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A B S T R A C T   

Microorganisms lives with us in our environment, touching infectious material on the surfaces by hand-mouth 
which causes infectious diseases and some of these diseases are rapidly spreading from person to person. 
These days the world facing COVID-19 pandemic disease. This article concerned with existence of results and 
stability analysis for a nabla discrete ABC-fractional order COVID-19. The nabla discrete ABC-fractional operator 
as more general and applicable in modeling of dynamical problems due to its non-singular kernel. For the ex-
istence and uniqueness theorems and Hyers-Ulam stability, we need to suppose some conditions which will play 
important role in the proof of our main results. At the end, an expressive example is given to provide an 
application for the nabla discrete ABC-fractional order COVID-19 model.   

Introduction 

Humans born on the earth with some active viruses and inactive 
bacteria. Infectious diseases caused by viruses, bacteria, fungi and ar-
thropods. Due to these infectious diseases humans worldwide facing 
pandemic diseases such as HIV, COVID-19, Malaria, Influenza, Tuber-
culosis, Zika virus infection, Smallpox, measles, yellow fever, Cholera 
and Leprosy. In 2018, according to WHO 37.9 million infected and 
770,000 peoples died from HIV/AIDS, three to five million peoples 
dying from Influenza yearly, 20,000 peoples dying from dengue yearly, 
405,000 peoples died from malaria. In Dec 2019 a new virous disease 
COVID-19 identified in Wuhan city capital of Hubei provence China. 
COVID-19 pandemic shocked the whole world because of economic 
disruption and rapidly spreading from person to person. According to 
WHO main source of COVID-19 viruses spreading between the peoples 
by close contact, sneezing, coughing and talking. Common symptoms 
appears in the infected person fever, fatigue, shortness of breath, cough, 
sense of smell lass, respiratory syndrome and pneumonia. COVID-19 
spread in 188 countries on going 5.69 million peoples infected and 

resulting 355,000 peoples died, further details [1–3]. To understand the 
dynamics of these pandemic diseases, mathematical tools play a vital 
role in the field of biological sciences and numbers of diseases have been 
modeled such as HIV, ebola virus diseases, dengue fever, measles 
epidemic [35–40]. In the last two decades biological models have been 
extensively studied. Chetterjee et al. [41] developed SEIR model for 
COVID-19 and studied different aspects of the model. Wen et al. [42] 
provided positive periodic results for the stochastic SIV model. Ivorra 
et al. [4] modeled special cases of diseases, infectious conditions and 
sanitary condition of hospitalized people and numerical results were 
obtained to express obtained results. 

In recent years, a lot of researchers paid their attentions to the study 
of fractional differences, which is the generalization or extension of 
classical calculus. Gray and Zhang [41] introduced some basic proper-
ties of fractional difference. Miller and Ross [4] provided research 
studies on fractional sums and differences with the use of nabla and delta 
operator in the frame of Riemann–Liouville. After that, by combine ef-
forts numbers of mathematicians have provided qualitative theories 
such as, existence and uniqueness of solutions (EUS), stability analysis, 
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oscillations, asymptotic, periodicity and multiple solutions. The usabil-
ity of fractional differences are encountered in various area of applied 
sciences, such as, engineering, physics, computer science, chemistry, 
biology, signal processing, electrochemistry, viscoelasticity, fluid dy-
namics and image processing [5–9,12–17]. 

Due to non-singular, non-local properties and historical dependence 
of variable state researchers investigate numerous aspects fractional 
differences, for example, Khan et al. [20] provided fractional order HIV- 
TB model and analyzed existence solutions, stability results and nu-
merical solutions. Zhang et al. [22] developed fractional order turbulent 
flow model and studied EUS by using fixed point theorem and illustrated 
the results. Khan et al. [22] studied HIV/AIDS model in sense of 
Atangana-Baleanu operator and provided existence results, stability 
criteria and numerical results for the generalized model. Abdeljawad 
and Al-Mdallal [23] used the Banach contraction principle theorem to 
get existence results for the discrete fractional differences in sense of 
discrete Mittage Leffler kernel and numerical results were provided for 
the results illustration. Khan et al. [24] studied existence of solutions, 
stability for the fractional order advection diffusion model in sense of 
Mittage Leffler kernel and exemplified the results numerically. Abdel-
jawad et al. [25] studied existence solution of q-fractional difference 
equations with help of Krasnoselskii’s theorem and demonstrate the 
results by Lotka-Volterra model. For more explanation and details about 
discrete Mittage-Leffler and exponential kernels we suggest to readers 
the recent manuscripts [26–34]. 

