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Abstract

Deep learning is becoming an indispensable tool for various tasks in science and engineering. A 

critical step in constructing a reliable deep learning model is the selection of a loss function, which 

measures the discrepancy between the network prediction and the ground truth. While a variety of 

loss functions have been proposed in the literature, a truly optimal loss function that maximally 

utilizes the capacity of neural networks for deep learning-based decision-making has yet to be 

established. Here, we devise a generalized loss function with functional parameters determined 

adaptively during model training to provide a versatile framework for optimal neural network-

based decision-making in small target segmentation. The method is showcased by more accurate 

detection and segmentation of lung and liver cancer tumors as compared with the current state-of-

the-art. The proposed formalism opens new opportunities for numerous practical applications such 

as disease diagnosis, treatment planning, and prognosis.
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I. INTRODUCTION

DECISION-making using deep learning models has recently gained enormous momentum 

in science and engineering and found important applications in disciplines such as computer 

vision [1, 2], natural language processing [3], and biomedicine [4–8]. In deep learning, a 
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neural network learns from a large set of training data by means of a loss function, which 

guides the search for optimal network parameters by quantifying how accurately the network 

models the training data. Similar to any optimization problem [9], there is generally no one-

size-fits-all loss function for training deep learning algorithms and various forms of loss 

function have been proposed for different or even the same applications. In practice, a loss 

function is constructed by accounting for multiple factors that impact the learning and 

evaluation processes, including computational efficiency, optimization algorithm, and nature 

of training and test datasets.

An important but less appreciated issue with the current paradigm is that minimizing a pre-

defined loss function alone does not always yield truly optimal prediction. Indeed, the 

assumption in the current machine learning paradigm according to which handcrafting a 

fixed loss function ahead of training is a good proxy for an underlying metric of interest 

evaluated post-training is often violated. First, the nonlinear combination of a large number 

of parameters in deep neural networks leads to highly non-convex loss functions, which are 

difficult to optimize robustly with simple gradient-based methods theoretically designed for 

convex problems. For instance, stochastic gradient method, which is commonly used for 

neural network optimization, may not be stable in some scenarios [10]. In reality, while all 

loss functions reduce the multi-dimensional representation of a neural network to a single 

number for inference, it is important to note that some number is better than others and the 

essence here is to find the loss function which generate a number that is most consistent with 

our final decision-making metric. We note that the primary building blocks of classification 

evaluation metrics - true positive (TP) and false negative (FN) for positive-class examples 

correctly and incorrectly predicted by the model, respectively, and their two negative-class 

counterparts, true negative (TN) and false positive (FP) - can be combined into a scalar loss 

function that more meaningfully aligns with the decision-making metrics in multiple ways. 

For example, a popular and largely used metric for semantic segmentation tasks is the Dice 

similarity coefficient, harmonic mean of precision (P = TP/[TP + FP]) and recall (R = 

TP/[TP + FN]). However, although it partially accounts for imbalance typically related to 

low prevalence of pixels with positive class in individual images, it does not always lead to a 

truly optimal model prediction and significant bottlenecks remain [11–14]. In light of the 

two aforementioned pitfalls, constructing a loss function that meaningfully reduces the 

multi-dimensional representation of a neural network to a differentiable scalar function that 

can be optimized via traditional gradient-based algorithms is a challenging task.

The present study aims to mitigate the above issues and close the gap between deep neural 

network modeling and decision-making metrics. Our strategy consists of exploiting a 

flexible parameterization of the loss function via a generalized formulation whose 

parameters are adaptively tuned during regular training. In particular, we demonstrate how a 

three-dimensional parameterization of the Dice coefficient leads to a generalized loss 

function that allows for greater flexibility in the relative weighting of relevant decision-

making metrics. Additionally, we propose two adaptive strategies for evolving the optimal 

loss function to reduce the mismatch between loss function and decision-making metrics 

during model training. In particular, we detail a mathematically motivated adaptive strategy 

that does not introduce any computational overhead and can be easily plugged in most deep 

learning frameworks. In application to cancer tumor detection and segmentation, the new 
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paradigm yields improved performance as compared with the current state-of-the-art by up 

to 10%.

II. Methods

A. Generalized loss function and adaptive training methodology

We propose a new generalized loss function (GLF)

G = 1 − 1 + β2

1
PαP

+ β2
RαN

.
(1)

A descriptive schematic of this new loss function G is depicted in Fig. 1. The formulation 

involves three coefficients αP, αN, and β2 that are reminiscent of the coefficients appearing 

in the Effectiveness and Tversky loss functions [13, 14]. The GLF uses all three coefficients 

simultaneously in a way that enables independent pairwise weighting of the relevant 

decision-making metrics. The coefficients αP, αN, and β2 control the relative weighting 

between TP and FP, TP and FN, and PαP  and RαN, respectively. Therefore, the coefficients 

αP and αN play a similar role as the Tversky constants in defining weighted precision PαP
and weighted recall RαN, while the coefficient β2 is analogous to the Effectiveness constant 

in weighting the harmonic mean of these two quantities instead of the arithmetic mean. The 

harmonic mean was chosen because of its appropriateness when the combination of 

adversarial metrics is used to evaluate segmentation tasks [15]. Besides the conventional 

Tversky and Effectiveness loss functions, a number of alternative formulations have been 

proposed that, however, similarly rely on manual hyperparameter tuning and involve 

complex formulations [16–21].

As shown in Fig. 1, the conventional Dice, Tversky and Effectiveness loss functions can be 

derived from the generalized formulation when the coefficients take on specific constant 

values. The Dice loss is recovered when (αP, αN) = (1,1) and β2 = 1, which encodes for 

unweighted harmonic mean of unweighted precision and recall. The Effectiveness loss is 

obtained when (αP, αN) = (1,1) with β2 ≥ 0, which corresponds to the weighted harmonic 

mean between unweighted precision and recall. