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Background. Monolithic restorations made of translucent yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) have become
popular over the past few decades. However, whether aging affects the color and translucency of monolithic translucent Y-TZP
is unclear. Objective. The aim of this systematic review and meta-analysis of in vitro studies was to evaluate the effects of aging
on the color and translucency of monolithic translucent Y-TZP ceramics. Materials and Methods. This systematic review/
meta-analysis was reported according to the PRISMA statement and registered in the OSF registries (https://osf.io/5qjmu).
Four databases including Medline via the PubMed, Embase, and Web of Science databases and the Cochrane Library were
searched using no publication year and language limits. The last search was executed on November 20, 2020. In vitro
studies comparing the translucency and/or color of monolithic translucent Y-TZP ceramics before and after simulated
aging were selected. Meta-analyses were performed using Review Manager software (version 5.3, Cochrane Collaboration,
Oxford, UK) with random-effects models at a significance level of 0.05. A risk-of-bias assessment was also performed for
the included studies. Results. Of the 188 potentially relevant studies, 13 were included in the systematic review. The
hydrothermal aging duration ranged from 1 to 100 h at relatively similar temperatures (~134°C). In the general meta-
analyses, the aged Y-TZP ceramics exhibited similar translucency parameter (TP), L∗, and b∗ values compared with the
nonaged controls (P = :73, P = :49, and P = :62, respectively). Moreover, there was a significant difference between the aged and
nonaged Y-TZP ceramics in the a∗ value (P = :03; MD= −0:26; 95% CI = −0:51 to − 0:02), favoring the nonaged Y-TZP
ceramics. The subgroup analyses showed that the duration of aging contributed to changes in the translucency and color of the
Y-TZP ceramics. Conclusions. The optical properties of monolithic translucent Y-TZP ceramics were stable after hydrothermal
aging at 134°C and 0.2MPa for ≤20 h. Moreover, clinically unacceptable changes in the translucency and color of monolithic
translucent Y-TZP ceramics were found after hydrothermal aging for >20 h.

1. Introduction

The popularity of dental zirconia has increased in recent
decades because of its excellent mechanical characteristics,
biocompatibility, and acceptable esthetic properties [1, 2]. A
questionnaire-based survey regarding the selection of dental
ceramic materials reported that dental zirconia was one of
the top choices for both anterior (layered) and posterior
(monolithic) restorations [3].

At ambient pressure, zirconia can exhibit 3 allotropic
crystal phase structures: a monoclinic phase (m) from room
temperature to 1170°C, a tetragonal phase (t) from 1170°C
to 2370°C, and a cubic phase (c) above 2370°C to its melting
point at 2715°C and boiling point of 4300°C [4, 5]. To stabi-
lize the t and c phases of zirconia at room temperature, the
addition of different amount of stabilizing oxides, such as
yttria (Y2O3), to pure zirconia crystals is essential and well
studied [2, 4, 6]. In particular, t phase zirconia is useful in
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dentistry because of its strength [2, 6]. Therefore, yttria-
stabilized zirconia polycrystal (Y-TZP) has been widely used
as a framework for fixed dental prostheses (FDPs) and
monolithic restorations [7]. To date, there are three genera-
tions of Y-TZP ceramics (1st, 2nd, and 3rd generations) in
dentistry [2]. First-generation Y-TZP ceramics are 3mol%
(5.2wt%) Y-TZP (3Y-TZP) containing 0.25wt% alumina,
which are highly opaque. Second-generation Y-TZP ceramics
are refined by reducing the concentration of alumina
(<0.05wt%) and sintering at a higher temperature (~1450°C)
of 3Y-TZP [2]. To further reduce opacity, 3rd generation Y-
TZP ceramics are refined by increasing the yttria content to
4 and 5mol% (4Y-TZP and 5Y-TZP) to stabilize the c phase
content (>25%) [2]. Both 2nd and 3rd generations of Y-TZP
ceramics are considered translucent and are indicated for pos-
terior and/or anterior monolithic crowns and FDPs [2, 8].