The predominant goal of this article, to obtain existence results and 
stability analysis of the nabla ABC-fractional COVID-19 model. Fixed 
point theorem use for the existence results and Hyres-Ullam technique 
utilize to obtain stability analysis for the nabla ABC-fractional COVID-19 
model. The whole study work has been arranged as follows: Section 
‘Basic definitions of nabla fractional calculus’, the basic definitions. 
Section ‘Model description’, model description. Section ‘Existence of 
solutions’, existence results. Section ‘Hyers-Ulam stability’, stability 
analysis. Section ‘Numerical data fitting’, numerical illustration. Section 
‘Conclusion’, Conclusion. 

Basic definitions of nabla fractional calculus 

. 

Definition 0.1. (See [6,9–12]) Suppose ρ(r) = r − 1, which is known as 
backward jump. Then for a function Ϝ : Na = {a,a + 1,a + 2,..}→R, the 
left type nabla fractional sum of order θ > 0 is defined by 

a∇− θϜ

(

r

)

=
1

Γ(θ)
∑r

z=a+1
(r − ρ(z))1− θϜ

(

z

)

, r ∈ Na+1. (1) 

Similarly, for a function Ϝ : bN = {b,b − 1,b + 2,..}→R, the right type 
nabla fractional sum of order θ > 0 is defined by 

∇
θ

b
Ϝ

(

r

)

=
1

Γ(θ)
∑b− 1

z=r
(z − ρ(z))1− θϜ

(

z

)

, (2)  

=
1

Γ(θ)
∑b− 1

z=r
(σ(r) − z)1− θϜ

(

z

)

, r ∈ b− 1N.
(3)   

Definition 0.2. (See [6,9–12]) Let a < b in R, for a function Ϝ defined 
on Na, the left discrete nabla AB fractional difference is given in sense of 
Caputo by 
(

ABC
a∇

θϜ

)(

r

)

=
W (θ)

Γ(1 − θ)
∑r

z=a+1
∇zϜ

(

z

)

Eθ

[ − θ
1 − θ

, r − ρ
(

z
)]

, θ

∈

(

0, 1
/

2

)

, (4)  

in Riemann–Liouville sense by 
(

ABR
a∇

θϜ

)(

r

)

=
W (θ)

Γ(1 − θ)
∇r

∑r

z=a+1
Ϝ

(

z

)

Eθ

[ − θ
1 − θ

, r − ρ
(

z
)]

, θ

∈

(

0, 1
/

2

)

. (5) 

Similarly, for a function Ϝ defined on bN, the right discrete nabla AB 
fractional difference is given in sense of Caputo by 
(

ABC∇θ
bϜ

)(

r

)

=
W (θ)

Γ(1 − θ)
∑b− 1

z=r

(

− ΔzϜ

)(

z

)

Eθ

[ − θ
1 − θ

, r − ρ
(

z
)]

, θ

∈

(

0, 1
/

2

)

,

(6)  

in Riemann–Liouville sense by 
(

ABR∇θ
bϜ

)(

r

)

=
W (θ)

Γ(1 − θ)

(

− Δr

)
∑b− 1

z=r
Ϝ

(

z

)

Eθ

[ − θ
1 − θ

, r − ρ
(

z
)]

, θ

∈

(

0, 1
/

2

)

.

(7)  

where W (θ) with W (θ)|θ=0,1 = 1 denotes of normalization function and 
Eθ is ML function. The notions ABC

a∇
θ, ABR

a∇
θ, ABC∇θ

b and ABR∇θ
b denotes 

the right and left nabla AB fractional differences in Caputo sense, right 
and left nabla AB fractional differences in the frame of Riemann–Liou-
ville. 

Definition 0.3. (See [6,9–12]) For θ ∈ (0, 1) and a function Ϝdefined 
on aN, the left nebla AB fractional sum is given by 
(

ABC
a∇

− θϜ
)(

r
)

=
1 − θ
W (θ)

Ϝ
(

r
)

+
θ

W (θ)

(
a∇− θϜ

)(

r
)

, θ ∈

(

0, 1
/

2
)

.

(8) 

Similarly, right nabla Ab fractional for a function Ϝ defined on Nb 

given by 
(

ABC∇− θ
b Ϝ
)(

r
)

=
1 − θ
W (θ)

Ϝ
(

r
)

+
θ

W (θ)

(

∇− θ
b Ϝ
)(

r
)

, θ ∈

(

0, 1
/

2
)

.

(9)  

where W (θ) with W (θ)|θ=0,1 = 1, represent the normalization function. 

Model description 

In this section, we present Khan et al. [19] formulated the integer 
order COVID-19 model, in which S rate of susceptible, E exposed people, 
I infected people, A asymptomatic infected people and R recovered from 
disease, infected place or market Q. The integer order COVID-19 model 
is given 

D {S(t)}=Δ− λS
(
t
)
−

αS(t)(I(t)+βA(t))
N

− γS
(
t
)
Q
(
t
)
,

D {E(t)}=
αS(t)(I(t)+βA(t))

N
+γS

(
t
)
Q
(
t
)
−
(
1− ϕ

)
δE
(
t
)
− ϕμE

(
t
)
− λE

(
t
)
,

D {I(t)}=(1− ϕ)δE(t)− (σ+λ)I(t),

D {A(t)}=ϕμE(t)− (ρ+λ)A(t),

D {R(t)}=σI(t)+ρA(t)− λR(t),

D {Q(t)}=κI(t)+τA(t)− ηQ(t),
(10)  
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with initial conditions 

S(t)⩾0,E(t)⩾0, I⩾0,A(t)⩾0,R(t)⩾0,Q(t)⩾0.

Where N denotes total population of people N = S(t) + E(t) + I(t) +
A(t) + R(t) + Q(t), Birth rate Δ, rate of contact α, rate of natural 
mortality λ, rate of transmission β, period of incubation δ, period of in-

cubation μ, asymptomatic infection proportion ϕ, transmission of dis-
ease coefficient γ, Recovery of I σ, Recovery of A ρ, virus contribution to 
Q by I is denoted by κ, virus contribution to Q by A is denoted by τ and 
removing rate of virus from Q is denoted by η. Here, we study existence 
results and HUS for a nabla discrete AB-fractional COVID-19 model. 

Existence of solutions 

In this section, we study the existence results for (10) by replacing 
the time derivative by nabla discrete ABC-fractional difference 

( ABC
a∇

∊S
)(

t
)
=Δ− λS

(
t
)
−

αS(t)(I(t)+βA(t))
N

− γS
(
t
)
Q
(
t
)
,

( ABC
a∇

∊E
)(

t
)
=

αS(t)(I(t)+βA(t))
N

+γS
(
t
)
Q
(
t
)
−
(
1− ϕ

)
δE
(
t
)
− ϕμE

(
t
)
− λE

(
t
)
,

( ABC
a∇

∊I
)(

t
)
=(1− ϕ)δE(t)− (σ+λ)I(t),

( ABC
a∇

∊A
)(

t
)
=ϕμE(t)− (ρ+λ)A(t),

( ABC
a∇

∊R
)(

t
)
=σI(t)+ρA(t)− λR(t),

( ABC
a∇

∊Q
)(

t
)
=κI(t)+τA(t)− ηQ(t),

(11)  

with initial conditions 

S(t)⩾0,E(t)⩾0, I(t)⩾0,A(t)⩾0,R(t)⩾0,Q(t)⩾0.

By applying AB-fractional sums on two sides of each equation in (11), 
the system can be converted to the Volterra-type integral as below:    

For simplicity, we define Fi, i ∈ N6
1 as follows: 

F1(t,S)=Δ− λS
(
t
)
−

αS(t)(I(t)+βA(t))
N

− γS
(
t
)
Q
(
t
)
,

F2(t,E)=
αS(t)(I(t)+βA(t))

N
+γS

(
t
)
Q
(
t
)
−
(
1− ϕ

)
δE
(
t
)
− ϕμE

(
t
)
− λE

(
t
)
,

(13)  

F3(t, I) = (1 − ϕ)δE(t) − (σ + λ)I(t),
F4(t,A) = ϕμE(t) − (ρ + λ)A(t),
F5(t,R) = σI(t) + ρA(t) − λR(t),
F6(t,Q) = κI(t) + τA(t) − ηQ(t).

Theorem 0.4. The kernels Fi, i = 1,2, 3,4, 5,6 hold the Lipschitz condi-
tion and contractions, If the subsequent respective conditions 0⩽Ωj < 1, j ∈
N6

1 are satisfied. 

Proof. Consider the kernel  

F1

(

t,S
)

=Δ− λS
(

t
)

−
αS(t)(I(t)+βA(t))

N
− γS

(

t
)

Q
(

t
)

. Let S1,S2 are two functions, then we have 

S(t) − S(0) =
1 − ∊
W (∊)

[

Δ − λS
(

t
)

−
αS(t)(I(t) + βA(t))

N
− γS

(

t
)

Q
(

t
)]

+
∊

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

[

Δ − λS
(

z
)

−
αS(t)(I(z) + βA(z))

N
− γS

(

z
)

Q
(

z
)]

,

E(t) − E(0) =
1 − ∊
W (∊)

[
αS(t)(I(t) + βA(t))

N
+ γS

(

t
)

Q
(

t
)

−

(

1 − ϕ
)

δE
(

t
)

− ϕμE
(

t
)

− λE
(

t
)

,

]

+
∊

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

[
αS(t)(I(z) + βA(z))

N
+ γS

(

z
)

Q
(

z
)

