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Microorganisms lives with us in our environment, touching infectious material on the surfaces by hand-mouth
which causes infectious diseases and some of these diseases are rapidly spreading from person to person.
These days the world facing COVID-19 pandemic disease. This article concerned with existence of results and
stability analysis for a nabla discrete ABC-fractional order COVID-19. The nabla discrete ABC-fractional operator
as more general and applicable in modeling of dynamical problems due to its non-singular kernel. For the ex-

istence and uniqueness theorems and Hyers-Ulam stability, we need to suppose some conditions which will play
important role in the proof of our main results. At the end, an expressive example is given to provide an
application for the nabla discrete ABC-fractional order COVID-19 model.

Introduction

Humans born on the earth with some active viruses and inactive
bacteria. Infectious diseases caused by viruses, bacteria, fungi and ar-
thropods. Due to these infectious diseases humans worldwide facing
pandemic diseases such as HIV, COVID-19, Malaria, Influenza, Tuber-
culosis, Zika virus infection, Smallpox, measles, yellow fever, Cholera
and Leprosy. In 2018, according to WHO 37.9 million infected and
770,000 peoples died from HIV/AIDS, three to five million peoples
dying from Influenza yearly, 20,000 peoples dying from dengue yearly,
405,000 peoples died from malaria. In Dec 2019 a new virous disease
COVID-19 identified in Wuhan city capital of Hubei provence China.
COVID-19 pandemic shocked the whole world because of economic
disruption and rapidly spreading from person to person. According to
WHO main source of COVID-19 viruses spreading between the peoples
by close contact, sneezing, coughing and talking. Common symptoms
appears in the infected person fever, fatigue, shortness of breath, cough,
sense of smell lass, respiratory syndrome and pneumonia. COVID-19
spread in 188 countries on going 5.69 million peoples infected and

resulting 355,000 peoples died, further details [1-3]. To understand the
dynamics of these pandemic diseases, mathematical tools play a vital
role in the field of biological sciences and numbers of diseases have been
modeled such as HIV, ebola virus diseases, dengue fever, measles
epidemic [35-40]. In the last two decades biological models have been
extensively studied. Chetterjee et al. [41] developed SEIR model for
COVID-19 and studied different aspects of the model. Wen et al. [42]
provided positive periodic results for the stochastic SIV model. Ivorra
et al. [4] modeled special cases of diseases, infectious conditions and
sanitary condition of hospitalized people and numerical results were
obtained to express obtained results.

In recent years, a lot of researchers paid their attentions to the study
of fractional differences, which is the generalization or extension of
classical calculus. Gray and Zhang [41] introduced some basic proper-
ties of fractional difference. Miller and Ross [4] provided research
studies on fractional sums and differences with the use of nabla and delta
operator in the frame of Riemann-Liouville. After that, by combine ef-
forts numbers of mathematicians have provided qualitative theories
such as, existence and uniqueness of solutions (EUS), stability analysis,

* Corresponding authors at: Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, 11586 Riyadh, Saudi Arabia (T.
Abdeljawad), Department of Mathematical Sciences, United Arab Emirates University, Al Ain, 15551 Abu Dhabi, United Arab Emirates (Q.M. Al-Mdallal).
E-mail addresses: akhan@psu.edu.sa (A. Khan), hmalshehri@kau.edu.sa (H.M. Alshehri), tabdeljawad@psu.edu.sa (T. Abdeljawad), q.almdallal@uaeu.ac.ae

(Q.M. Al-Mdallal), hasibkhan13@yahoo.com (H. Khan).

https://doi.org/10.1016/j.rinp.2021.103888

Received 16 September 2020; Received in revised form 21 January 2021; Accepted 22 January 2021

Available online 4 February 2021
2211-3797/© 2021 The Author(s).

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license


mailto:akhan@psu.edu.sa
mailto:hmalshehri@kau.edu.sa
mailto:tabdeljawad@psu.edu.sa
mailto:q.almdallal@uaeu.ac.ae
mailto:hasibkhan13@yahoo.com
www.sciencedirect.com/science/journal/22113797
https://www.elsevier.com/locate/rinp
https://doi.org/10.1016/j.rinp.2021.103888
https://doi.org/10.1016/j.rinp.2021.103888
https://doi.org/10.1016/j.rinp.2021.103888
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rinp.2021.103888&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Khan et al.

oscillations, asymptotic, periodicity and multiple solutions. The usabil-
ity of fractional differences are encountered in various area of applied
sciences, such as, engineering, physics, computer science, chemistry,
biology, signal processing, electrochemistry, viscoelasticity, fluid dy-
namics and image processing [5-9,12-17].