Although c phase zirconia does not undergo stress-
induced transformation [8], the 2nd and 3rd generations Y-
TZP still have t phase so that t -to-m phase transformation
will eventually be activated and accelerated when the Y-
TZP ceramic is subjected to a humid environment with con-
stant temperature changes, which is usually referred to as
aging or low-temperature degradation (LTD) [9–13]. Evi-
dence of aging has been observed in zirconia used in hip
implants [14]. In fact, the mechanism of aging has been
described using different theories and speculations [15, 16].
For example, water vapor has been proposed to attack the
Zr–O bond and be incorporated into zirconia grains by filling
oxygen vacancies; then, aging proceeds into the bulk material
and jeopardizes the molecular and mechanical properties of
Y-TZP ceramics [17, 18]. On the other hand, Lange et al.
[19] proposed that water reacts with Y2O3 to form clusters
rich in Y(OH)3, which leads to the depletion of the stabilizer
in the surrounding zirconia grains and induces aging. This
mechanism has also been supported by a recent study [20].

Despite the fact that various aging mechanisms have been
proposed, the effects of aging on Y-TZP ceramics are still
being studied and reported in the literature [13, 21–23].
The simulated aging of Y-TZP ceramics has commonly been
performed by steam autoclave at 120°C to 140°C [16, 24–27].
A recent systematic review concluded that hydrothermal
aging promoted LTD, as shown by the t -to-m phase trans-
formation, and it negatively influenced the flexural strength
of Y-TZP ceramics [18]. Moreover, the influences of aging
on the surface roughness, surface microhardness, and frac-
ture toughness of Y-TZP ceramics have been previously
reported [9, 28–33].

Apart from mechanical properties, optical properties,
including color and translucency, are critical for the long-
term success of ceramic restorations, especially monolithic
restorations [27, 34–36]. However, very limited information
concerning the effects of aging on the optical properties of
monolithic translucent Y-TZP ceramics (2nd and 3rd genera-
tions) is available. Han et al. [6] reported that autoclaving
Y-TZP did not change its color, whereas other treatments
such as ultraviolet and gamma irradiation changed the color
of Y-TZP. Rafael et al. [37] reported significant differences in
the lightness, chroma, and hue of Y-TZP ceramics in all
groups after aging. In contrast, other studies have reported

that Y-TZP ceramics can be considered color stable after a
stimulated aging process [38, 39]. In addition to the color,
efforts have also been made to investigate the effects of aging
on the translucency of monolithic translucent Y-TZP
ceramics. Current studies in the literature have shown that
the translucency of Y-TZP ceramics is reduced [25, 40] or
remains unchanged [41] after aging.

Theoretically, Y-TZP ceramic aging may lead to increased
surface roughness and pigment breakdown, jeopardizing the
esthetic outcome and stability of ceramic restorations [25].
The effects of aging on the color and translucency of mono-
lithic zirconia were reviewed by Papageorgiou-Kyrana et al.
[42]. However, no systematic review or meta-analysis has been
performed in this field. Therefore, this systematic review and
meta-analysis aimed to evaluate the effects of aging on the
translucency and color of monolithic translucent Y-TZP
ceramics.

2. Material and Methods

This systematic review and meta-analysis was performed
according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement [43] and
registered in the OSF registries (https://osf.io/5qjmu). A sys-
tematic electronic literature search was conducted inMedline
via PubMed, Embase, Web of Science (ISI—Web of Knowl-
edge), and Cochrane Library with no publication year and
language limits. The search terms and their combinations
used in the literature search are listed in Supplemental
Table 1. The last search was executed on November 20,
2020. The PICO questions were defined as follows: P:
population—monolithic translucent Y-TZP ceramics; I:
intervention—Y-TZP ceramics subjected to aging; C:
control—Y-TZP ceramics not subjected to aging; O:
outcome—an evaluation of color and translucency changes
of Y-TZP ceramics; and S: study designs—in vitro studies.
The primary evaluated outcome was the translucency of
monolithic translucent zirconia, and the secondary evaluated
outcome was the color of monolithic translucent zirconia.

Articles that met the following inclusion criteria were
included: (1) studies that evaluated the effect of aging on
the translucency and/or color of monolithic translucent Y-
TZP ceramics and (2) studies that used translucency and/or
color measurements according to ISO/TR 28642:2016 [44].
Articles meeting one or more of the following criteria were
excluded: (1) study materials other than monolithic translu-
cent Y-TZP ceramics; (2) reviews, protocols, clinical guide-
lines, and editorial letters; and (3) studies not using
hydrothermal aging [33]. Two reviewers (C.Z. and A.C.)
independently performed the literature searches and the
study selection. Any disagreements were resolved by discus-
sion or by consultation with another reviewer (H.Y.) [33].
The reference lists of all the selected articles were manually
reviewed, and the full texts of potentially related studies were
examined [45]. Lastly, manual searches were conducted in
the following principal periodicals specific to the area of
study: Journal of Prosthetic Dentistry, Journal of Dental
Research, Journal of Dentistry, Operative Dentistry, Clini-
cal Oral Investigations, Journal of Oral Rehabilitation,
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International Journal of Prosthodontics, Journal of Pros-
thodontic Research, Dental Materials Journal, and Journal
of Prosthodontics.