− (1 − ϕ)δE(z) − ϕμE(z) − λE(z)],

I(t) − I(0) = 1 − ∊
W (∊)

[(1 − ϕ)δE(t) − (δ + λ)I(t)]

+
∊

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

[(1 − ϕ)δE(z) − (δ + λ)I(z)],

A(t) − A(0) =
1 − ∊
W (∊)

[(1 − ϕ)δE(t) − (σ + λ)I(t)]

+
∊

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

[(1 − ϕ)δE(z) − (σ + λ)I(z)],

R(t) − R(0) =
1 − ∊
W (∊) [

σI(t) + ρA(t) − λR(t)]

+
∊

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

[σI(z) + ρA(z) − λR(z)],

Q(t) − Q(0) =
1 − ∊
W (∊)

[κI(t) + τA(t) − ηQ(t)]

+
∊

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

[κI(z) + τA(z) − ηQ(z)]. (12)   
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‖F1(t,S1)− F1(t,S2)‖=

⃦
⃦
⃦
⃦Δ − λS

(

t
)

−
αS(t)(I(t)+βA(t))

N
− γS

(

t
)

Q
(

t
)⃦
⃦
⃦
⃦

⩽
(

− λ −
α(‖I(t)‖+β‖A(t)‖)

N
− γ
⃦
⃦
⃦
⃦Q
(
t
)
⃦
⃦
⃦
⃦

)⃦
⃦
⃦
⃦S1 − S2

⃦
⃦
⃦
⃦

⩽
(
− λ −

α(π3+βπ4)

N
− γπ6

)⃦
⃦
⃦S1 − S2

⃦
⃦
⃦.

Taking Ω1 =
(
− λ − α(π3+βπ4)

N − γπ6

)
, where π1 = maxt∈P

⃦
⃦S(t)

⃦
⃦, π2 =

maxt∈p
⃦
⃦E(t)

⃦
⃦, π3 = maxt∈p

⃦
⃦I(t)

⃦
⃦, π4 = maxt∈p

⃦
⃦A(t)

⃦
⃦, π5 = maxt∈p

⃦
⃦R(t)

⃦
⃦, π6 = maxt∈p

⃦
⃦Q(t)

⃦
⃦, we obtain 

‖F1(t,S1) − F1(t, S2)‖⩽Ω1‖S1 − S2‖. (14)  

From (14), we find that the kernel F1 is satisfying the Lipschitz condi-
tion, moreover if 0⩽Ω1 < 1, then the kernel F1 is contraction. Similarly, 
we can get for F2, F3, F4, F5 and F6 as follow 

‖F2(t,E1) − F2(t,E2)‖⩽Ω2‖E1 − E2‖,

‖F3(t, I1) − F3(t, I2)‖⩽Ω3‖I1 − I2‖,

‖F4(t,A1) − F4(t,A2)‖⩽Ω4‖A1 − A2‖,

‖F5(t,R1) − F5(t,R2)‖⩽Ω5‖R1 − R2‖,

‖F6(t,Q1) − F6(t,Q2)‖⩽Ω6‖Q1 − Q2‖.

(15)   

From (15), we find that the kernels F2, F3, F4, F5 and F6 is satisfying the 
Lipschitz condition, moreover if 0⩽Ωi < 1, for i = 1, 2,3, 4,5, 6 then the 
kernel Fi for i = 1,2, 3, 4,5, 6 is contraction. By using the above ker-
nels, one can rewrite the system (12) in the following simple form: 

S(t)=S

(

0

)

+
(1 − ∊)F1(t,S)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F1

(

z,S

(

z

))

,

E(t)=E

(

0

)

+
(1 − ∊)F2(t,E)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F2

(

z,E

(

z

))

,

I(t)= I

(

0

)

+
(1 − ∊)F3(t,I)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F3

(

z,I

(

z

))

,

A(t)=A

(

0

)

+
(1 − ∊)F4(t,A)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F4

(

z,A

(

z

))

,

R(t)=R

(

0

)

+
(1 − ∊)F5(t,R)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F5

(

z,R

(

z

))

,

Q(t)=Q

(

0

)

+
(1 − ∊)F6(t,Q)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F6

(

z,Q

(

z

))

.

(16) 

Now, we construct the subsequent recursive formula as follows: 

Sn(t)=Sn
(
0
)
+
(1− ∊)F1(t,Sn− 1)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t− ρ(z))∊− 1F1

(
z,Sn− 1

(
z
))
,

En(t)=En
(
0
)
+
(1− ∊)F2(t,En− 1)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t− ρ(z))∊− 1F2

(
z,En− 1

(
z
))
,

In(t)=In
(
0
)
+
(1− ∊)F3(t,In− 1)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t− ρ(z))∊− 1F3

(
z,In− 1

(
z
))
,

An(t)=An
(
0
)
+
(1− ∊)F4(t,An− 1)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t− ρ(z))∊− 1F4

(
z,An− 1

(
z
))
,

Rn(t)=Rn
(
0
)
+
(1− ∊)F5(t,Rn− 1)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t− ρ(z))∊− 1F5

(
z,Rn− 1

(
z
))
,

Qn(t)=Qn
(
0
)
+
(1− ∊)F6(t,Qn− 1)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t− ρ(z))∊− 1F6

(
z,Qn− 1

(
z
))
.