Due to non-singular, non-local properties and historical dependence
of variable state researchers investigate numerous aspects fractional
differences, for example, Khan et al. [20] provided fractional order HIV-
TB model and analyzed existence solutions, stability results and nu-
merical solutions. Zhang et al. [22] developed fractional order turbulent
flow model and studied EUS by using fixed point theorem and illustrated
the results. Khan et al. [22] studied HIV/AIDS model in sense of
Atangana-Baleanu operator and provided existence results, stability
criteria and numerical results for the generalized model. Abdeljawad
and Al-Mdallal [23] used the Banach contraction principle theorem to
get existence results for the discrete fractional differences in sense of
discrete Mittage Leffler kernel and numerical results were provided for
the results illustration. Khan et al. [24] studied existence of solutions,
stability for the fractional order advection diffusion model in sense of
Mittage Leffler kernel and exemplified the results numerically. Abdel-
jawad et al. [25] studied existence solution of g-fractional difference
equations with help of Krasnoselskii’s theorem and demonstrate the
results by Lotka-Volterra model. For more explanation and details about
discrete Mittage-Leffler and exponential kernels we suggest to readers
the recent manuscripts [26-34].

The predominant goal of this article, to obtain existence results and
stability analysis of the nabla ABC-fractional COVID-19 model. Fixed
point theorem use for the existence results and Hyres-Ullam technique
utilize to obtain stability analysis for the nabla ABC-fractional COVID-19
model. The whole study work has been arranged as follows: Section
‘Basic definitions of nabla fractional calculus’, the basic definitions.
Section ‘Model description’, model description. Section ‘Existence of
solutions’, existence results. Section ‘Hyers-Ulam stability’, stability
analysis. Section ‘Numerical data fitting’, numerical illustration. Section
‘Conclusion’, Conclusion.

Basic definitions of nabla fractional calculus

Definition 0.1. (See [6,9-12]) Suppose p(r) =r —1, which is known as
backward jump. Then for a function F : N, = {a,a + 1,a + 2,..} >R, the
left type nabla fractional sum of order 6 > 0 is defined by

“VF (r) = ﬁ ;I (r—p@)'"F (z) , €Ny, @

Similarly, for a function F : ;)N = {b,b —1,b + 2,..} >R, the right type
nabla fractional sum of order 6 > 0 is defined by

1

%p (r) - %0) Zj (2= p(2)F (:) , @
- - 3)
_ ﬁ E (o(r) — z)‘”F<z>, re N

Definition 0.2. (See [6,9-12]) Leta < b in ), for a function F defined
on N, the left discrete nabla AB fractional difference is given in sense of
Caputo by

() (7)o S o ()l (o) o

z=a+1

e (O,l /2), &)
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in Riemann-Liouville sense by
7°(0) r -0
ABR v@ v E _ —
( ! F) <r> F(l _0) rza+1F<z> [EH[I _97r p<z):|7 o

€ (0, 1/2). (5)

Similarly, for a function F defined on ,N, the right discrete nabla AB
fractional difference is given in sense of Caputo by

<ABCVgF> (r> :FZ/‘(_a;) 2<_AZF> (z) el —n(:)].
€ (o,1/2>,

(6)
in Riemann-Liouville sense by
G L -0
(o) ()t -2 ool oo
€ (0, 1/ 2) .
@)

where 77°(6) with 77°(0)|,_,, = 1 denotes of normalization function and
Ej is ML function. The notions 48¢, V¢, 4BR ¢ ABC7) and ABRYY denotes
the right and left nabla AB fractional differences in Caputo sense, right
and left nabla AB fractional differences in the frame of Riemann-Liou-
ville.

Definition 0.3. (See [6,9-12]) For @ € (0,1) and a function Fdefined
on °N, the left nebla AB fractional sum is given by

(ABC,,V’9F> (r) = 17/ f(g F(r) + ];( 0 <“V’9F) (r) 0c (07 1 /2)
®

Similarly, right nabla Ab fractional for a function F defined on N,
given by

(<)) 528 Sl5r) ). o o)

)]

where 7°(0) with 7°(0)|,_,,; =1, represent the normalization function.