A protocol for data extraction was defined and evaluated
by 2 reviewers (C.Z. and A.C.) [33]. The following data were
extracted from the included studies: demographic informa-
tion (e.g., authors, publication year, and publication journal
and title), the materials tested, the aging protocol, the mean
and standard deviation of translucency and/or color, the
sample size, and the evaluation methods.

The risk-of-bias assessment was based on a protocol
adapted from previous systematic reviews [46, 47]. Briefly,
the following parameters were used for the quality assess-
ment: clearly specified aging protocol, sample size calcula-
tion, specimen randomization, adequate statistical analysis,
ceramic sintering followed the manufacturers’ instructions,
and tests executed by a single-blinded operator [33]. If a
parameter is reported, the study received a “Y”; if the infor-
mation was missing, the study received an “N.” Studies that
included 1 or 2 “Y” items were classified as having a high risk
of bias, 3 or 4 “Y” items as a medium risk of bias, and 5 to 6
“Y” items as a low risk of bias [33].

For the meta-analysis, studies that did not present data
on the translucency parameter (TP) and/or Commission
Internationale de L’Éclairage (CIE) L∗, a∗, and b∗ values were
excluded. Studies containing the color difference, contrast
ratio, and percentage of total transmittance of light were
not considered because of insufficient data. For studies that
evaluated more than 1 type of ceramic material or 1 aging
duration, all the relevant experimental (aged) groups were
combined into a single group, and all the relevant control

groups were combined into a single control group according
to the Cochrane Statistical Guidelines [48]. All analyses were
conducted using Review Manager software (version 5.3;
Cochrane Collaboration, Oxford, UK) by employing a
random-effects model at a significance level of 0.05. The
mean difference (MD) and 95% confidence interval (CI) were
calculated for the included studies. Subgroup analyses were
performed to explore the potential causes of heterogeneity,
including the type of monolithic translucent Y-TZP material
(3Y-TZP vs. 5Y-TZP) and the steam autoclave duration
(≤20 h vs. >20 h). For the studies included in the subgroup
analyses, all the relevant groups were combined into a single
subgroup (e.g., 3Y-TZP or 5Y-TZP for the material type)
within a given study [48].

3. Results

Thirteen studies were included in the systematic review, and
11 studies were included in the meta-analysis (Figure 1). The
characteristics of the included studies are presented in
Table 1. The majority of the included studies (9 studies) pre-
sented a medium risk of bias, while 2 studies presented a high
risk of bias and 2 presented a low risk of bias (Table 2).

The included articles were all in English and were pub-
lished between 2014 and 2020. Of the 13 studies included
in the systematic review, 1 study performed color measure-
ments [37], 8 studies performed translucency evaluations
[13, 39–41, 49–52], and 4 studies performed both types of
investigations [22, 25, 53, 54]. All included studies were
laboratory studies measuring the color and/or translucency
with a spectrophotometer. All studies included in the meta-
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Figure 1: Flow diagram of study selection according to the PRISMA statement. PRISMA: Preferred Reporting Items for Systematic Reviews
and Meta-Analyses.
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analysis adopted hydrothermal aging according to the ISO
13356:2015 [55]. The simulated aging time ranged from 1
to 100h at relatively similar temperatures (~134°C).

The results of the general meta-analysis on translucency
(Figure 2) showed no significant difference in the TP value
between the nonaged and aged Y-TZP (P = :73; mean
difference ðMDÞ = 0:46; 95% confidence interval ðCIÞ =
− 2:12 to 3.05).

The results of the general meta-analysis on the L∗ values
showed no significant difference in the L∗ value between the
nonaged and aged Y-TZP (P = :49; MD= −1:75; 95%CI =
−3:25 to 6.75) (Figure 3). In the general meta-analysis of
a∗ values, the results showed a significant difference in
the a∗ value between the nonaged and aged Y-TZP
(P = :03; MD= −0:26; 95%CI = −0:51 to − 0:02), favoring
the nonaged Y-TZP (Figure 4). In the general meta-
analysis of b∗ values (Figure 5), no significant difference
in the b∗ value between the nonaged and aged Y-TZP
was found (P = :62; MD= 0:40; 95%CI = −1:17 to 1.97).