(17) 

Let us define a new expressions for the difference between the suc-
cessive term as follows: 

SDn(t) = Sn(t) − Sn− 1(t)

=
(1 − ∊)(F1(t, Sn− 1) − F1(t,Sn− 2))

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1 

×(F1(z,Sn− 1(z)) − F1(z,Sn− 2(z))),

EDn(t) = En(t) − En− 1(t)

=
(1 − ∊)(F2(t,En− 1) − F2(t,Sn− 2))

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1 

×(F2(z,En− 1(z)) − F2(z,En− 2(z))),

IDn(t) = In(t) − In− 1(t)

=
(1 − ∊)(F3(t, In− 1) − F3(t, In− 2))

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1 

×(F3(z, In− 1(z)) − F3(z, In− 2(z))),

ADn(t) = An(t) − An− 1(t)

=
(1 − ∊)(F4(t,Sn− 1) − F4(t,An− 2))

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1 

×(F4(z,An− 1(z)) − F4(z,An− 2(z))),

RDn(t) = Rn(t) − Rn− 1(t)

=
(1 − ∊)(F5(t,En− 1) − F5(t,Rn− 2))

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1 

×(F5(z,Rn− 1(z)) − F5(z,Rn− 2(z))),

QDn(t) = Qn(t) − Qn− 1(t)

=
(1 − ∊)(F6(t,Qn− 1) − F6(t,Qn− 2))

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1 

×(F6(z,Qn− 1(z)) − F6(z,Qn− 2(z))). (18) 
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It is interesting to note that 

Sn

(

t

)

=
∑n

i=0
SDi

(

t

)

, En

(

t

)

=
∑n

i=0
EDi

(

t

)

, In

(

t

)

=
∑n

i=0
IDi

(

t

)

,

(19)  

An

(

t

)

=
∑n

i=0
ADi

(

t

)

, Rn

(

t

)

=
∑n

i=0
RDi

(

t

)

, Qn

(

t

)

=
∑n

i=0
QDi

(

t

)

.

Taking the norm for both sides of(18) 

‖SDn‖⩽
1 − ∊
W (∊)

⃦
⃦
⃦
⃦
⃦

F1

(

t,Sn− 1

)

− F1

(

t,Sn− 2

)⃦
⃦
⃦
⃦
⃦
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1 

×‖F1(z,Sn− 1) − F1(z,Sn− 2)‖,

⩽
(1 − ∊)Ω1

W (∊)

⃦
⃦
⃦
⃦
⃦

Sn− 1 − Sn− 2

⃦
⃦
⃦
⃦
⃦
+

∊Ω1

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

⃦
⃦
⃦
⃦
⃦

Sn− 1 − Sn− 2

⃦
⃦
⃦
⃦
⃦
.

This implies 

‖SDn‖⩽
(1 − ∊)Ω1

W (∊) ‖SDn− 1‖+
∊Ω1

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

‖SDn− 1‖.

Similarly, we get the following results: 
⃦
⃦
⃦
⃦
⃦

EDn

⃦
⃦
⃦
⃦
⃦

⩽
(1 − ∊)Ω2

W (∊)
‖EDn− 1

⃦
⃦
⃦
⃦
⃦
+

∊Ω2

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

‖EDn− 1

⃦
⃦
⃦
⃦
⃦
,

⃦
⃦
⃦
⃦
⃦

IDn

⃦
⃦
⃦
⃦
⃦

⩽
(1 − ∊)Ω3

W (∊) ‖IDn− 1

⃦
⃦
⃦
⃦
⃦
+

∊Ω3

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

‖IDn− 1

⃦
⃦
⃦
⃦
⃦
,

⃦
⃦
⃦
⃦
⃦

ADn

⃦
⃦
⃦
⃦
⃦

⩽
(1 − ∊)Ω4

W (∊)
‖ADn− 1

⃦
⃦
⃦
⃦
⃦
+

∊Ω4

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

‖ADn− 1

⃦
⃦
⃦
⃦
⃦
,

⃦
⃦
⃦
⃦
⃦

RDn

⃦
⃦
⃦
⃦
⃦

⩽
(1 − ∊)Ω5

W (∊) ‖RDn− 1

⃦
⃦
⃦
⃦
⃦
+

∊Ω5

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

‖RDn− 1

⃦
⃦
⃦
⃦
⃦
,

⃦
⃦
⃦
⃦
⃦

QDn

⃦
⃦
⃦
⃦
⃦

⩽
(1 − ∊)Ω6

W (∊)
‖QDn− 1

⃦
⃦
⃦
⃦
⃦
+

∊Ω6

W (∊)Γ(∊)
∑t

z=a+1
(t − ρ(z))∊− 1

‖QDn− 1

⃦
⃦
⃦
⃦
⃦
,

(20) 