Model description

In this section, we present Khan et al. [19] formulated the integer
order COVID-19 model, in which S rate of susceptible, E exposed people,
Iinfected people, A asymptomatic infected people and R recovered from
disease, infected place or market Q. The integer order COVID-19 model
is given

Z{S(H)}=2-18(r) —wﬁs (1Q(r),

7 8(0)y=SONTPAO) 5(1)0(1) ~ (1-9) 68 () puB(r) 18 (),
F{U(1)} = (1—$)SE(1)—(o+2)(0).

1)}=guE(t)—(p+1)A(?),

)}=0l()+pA(1)—iR (),

)

FHQU Y =KI(1)+7A(1)—1Q(1),
(10)
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with initial conditions
S(1)=0, E(1)>0, 120, A() >0, R(1) 20, Q(1)>0

Where N denotes total population of people N = S(t) + E(t) + I(t) +
A(t) + R(t) + Q(t), Birth rate A, rate of contact @, rate of natural
mortality /A, rate of transmission g, period of incubation &, period of in-

aS(0)(1(r) + pA(1))
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S(1)=0,E(7)=0,1(r)>0, A(r)>0, R(7)>0, Q(1) >0

By applying AB-fractional sums on two sides of each equation in (11),
the system can be converted to the Volterra-type integral as below:

) =(1) -on(r) ~22(1)

(12)

S(1) - S(0) = 1//_(:) {A—AS(:) _ st g —yS(t)Q(t)}
e ! aS(t () ﬁA(z))
e Z G OR -(sJe(s)]
- +ys<>e<f> (-
~(1 - )3B(E) ~ (D) ~ B,
1) = 10) = 550 = #)38() — -+ 210
T 2, O~ )T~ IEE) — G+ I
A0) = A(0) = 55 1(1 = $)3E() — (o-+ )L
S 20, =) I = #E) — (o 1),
R(0) ~ R0) = 5556100 + pA() — 2R()]
T o, (1~ )T 1) + A — ARG,
Q1) ~ Q(O) = 555100 + A0) ~ Q)
S o (P T) + A (o)

cubation y, asymptomatic infection proportion ¢, transmission of dis-
ease coefficient y, Recovery of I 6, Recovery of A p, virus contribution to
Q by I'is denoted by «, virus contribution to Q by A is denoted by 7 and
removing rate of virus from Q is denoted by 7. Here, we study existence
results and HUS for a nabla discrete AB-fractional COVID-19 model.

Existence of solutions

In this section, we study the existence results for (10) by replacing
the time derivative by nabla discrete ABC-fractional difference

(4€,7°8) (1) =A—AS (1) _w_ys (nQ(),

aS(1) (1) +5A(1))

ABC e
(*5€.V°E) (¢ N

(ABC \val |

)
)
(ABC(IV )
R)
Q)

()=
())=(1-¢)5E
(1) =¢uE(1)—
()
()

ol(1)+pA(r)

)= (o+1)I(1),
p+/1)A( ):

—AR(1),

)—nQ(1),

(ABC V°R) (7

(**¢.v=Q) (1) =xL(1)+7A())

(1)

with initial conditions

+78(1)Q(t)— (1—¢)SE (1) —puE(r) —1E(2),

For simplicity, we define F;,i € N$ as follows:

Fia8)=a-8()-SOOPRD) 50,
oo 8) =S OO Q1) (1) (1) g (1)),
13)
F3(t,1) = (1 —¢)3E(t) — (o + (1),
Fu(t,A) = $uE(r) — (p + DA(),
Fs5(t,R) = ol(r) + pA(r) — AR(z),
Fs(t,Q) = «I(t) +7A®1) — nQ(1).

Theorem 0.4. The kernels F;,i=1,2,3,4,5,6 hold the Lipschitz condi-
tion and contractions, If the subsequent respective conditions 0<Q; < 1,j €
N¢ are satisfied.

Proof. Consider the kernel
F <t,S> =A—iS (t) as(t) (1(2J +A(1))

. Let §1,S, are two functions, then we have

(el
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_aS(OI(1)+pA®)

IFi(080~Fi6:8)l= a-35 (1) -s(1)e(/)

< (71706(H1(t)|\;ﬂIIA(t)H)fyHQ(t) )HSWSZ

z

SI—SZH.

