher Scientific). 
Libraries were purified using AMPure XP beads (Beckman Coulter) 
and quantified using the Qubit dsDNA HS Assay (Thermo Fisher 
Scientific) on the Qubit Flex (Thermo Fisher Scientific).

NP swab and WB sample libraries were sequenced on the NovaSeq 
6000 (Illumina) using 150–base pair paired-end sequencing at the 
UCSF Center for Advanced Technology. Included in each sequenc-
ing run were negative controls (nuclease-free water) to monitor for 
laboratory and reagent contamination and a Human Reference RNA 
Standard (Agilent) to monitor for sequencing efficiency.

Metatranscriptomic analysis
Metatranscriptomic next-generation sequencing (mNGS) data from 
all samples were analyzed for viral nucleic acids using SURPI+ 
(v1.0.7-build.4), a bioinformatics pipeline for pathogen detection and 
discovery from metatranscriptomic data, modified to incorporate 
enhanced filtering and classification algorithms (47, 48). The Scalable 
Nucleotide Alignment Program (SNAP) nucleotide aligner was run 
using an edit distance of 16 against the National Center for Biotechnology 
Information (NCBI) nucleotide database (March 2019, with inclu-
sion of the SARS-CoV-2 WuHan- Hu-1 genome accession number 
NC_045512) filtered to retain only viral, bacterial, fungal, and para-
sitic reads, enabling detection of reads from microorganisms with 
≥90% identity to reference sequences in the database. The prees-
tablished criterion for viral detection by SNAP was the presence 
of reads mapping to at least three nonoverlapping regions of the viral 
genome (47). Diversity metrics, including the Chao Richness Score 
and Shannon diversity index, were calculated in R (version 4.00) (49) 
using the vegan package (version 2.5.3), and figures were produced 
using the ggplot2 package (50).

Transcriptome analysis
Following sequencing of sample libraries, quality control was per-
formed on the fastq files to ensure that sequencing reads met prees-

tablished cutoffs for number of reads and quality using FastQC 
(version 0.11.8) (51) and MultiQC (version 1.8) (52). Quality filtering 
and adapter trimming were performed using BBduk tools (version 38.76, 
https://sourceforge.net/projects/bbmap). Remaining reads were 
aligned to the ENSEMBL GRCh38 human reference genome assembly 
(release 33) using STAR (version 2.7.0f) (53), and gene frequencies were 
counted using featureCounts (version 2.0.0) within the Subread package 
(54). Comparative analysis of DEGs was performed using a generalized 
linear model implemented in the edgeR Bioconductor package (version 
3.30.3) (55) using a Benjamini-Hochberg–corrected P value of <0.01.

Hierarchical clustering of DEGs was performed in R (version 4.0.0) 
using the ComplexHeatmap and pheatmap package (49). Figures 
were produced using the ggplot2 package (50). For NP and WB, the 
top 100 DEGs sorted by P value with Bonferroni-corrected P values 
of <0.001and <0.01, respectively, were included. For the comparison 
between hospitalized and outpatients, all the DEGs with a Bonferroni- 
corrected P value of <0.01 were included. Clustering was performed 
on the basis of Euclidean distance with complete linkage, after ex-
clusion of noncoding genes.

Signaling pathway analyses and heatmaps were generated using 
the Ingenuity Pathway Analysis (IPA) software (Qiagen) (56). The 
molecule activity predictor tool of IPA was used to predict gene up- 
or down-regulation and pathway activation or inhibition. The 
enrichment score P value was used to evaluate the significance of 
the overlap between predicted and observed genes, while the z-score 
was used to assess the match between observed and predicted regu-
lation or down-regulation.

Classifiers were developed using scikit-learn (version 1.2.2) (57) 
in Python. A total of 13 different classifier models, including Linear 
Support Vector Machine, Linear Discriminant Analysis, and Deep 
Neural Network, were trained in parallel using a cross-validation 
approach. Candidate classifier models included a Linear Support 
Vector Machine, Linear Discriminant Analysis, and a Deep Neural 
Network, all within the scikit-learn package. The performance of 
each model was evaluated on the basis of the average score achieved 
across five cross-validation iterations; these average scores were then 
compared to select the best-performing model (table S16). Reduced 
gene panels were selected using Lasso (58), and a customized reverse 
search across the resulting feature set was performed. This search 
iteratively removed the remaining gene with the lowest significance 
as measured by its Lasso coefficient, performed classifier training, 
and reported sensitivity, specificity, and accuracy across the train-
ing set. These results were then manually reviewed to balance each 
of them with a priority placed on specificity and number of genes. 
ROC curves were generated using pROC package in R (59).

Statistical analysis
To identify potentially important clinical predictors for COVID-19 
score among RT-PCR–positive patients, linear regression models 
were used to check the association of each clinical variable with the 
transformed COVID-19 score while controlling for demographics 
(age, gender, and race/ethnicity). A stepwise procedure was then 
used to determine what clinical variables would be selected when all 
the variables were included in the model while controlling for 
demographics. Variables with a P value less than 0.15 from those 
models were further examined for their association with transformed 
COVID-19 score in one model together while controlling for demo-
graphics. In this exploratory analysis, we did not adjust P values for 
multiple comparisons to avoid missing potentially important variables.

https://sourceforge.net/projects/bbmap
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Ct values were categorized as low (Ct <18), moderate (Ct ≥18 
and ≤25), and high (Ct >25). The association of demographics and 
clinical variables with RT-PCR (positive versus negative), diagnosis 
(COVID-19, influenza, or bacterial sepsis), and viral load (low, 
medium, or high) was examined by Fisher’s exact test (values <5) or 
2 test (values >5) for categorical variables and two-sample t test or 
analysis of variance (ANOVA) for age, respectively. The association 
of demographics and clinical variables with Ct values was assessed 
with Wilcoxon rank sum test for variables with two categories or 
Kruskal-Wallis test for variables with more than two categories. The 
tetrachoric or polychoric correlation was estimated for the correla-
tion between binary RT-PCR and binary or ordinal symptoms and 
outcome. The point-biserial correlation was estimated for the cor-
relation between binary symptoms and continuous Ct values. For 
mNGS analysis, comparisons of virome or bacterial metatranscriptome 
abundance, richness, and alpha diversity between groups were ana-
lyzed using the Kruskal-Wallis test, followed by the Nemenyi test 
for post hoc analysis.

Comparisons of diagnosis and disease severity for cell types were 
conducted using the Kruskal-Wallis test, followed by Dunn’s test for 
pairwise multiple comparisons for post hoc analysis of viral diagnosis 
(fig. S3A, 16 comparisons), patient severity (fig. S3B, 4 comparisons), 
and WB diagnosis (fig. S4, 7 comparisons). All statistical tests were 
calculated as two sided at the 0.05 significance level.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/6/eabe5984/DC1
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