By using recursive method with Eq.(20)Eq.(21), we get 

‖SDn‖⩽
[

1 − ∊
W (∊)

+
∊

W (∊)Γ(∊)

]n⃦⃦
⃦
⃦Sn

(

0
)⃦
⃦
⃦
⃦Ωn

1,

‖EDn‖⩽
[

1 − ∊
W (∊)

+
∊

W (∊)Γ(∊)

]n⃦⃦
⃦
⃦En

(

0
)⃦
⃦
⃦
⃦Ωn

2,

‖IDn‖⩽
[

1 − ∊
W (∊)

+
∊

W (∊)Γ(∊)

]n⃦⃦
⃦
⃦In

(

0
)⃦
⃦
⃦
⃦Ωn

3.

‖ADn‖⩽
[

1 − ∊
W (∊)

+
∊

W (∊)Γ(∊)

]n⃦⃦
⃦
⃦An

(

0
)⃦
⃦
⃦
⃦Ωn

4,

‖RDn‖⩽
[

1 − ∊
W (∊)

+
∊

W (∊)Γ(∊)

]n⃦⃦
⃦
⃦Rn

(

0
)⃦
⃦
⃦
⃦Ωn

5,

‖QDn‖⩽
[

1 − ∊
W (∊)

+
∊

W (∊)Γ(∊)

]n⃦⃦
⃦
⃦Qn

(

0
)⃦
⃦
⃦
⃦Ωn

6.

(21)  

Theorem 0.5. The nabla discrete ABC fractional order system (11) has a 
system of solutions if the following restrictions are hold: 
(

1 − ∊
W (∊)

+
∊

W (∊)Γ(∊)

)

Ωi < 1, i = 1, 2, 3, 4, 5, 6. (22)   

Proof. From (16) and (17), we assume 

S(t) = Sn(t),E(t) = En(t), I(t) = In(t).
A(t) = An(t),R(t) = Rn(t),Q(t) = Qn(t).

Let us define 1Λn, 2Λn, 3Λn, 4Λn, 5Λn 6Λn as follows 

1Λn(t) = S(t) − Sn(t), 2Λn(t) = E(t) − En(t), 3Λn(t) = I(t) − In(t), (23)  

4Λn(t) = A(t) − An(t), 5Λn(t) = R(t) − Rn(t), 6Λn(t) = Q(t) − Qn(t). (24)  

Now, we show that ‖iΛn‖→0for i = 1, 2,3, 4, 5,6 as n→∞. 

‖1Λn‖=

⃦
⃦
⃦
⃦
⃦

(1 − ∊)(F1(t,Sn− 1) − F1(t,Sn− 2))

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1 

×(F1(z,Sn− 1) − F1(z,Sn− 2))‖,

⩽
1 − ∊
W (∊)

⃦
⃦
⃦
⃦
⃦

F1

(

t,Sn− 1

)

− F1

(

t,Sn− 2

)⃦
⃦
⃦
⃦
⃦
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1 

×‖F1(z,Sn− 1) − F1(z,Sn− 2)‖,

⩽
1 − ∊
W (∊)

Ω1

⃦
⃦
⃦
⃦S − Sn− 1

⃦
⃦
⃦
⃦+

1
W (∊)Γ(∊)

Ω1

⃦
⃦
⃦
⃦S − Sn− 1

⃦
⃦
⃦
⃦. (25)  

This implies 

‖1Λn‖⩽
(

1 − ∊
W (∊)

+
1

W (∊)Γ(∊)

)

Ω1‖S − Sn− 1‖. (26)  

With help of (21), we obtain 

‖1Λn‖⩽Ωn+1
1

[
1 − ∊
W (∊)

+
1

W (∊)Γ(∊)

]n+1

. (27)  

From Eq. (27), we see that ‖1Λn‖→0 as n→∞. In the same way and the 
previous steps, we find that ‖iΛn‖→0 for i = 2, 3,4, 5,6 as n→∞. 