Taking Q; = ( —A- % - }’756), where 71 = max.cp||S(t)

|, m2 =

maxeep ||E(t) |, 73 = maxeep||I(t) ||, 74 = maxeep||A()]|, 75 = maxeey||R(2)
I, 76 = maxecp||Q(t)||, we obtain

1F1(2,81) — Fi (2, S2)[|<Q[1S1 = Sa |- a4

From (14), we find that the kernel F; is satisfying the Lipschitz condi-
tion, moreover if 0<Q; < 1, then the kernel F; is contraction. Similarly,
we can get for Fa, F3, F4, Fs and Fg as follow

1F2(t, Er) = Fa(t, E2) [ <Q[[E1 — Eq,

1F3(t, 1) — F3(t, L) | <s]L — L],

[|Fa(t, A1) — Fa(t, A2) || <A1 — Ayl (15)
1F5(#,Ri) — Fs(t, Ry)[|<Qs]|Ry — Rof],

|Fs(2,Q1) — Fo(t, Q) (<961 Q, — Q|-

From (15), we find that the kernels F, F3, F4, Fs and Fs is satisfying the
Lipschitz condition, moreover if 0<Q; < 1, fori =1,2,3,4,5, 6 then the
kernel F; fori =1,2,3,4,5,6 is contraction. By using the above ker-
nels, one can rewrite the system (12) in the following simple form:

S(r>—5<0> +(1_;fi§t’s) S AC0 > (-p) ' <z,s<z>>,

. (1—€)F,(t,E) € ! —
w0~ {0) 5 i S o ()

10)=1 (o) PR S D ) Ty (m@) ,

_ (1-e)Fu(1,A) < - =1
A(r)=A (0) + V(o) + %/.(E)F(E)::Eﬁl(tfp(z)) Fy (z,A(z)),
R(=r(0]+UZIBOR S~ TR (R
= 7//)(5) %/Q(E)F(E)Z:“H P\Z 5| 2, Z s
B (-9FtQ) & N~
Q<f)Q<°> T e 2, ) F6<Z’Q<z
(16)

Now, we construct the subsequent recursive formula as follows:
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(1—)F (1S, 1), = :

8.0)=5 0+ 5+ e &, P TS (),
B0, 0)+ =G S S () A Ea (),
0= =R S S ) 1 9)
A, (1)=A,(0) (I_EZ;?((:’)A”") : WA(EE)F(E)Z;I(FP(Z)):E;(LAn—l(Z))v
R0 =R, 0+ DR S S o) T R ),

(1=¢)Fs(1,Qu-1) | < - =
7o) ; 7 (OT(e) Z (t—p(2)) F@(Z,an (Z))

z=a+1

Q.(N=0.(0)+

@a7)

Let us define a new expressions for the difference between the suc-
cessive term as follows:

sDa(1) = S,(t) — S, (1)
_ (=) (Fi(t,8:1) = Fi(1,8:2)) c : —
- 7 (€) + 7 ()l (<) Z;l (t=p(2)

X(F] (Z, Snfl(Z)) —F (Z7 San(Z)))v
gD, (1) = E,(t) —E,_(1)

(1 =) (R (s, 1;;;(16))7 B(1,8:2)) - S - o)
X(F2(2,Bu1(2) — Fa(z, Eaa(2))),
1D,(1) = L(t) — L1(?)

z=a+1

(1- E)(F3([7};;':(li)_ Fi(t,1,,)) PR € Z (tfp(z)):
X(F}(Z; In—l (Z)) - FB(Zv In*Z(Z)))v
AIDH(I) = An(t) - Anfl(t)

(1- G)(ﬂ(ﬁi;é)e)* Fa(tAva)) € S (- p)
X (F4(z,Au-1(2)) — Fa(z,Au—2(2))),
rD, () = R, (1) — R, (1)
| — &)(Fs(t, By ) — Fs(t,R, » c : —
_( )(Fs(t, 7/(1) (t,Ru2)) n e Z (t = p(2))
X (Fs(z,R,-1(2)) — F5(z,R,-2(2))),
D (1) = Q, (1) = Qi (1)

(=) (Fe(t,Q,1) — Fs(1,Q,-2)) € ! —
- V(<) I ZEnePIALG)

X(Fe(2,Qu-1(2) = Fo(2, Qu2(2)))- 18
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It is interesting to note that

<()-mf) =)0 ) -£00)
()£ () xf) () of)-Lonf).