Subgroup analyses considering the steam autoclave dura-
tion (≤20 h vs. >20 h) were performed on the translucency
and CIE L∗a∗b∗ coordinate data (Supplemental Figures 1,
2, 3, and 4). The results revealed that the steam autoclave
duration contributed to the changes in the translucency and
color of the aged Y-TZP ceramics (P all < .05). When the
aging duration was ≤20 h, no significant differences in the
TP, L∗, and b∗ values were found between aged and
nonaged Y-TZP ceramics (P all > .05). However, when the
aging duration was >20 h, significant differences in the TP,
L∗, and b∗ values were found between the aged and
nonaged Y-TZP ceramics (P all < .05). Significantly greater
a∗ values were found in the aged Y-TZP ceramics than the
nonaged ones, regardless of the aging duration. Furthermore,
a subgroup analysis considering the type of monolithic
translucent Y-TZP ceramic (3Y-TZP vs. 5Y-TZP) was
performed on the translucency data (Supplemental Figure 5).
No significant differences in the TP values were found
between the subgroups (P = :45).

Table 2: Risk of bias in included studies.

Author
Publication

year
Sample size
calculation

Randomization
Aging
protocol

Statistical
analysis

Ceramic
sintering

Blinded
examiner

Risk of
bias

Fathy et al. 2015 N N Y Y Y N Medium

Nakamura et al. 2016 N N Y Y Y N Medium

Alghazzawi TF 2017 N N Y Y Y N Medium

Putra et al. 2017 N N Y Y Y N Medium

Rafeal et al. 2018 N N Y Y N N High

Kim and Kim 2019 N N Y Y N N High

Walczak et al. 2019 N N Y Y Y N Medium

Kou et al. 2019 N Y Y Y Y N Low

Shen et al. 2020 N N Y Y Y N Medium

Benalcazar Jalkh et al. 2020 N Y Y Y Y N Low

de Araújo-Júnior et al. 2020 N N Y Y Y N Medium

Cokic et al. 2020 N N Y Y Y N Medium

Lopes et al. 2020 N N Y Y Y N Medium

Study or subgroup

Alaghazzawi et al. 2017

Mean

24.8

SD

1.4

Total

350

Mean

18.6

SD

1.6

Total

350

Weight

11.2%

IV, Random, 95% CI

6.20 [5.98, 6.42]
Benalcazar Jalkh et al. 2020 10.23 0.41 30 15.51 0.62 30 11.2% –5.28 [5.55, –5.01]
Cokic et al. 2020 24.2 1.3 14 20.3 2.1 14 10.9% 3.90 [2.61, –5.19]
de Araújo-Júnior et al. 2020 7.71 2.23 30 8.35 2.44 30 10.9% –0.64 [–1.82, 0.54]
Fathy et al. 2015 16.4 1.32 10 13.35 1.16 10 11.0% 3.05 [1.96, 4.14]

Lopes et al. 2020 10.21 0.2 10 15.51 0.37 10 11.2% –5.30 [–5.56, –5.04]
Shen et al. 2020 10.89 0.59 120 9.68 1.13 120 11.2% 1.21 [0.98, 1.44]
Walczak et al. 2019

Total (95% CI)
Heterogeneity: tau2 = 15.50; chi2 = 6329.66, df = 8 (P < 0.00001); I2 = 100%
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Figure 2: Forest plot summarizing the TP values of aged and nonaged Y-TZP ceramics. CI: confidence interval; SD: standard deviation.
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4. Discussion

To avoid the chipping of layered restorations, monolithic res-
torations have been promoted [1]. Monolithic restorations
made of translucent Y-TZP ceramics, such as 3Y-TZP and
5Y-TZP, have become popular in recent decades. However,
exposing Y-TZP ceramics directly to the oral environment
may make them more susceptible to aging [16]. Therefore,
this systematic review and meta-analysis was conducted to
evaluate the effects of aging on the optical properties of
monolithic translucent Y-TZP ceramics and can be consid-
ered the first in this study area.