Theorem 0.6. The system (11) has a unique system of solutions if the 
following conditions are hold: 
(
(1 − ∊)
W (∊)

+
1

W (∊)Γ(∊)

)

Ωi − 1 < 0, i = 1, 2, 3, 4, 5, 6. (28)   

Proof. We consider that there is another system of solutions S*(t),E*(t)
, I*(t),A*(t),R*(t) and Q*(t) for the system (11), then we have 

‖S− S*‖⩽
(1− ∊)
W (∊)

⃦
⃦
⃦
⃦
⃦

F1

(

t,S

)

− F1

(

t,S*

)⃦
⃦
⃦
⃦
⃦

+
∊

W (∊)Γ(∊)
∑t

z=a+1
(t− ρ(z))∊− 1

⃦
⃦
⃦
⃦
⃦

F1

(

z,S

)

− F1

(

z,S *

)⃦
⃦
⃦
⃦
⃦

⩽
1− ∊

W (∊)
Ω1

⃦
⃦
⃦
⃦S− S*

⃦
⃦
⃦
⃦

+
1

W (∊)Γ(∊)
Ω1

⃦
⃦
⃦
⃦S− S*

⃦
⃦
⃦
⃦.

(29)  

Making use of (29), we get 

‖S − S*‖

((
(1 − ∊)
W (∊)

+
1

W (∊)Γ(∊)

)

Ω1 − 1
)

⩾0. (30)  

Eq.(30) is valid if and only if 

‖S − S*‖ = 0.

This implies 

S(t) = S*(t).

Repeating the same procedure with E(t), I(t),A(t),R(t) and Q(t) we 
obtain 
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E(t) = E*(t), I(t) = I*(t),A(t) = A*(t),R(t) = R*(t),Q(t) = Q*(t).

This proves that the system (11) has a unique system of solutions. 

Hyers-Ulam stability 

. 

Definition 0.7. The integral Eqs. (16) is Hyers-Ulam stability if there 
exists non-negative constants Δi, i ∈ N6

1 satisfying: 
For every αi > 0, i ∈ N6

1, if 
⃒
⃒
⃒
⃒
⃒
S

(

t

)

−
(1− ∊)F1(t,S)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t− ρ(z))∊− 1F1

(

z,S

(

z

))⃒
⃒
⃒
⃒
⃒
⩽α1,

⃒
⃒
⃒
⃒
⃒
E

(

t

)

−
(1− ∊)F2(t,E)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t− ρ(z))∊− 1F2

(

z,E

(

z

))⃒
⃒
⃒
⃒
⃒
⩽α2,

(31)   

Table 1 
Shows the values of parameters given in Eq. (11). The time units is taken in years 
[18,19].  

Parameter Description Value Reference 

Δ  Birth rate λN  [19] 
λ  Natural mortality rate 1

76.79 × 365  
[18,19] 

α  Contact rate 0.05 [19] 
β  Transmissibility multiple 0.02 [19] 
γ  Disease Transmission coefficient 0.000001231 [19] 
ϕ  The proportion of asymptomatic 

infection 
0.1243 [19] 

δ  Incubation period 0.00047876 [19] 
μ  Incubation period 0.005 [19] 
σ  Removal or recovery rate of I  0.09871 [19] 
ρ  Removal or recovery rate of A  0.854302 [19] 
κ  Contribution of the virus to Q by I  0.000398 [19] 
τ  Contribution of the virus to Q by A  0.001 [19] 
η  Contribution of the virus to Q  0.01 [19]  

Fig. 1. The dynamics of corona virus model with different fractional order α.  
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⃒
⃒
⃒
⃒
⃒
I

(

t

)

−
(1 − ∊)F3(t,I)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F3

(

z,I

(

z

))⃒
⃒
⃒
⃒
⃒
⩽α3,

⃒
⃒
⃒
⃒
⃒
A

(

t

)

−
(1 − ∊)F4(t,A)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F4

(

z,A

(

z

))⃒
⃒
⃒
⃒
⃒
⩽α4,

⃒
⃒
⃒
⃒
⃒
R

(

t

)

−
(1 − ∊)F5(t,R)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F5

(

z,R

(

z

))⃒
⃒
⃒
⃒
⃒
⩽α5,

⃒
⃒
⃒
⃒
⃒
Q

(

t

)

−
(1 − ∊)F6(t,Q)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F6

(

z,Q

(

z

))⃒
⃒
⃒
⃒
⃒
⩽α6,

there exist S*(t),E*(t), I*(t),A*(t),R*(t) and Q*(t) are satisfying 

S*(t) =
(1 − ∊)F1(t,S*)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1 F1

(

z,S*

(

z

))

,

E*(t) =
(1 − ∊)F2(t,E*)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F2

(

z,E*

(

z

))

,

(32)  

I*(t) =
(1 − ∊)F3(t, I*)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F3

(

z, I*

(

z

))

,

A*(t) =
(1 − ∊)F4(t,A*)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F4

(

z,A*

(

z

))

,

R*(t) =
(1 − ∊)F5(t,R*)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F5

(

z,R*

(

z

))

,

Q*(t) =
(1 − ∊)F6(t,Q*)

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1F6

(

z,Q*

(

z

))

,

such that 

‖S − S*‖⩽ α1Δ1, ‖E − E*‖⩽α2Δ2 and ‖I − I*‖⩽α3Δ3,

‖A − A*‖⩽ α4Δ4, ‖R − R*‖⩽α5Δ5 and ‖Q − Q*‖⩽α6Δ6.
(33)   

Theorem 0.8. The nabla discrete ABC fractional order COVID-19 model 
(11) is Hyers-Ulam stable. 