Taking the norm for both sides of(18)

— €
7//7() Fl <Z7Snl> 7Fl <t75112>

X HF] (Z7Sn71>_Fl (Z7Sn72)H7

<(1—6)91
7 (e)

”SDHH\

+W Z (t—p@)""

z=a+1

Q ! -
S.1—S. S p(2) St —Sua-

//()(),y,+1

This implies

(1-¢)Q

S sDril + g 2 =)

W 7=a+1

Similarly, we get the following results:

(1- o) Q< =
D, <T(E)HE|D;1—] +m z;l (t=p(2)

lls Dall< lls Dnr -

HE[D"*I

HADH*I s

|,

(1-¢)Qs

1D ST(E)H' -1

B

Qs ! —
7o 2 =P hBay

z=a+l

t

694 1
+ FAORO] z;l (t—p(2)

€Qs - 1
+ FAGREe)] 1;1 (t—p(2))

Qe ! = ‘

(1—<)Q

A[Dn \T(G)HADn—I

(1-¢)Qs

B |y D Dot

(1—€)Qs

< T
QD;; X Wﬂ(e) Hq'Dn—l

o 2 P lgBa-s

z=a+1

(20)
By using recursive method with Eq.(20)Eq.(21), we get

[1—« e

TNW S"(")\

%%+%ém5&@ﬂ

(11—« € 1"
DS 5=+t 57 In(

”SDMH< Q?v

[eDall<

(21)

IaDillS |5+ | (A Q,

n
Q3

R Dl

loDull<

Theorem 0.5. The nabla discrete ABC fractional order system (11) has a
system of solutions if the following restrictions are hold:

1—¢€
7

Proof. From (16) and (17), we assume

€
— |, <1, i=1,2,3,4,5,6. 22
7/(6)”6)) <1, i=1,2,3,4,56 (22)
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S.(1), E(t) = E, (1), ():I()
= A1), R() =R, (1),Q(1) = Q,(1).
Let us define 1Ay, 2An, 3An, 4An, sAn 6/An as follows
lAn(t) = S(t) - Sn(t)72An(t) = E(t) - En(t)7 3An(t) = I(t) - In(t)7 (23)

N (1) = A(t) — A, (1), sA,(1) = R(1) —R,(1),6A, (1) = Q(1) —Q,(1). (24)

Now, we show that ||;A,||>0fori=1,2,3,4,5,6 as n—>c.

(A=) (Fi(t,S,-1) = Fi(#,8:-2)) € - =1
il = 0 7 &,
X(F](Z,Snfl)—F](Z,Snfz))H,
1—¢ € ! 1
<o ||Fi| 681 ) = Fi| 6,8 . 1—
7 < ) ( ) ZCNOR- A
X||F1(2,8u-1) = F1(2,8.-2) I,
—Q,||S-S,_ 79 S-S, (25)
ozals s rdmals s |
This implies
e 1
A A N Q SfSn— . (26)
Il (5 + g ) 18 Sl
With help of (21), we obtain
" 1—e 1 n+1
A< [%er} . 27)

From Eq. (27), we see that ||; Ap|| >0 as n—oo. In the same way and the
previous steps, we find that [|;A,||—0 fori = 2,3,4,5,6 as n—>co.

Theorem 0.6. The system (11) has a unique system of solutions if the
following conditions are hold:

(qz/(:)) N

Proof. We consider that there is another system of solutions S”(t), E"(t)

—1<0, i=1,2,3,4,56. (28)

7 (e 1)1”( )>

,T'(£),A"(t),R’(t) and Q' (t) for the system (11), then we have
\|S—s*|\<% F (t,S) —F, <z,s*> H
(7 (o ) erele-s]
+mgl S—S*H.
(29

Making use of (29), we get

\|sfs“\|<<(;/f(:)) +m>gl - 1)>0A (30

Eq.(30) is valid if and only if

[S—S"||=o0.
This implies
S(t) =S (v).