In general, the esthetic outcome of monolithic Y-TZP
restorations is mostly dependent on optical properties,
including color and translucency. Translucency can be
described as the quality of light passing through a material;
this aspect is essential to the esthetic performance of dental
restorations, which is crucial when selecting a restorative
material [27]. The material brand, thickness, and composi-
tion (e.g., the yttrium content) have been reported to influ-
ence the optical properties of Y-TZP ceramics [56]. Other
influencing factors may include the type and quantity of
additives, the color shade, the coloring protocol (e.g., preco-

lored or colored by immersion in coloring liquids), the pres-
ence of c phase content, the sintering temperature and time,
and the surface roughness [34–36].

The TP and contrast ratio (CR) have been widely used to
describe the translucency of dental materials [27]. Although
the CR values were not considered in the present study due
to insufficient data, the TP values have been confirmed to
highly correlate with the CR values, and they can be used
interchangeably [25–27]. The TP values of Y-TZP ceramics
remained stable when the duration of hydrothermal aging
was ≤20 h. However, after hydrothermal aging for >20h
(for the included studies, 40 to 100h), the mean ΔTP value
was 5.05, indicating that the Y-TZP ceramics had become
significantly more opaque. Liu et al. [57] concluded that a
CR difference (ΔCR) of 0.07 is the human perception thresh-
old for translucency. Based on the correlation established
between the TP and CR values, a ΔCR of 0.07 could be trans-
formed into a ΔTP value of 2 [58]. Therefore, the translu-
cency changes due to aging detected in the present study
might be perceived by visual assessments. The change in
translucency during aging is probably associated with the
transformation of zirconia from the t phase to the m phase
[40]. An increase in the m phase content due to aging causes

Heterogeneity: tau2 = 12.99; chi2 = 700.62, df = 1 (P < 0.00001); I2 = 100%
Test for overall effect: Z = 0.69 (P = 0.49)

Total (95% CI)
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Kim and Kim. 2019 70.68 0.78 40 71.48 0.6 40 50.0% –0.80 [–1.10, –0.50]

390 390 100.0% –1.75 [–3.25, 6.75]

IV, Random, 95% CI

Mean difference

–4 –2 0
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2 4
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Figure 3: Forest plot summarizing the L∗ values of aged and nonaged Y-TZP ceramics. CI: confidence interval; SD: standard deviation.

Heterogeneity: tau2 = 0.03; chi2 = 205.06, df = 1 (P < 0.00001); I2 = 100%
Test for overall effect: Z = 2.12 (P = 0.03)

Total (95% CI) 390 390 100.0% –0.26 [–0.51, –0.02]

–4 –2 0
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2 4

Study or subgroup
Mean SD Total Mean SD Total
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Alaghazzawi et al. 2017 0.16 0.12 350 0.55 0.23 350 49.9% –0.39 [–0.42, –0.36]
Kim and Kim. 2019 0.91 0.06 40 1.05 0.03 40 50.1% –0.14 [–0.16, –0.12]
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Mean differenceMean differenceAgedNonaged

Figure 4: Forest plot summarizing the a∗ values of aged and nonaged Y-TZP ceramics. CI: confidence interval; SD: standard deviation.

Heterogeneity: tau2 = 1.28; chi2 = 266.87, df = 1 (P < 0.00001); I2 = 100%
Test for overall effect: Z = 0.50 (P = 0.62)
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Figure 5: Forest plot summarizing the b∗ values of aged and nonaged Y-TZP ceramics. CI: confidence interval; SD: standard deviation.
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the formation of microcracks and increases the surface
porosity, therefore increasing the surface roughness, light
scattering, and reflection [11–13]. The coexistence of the t
and m phases after aging may also contribute to an increase
in the difference in the refractive indices for an incident light
beam, thereby decreasing the translucency [35, 59, 60]. The
longer the aging duration is, the greater the t-to-m phase
transformation (greater m phase content). An increase in
the m phase content has been proposed to lead to increased
opacity due to the abovementioned reasons [16, 61].