Proof. By Def. 0.7 and Eq.(16), consider (S(t),E(t), I(t),A(t),R(t),Q(t)
) be the fact solution of (16) and (S*(t),E*(t), I*(t),A*(t),R*(t),Q*(t)) be 
an approximate solution satisfying (33). Then, we have  

Similarly, we get 

‖E − E*‖⩽
(

1 − ∊
W (∊)

+
1

W (∊)Γ(∊)

)

Ω1

⃦
⃦
⃦
⃦E − E*

⃦
⃦
⃦
⃦,

‖I − I*‖⩽
(

1 − ∊
W (∊)

+
1

W (∊)Γ(∊)

)

Ω1

⃦
⃦
⃦
⃦I − I*

⃦
⃦
⃦
⃦,

‖A − A*‖⩽
(

1 − ∊
W (∊)

+
1

W (∊)Γ(∊)

)

Ω1

⃦
⃦
⃦
⃦A − A*

⃦
⃦
⃦
⃦,

‖R − R*‖⩽
(

1 − ∊
W (∊)

+
1

W (∊)Γ(∊)

)

Ω1

⃦
⃦
⃦
⃦R − R*

⃦
⃦
⃦
⃦,

‖Q − Q*‖⩽
(

1 − ∊
W (∊)

+
1

W (∊)Γ(∊)

)

Ω1

⃦
⃦
⃦
⃦Q − Q*

⃦
⃦
⃦
⃦.

(35)  

Hence, by (34), (35) the integral Eqs. (16) are Hyers-Ulam stable. Thus, 
the nabla discrete AB-fractional version of COVID-19 model (11) is 
Hyers-Ulam stable. 

Numerical data fitting 

In this section, we study the dynamical activates of the model (11), in 
sense of nabla discrete AB-fractional derivative. We consider the initial 
values for the proposed model, total papulation of the Wuhan city N(0)
= 8, 266, 000, infected people I(0) = 282, we suppose there is no re-
covery rate R = 0,E(0) = 200000,A(0) = 200,S(0) = 8065518,Q(0) =

50000. The remaining parameters values are given in the Table 1, which 
are use in the model (11). In this situation, the small value of ∊ , the 
corresponding states has a lower equilibrium level. It should be noted 
that the system (16) is solved using the Gauss–Seidel method. In addi-
tion, figures shows the phase portraits for the commensurate nabla 
discrete model involving the Atangana-Baleanu-Caputo derivative. see 
Fig. 1. 

Conclusion 

In this paper, we investigated the nabla discrete AB-fractional order 
COVID-19 model. We study existence results of fractional order COVID- 
19 model by employing fixed point theorem and HUS approach is used 
for the stability analysis. For further study about the model (11), we 
suggest the readers to consider its no-solution and multiplicity results 
using different mathematical techniques including the upper lower so-
lution methods and topological degree theory. One may also study the 
numerical solution of the proposed model by several numerical 
methods. 

‖S − S*‖⩽
(1 − ∊)‖F1(t, S) − F1(t,S*)‖

W (∊)
+

∊
W (∊)Γ(∊)

∑t

z=a+1
(t − ρ(z))∊− 1

⃦
⃦
⃦
⃦
⃦

F1

(

z,S

)

− F1

(

z,S*

)⃦
⃦
⃦
⃦
⃦

⩽
(1 − ∊)Ω1‖S − S*‖

W (∊)
+

∊
W (∊)Γ(∊)

Ω1

⃦
⃦
⃦
⃦S − S*

⃦
⃦
⃦
⃦

=

(
1 − ∊
W (∊)

+
1

W (∊)Γ(∊)

)

Ω1

⃦
⃦
⃦
⃦S − S*

⃦
⃦
⃦
⃦. (34)   
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[20] Khan H, Gómez-Aguilar JF, Alkhazzan A, Khan A. A fractional order HIV-TB 

coinfection model with nonsingular Mittag-Leffler Law. Math Methods Appl Sci. 
2020; 43(6):3786-3806. 

[21] Zhang X, Liu L, Wu Y. The uniqueness of positive solution for a fractional order 
model of turbulent flow in a porous medium. Appl Math Lett 2014;1(37):26–33. 
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