Repeating the same procedure with E(t),I(t),A(t),
obtain

R(t) and Q(t) we
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Table 1
Shows the values of parameters given in Eq. (11). The time units is taken in years
[18,19].
Parameter Description Value Reference
A Birth rate AN [19]
y Natural mortality rate 1 [18,19]
76.79 x 365
a Contact rate 0.05 [19]
p Transmissibility multiple 0.02 [19]
4 Disease Transmission coefficient 0.000001231 [19]
¢ The proportion of asymptomatic 0.1243 [19]
infection
6 Incubation period 0.00047876 [19]
u Incubation period 0.005 [19]
c Removal or recovery rate of I 0.09871 [19]
P Removal or recovery rate of A 0.854302 [19]
K Contribution of the virus to Q by I 0.000398 [19]
T Contribution of the virus to Q by A 0.001 [19]
n Contribution of the virus to Q 0.01 [19]
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This proves that the system (11) has a unique system of solutions.

Hyers-Ulam stability

Definition 0.7. The integral Egs. (16) is Hyers-Ulam stability if there
exists non-negative constants A;,i € NS satisfying:
For every a; > 0,i € N&, if

(1=e)Fi(t,8) < - p—
S|t : t—p(z Fi|zS|z <a
ZzommszoncP iU G U I
(1-e)F:(tE) < - p
E|¢ i t—p(z F,zE|z <.
W(E) T %(E (6)1;1( p( )) 2 ) U2,
(€20)]
6x10° -
= 4x10° -
w
2x10°
0L, L L L L =
0 20 40 60 80 100 120
t
5000
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<
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1000 |-
0L, L L L L =
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t
50000
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I3
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10000 — @=0.9 ]
— a=1.0
0L, . | | | =
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Fig. 1. The dynamics of corona virus model with different fractional order a.
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(1*€)F3(I,I) e t —
I<[) - 7'(€) + 7 (e)(e) Z (t=p(2)" F; (Z,I(z

z=a+1

(1*€)F4(I,A) c t —
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IS—S|< @A, |E—E'||<ayA, and |[I - I'||<asAs,
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[A =A< aly [R—R|<asAs and |Q — Q [|<asAs.

Theorem 0.8. The nabla discrete ABC fractional order COVID-19 model
(11) is Hyers-Ulam stable.

Proof. By Def. 0.7 and Eq.(16), consider (S(t), E(t),I(t), A(t), R(t), Q(t)
) be the fact solution of (16) and (S”(t), E"(t),I'(£), A" (t),R"(£), Q" (t)) be
an approximate solution satisfying (33). Then, we have

e U=NAES) -RAESI, < =
55l e ST 3, 0P
(1-90ls -] g
=S5 el

- (e ror) 255 |
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Similarly, we get

IE—E|< (17/’() %(el)r(e)>91 E_EH
i (G52
1A - A< (;‘(ﬁm)gl A_A*H7 "
R-Rs (17/7()+ %ﬂ(el)r(e))gl R—R*H,
Qs (b5t ool

Hence, by (34), (35) the integral Egs. (16) are Hyers-Ulam stable. Thus,
the nabla discrete AB-fractional version of COVID-19 model (11) is
Hyers-Ulam stable.

Numerical data fitting

In this section, we study the dynamical activates of the model (11), in
sense of nabla discrete AB-fractional derivative. We consider the initial
values for the proposed model, total papulation of the Wuhan city N(0)
= 8,266, 000, infected people I(0) = 282, we suppose there is no re-
covery rate R = 0,E(0) = 200000,A(0) = 200,S(0) = 8065518,Q(0) =
50000. The remaining parameters values are given in the Table 1, which
are use in the model (11). In this situation, the small value of < , the
corresponding states has a lower equilibrium level. It should be noted
that the system (16) is solved using the Gauss-Seidel method. In addi-
tion, figures shows the phase portraits for the commensurate nabla
discrete model involving the Atangana-Baleanu-Caputo derivative. see
Fig. 1.

Conclusion

In this paper, we investigated the nabla discrete AB-fractional order
COVID-19 model. We study existence results of fractional order COVID-
19 model by employing fixed point theorem and HUS approach is used
for the stability analysis. For further study about the model (11), we
suggest the readers to consider its no-solution and multiplicity results
using different mathematical techniques including the upper lower so-
lution methods and topological degree theory. One may also study the
numerical solution of the proposed model by several numerical
methods.

o))

(34
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