The color difference (ΔE) between 2 subjects can be
calculated and used to report relative color changes. In
dentistry, a ΔE of 2.7 is considered the threshold for a clini-
cally unacceptable color difference according to ISO/TR
28642:2016 [44]. Apart from ΔE values, the National Bureau
of Standards (NBS) units (NBS units = ΔE × 0:92) are also
regarded as a means of visual assessment [62]. Significant
differences in the a∗ values between the aged and nonaged
Y-TZP ceramics were found, indicating that the Y-TZP
ceramics appeared more reddish (greater a∗) after aging.
According to the meta-analysis, the mean ΔL∗, Δa∗, and
Δb∗ values were -1.75, -0.26, and 0.40, respectively. Based

on the equation ΔE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΔLÞ2 + ðΔaÞ2 + ðΔbÞ2
q

[63], ΔE =
1:81, and NBS unit = 1:67, indicating that the color changes
caused by aging might be noticeable. Similar to the TP values,
the hydrothermal aging duration contributed to the changes
in the CIE L∗, a∗, and b∗ values. The color (CIE L∗, a∗, and b∗

values) of the aged monolithic translucent zirconia remained
unchanged when the aging duration ≤20 h. When the Y-TZP
ceramics were aged for more than 20h (for the included stud-
ies, 40 to 100h), the ΔE = 5:73, indicating that the color
changes were clinically unacceptable. Theoretically, thermal
conditions may have an effect on the coloring pigments
added to Y-TZP ceramics, causing pigment breakdown and
resulting in color instability [64]. For example, some of the
monolithic zirconia consists of minute amount of Fe2O3 as
the pigment [65]. Fe2O3 has at least three isomorphs (α, γ,
and ε) whereas they have different observable band gaps
and oxygen valencies, such that α and γ are easily inter-
changed with each other even at room temperature [66].
Nevertheless, the exact mechanism of color instability is not
clear and requires further investigation. In addition, the
breakdown of colorants could also affect TP which was
shown to be related to the changes in lightness and yellow–
blue coordinates [67]. Thus, color is an important perceptive
factor in the determination of the TP, given that TP is
determined by the colorimeter/spectrophotometer and the
thickness of the specimen tested. In other words, the experi-
mental operating condition is critical and should receive
more attention in the literature [27, 50].

Although hydrothermal aging is the most common
method of accelerated aging, other less aggressive aging
methods, such as thermocycling and exposure to ultraviolet
light and water spray in a weathering machine, were used
in the literature [23, 38]. Compared with steam autoclave,
less aggressive aging methods, such as thermocycling and
exposure to ultraviolet light and water spray in a weathering
machine, presented less pronounced effects on the optical

properties of Y-TZP ceramics. Dikicier et al. [23] reported
that aging in a weathering machine for 300 h is equivalent
to 1 year of clinical service. After 200 h of aging in a weather-
ing machine, the Y-TZP ceramic presented only a minor
color change, with a mean ΔE value of 1.19. Papageorgiou-
Kyrana et al. [38] concluded that monolithic Y-TZP, either
precolored or colored by immersion in staining solutions,
can be considered color stable after 5000 thermocycles.

Although sensitivity analyses were conducted, no partic-
ular studies were responsible for generating heterogeneity.
The high heterogeneity observed in the analyses could be
explained by the various brands of test materials and the
aging protocols, which may have led to a large change in
the aging behavior. The present study was considered to have
the following limitations: no subgroup analyses considering
the type of Y-TZP ceramic on CIE L∗a∗b∗ coordinate data
were performed because of insufficient data. Although the
risk of bias assessment was based on previous studies
[46, 47], the assessment methods may be improved by
considering the topic of bias. Moreover, no clinical studies
in this field were found; thus, there is weak evidence to
support clinical recommendations.

Based on the present findings, the optical properties of
monolithic translucent Y-TZP ceramics seemed to be stable
after hydrothermal aging at 134°C and 0.2MPa for ≤20 h.
Clinically unacceptable changes in the translucency and color
of monolithic translucent Y-TZP ceramics were found after
hydrothermal aging for >20 h. The general consensus is that
1 h of autoclave aging is equivalent to 3 to 4 years in vivo [15],
although a recent study reported that aging at 134°C and
0.2MPa for 5 h was considered equivalent to 2 years of aging
in vivo [24]. However, it is important to emphasize that
in vivo data are needed to correlate the data from laboratory
simulations and clinical situations. Therefore, further clinical
studies are needed to clarify this hypothesis.

5. Conclusions

Within the limitations of this study, the following conclu-
sions may be drawn:

(1) The translucency and color of monolithic translucent
Y-TZP ceramics remained stable when the duration
of hydrothermal aging was less than 20h.

(2) Clinically unacceptable changes in the translucency
and color of monolithic translucent Y-TZP ceramics
were found when the duration of hydrothermal aging
was more than 20 h.
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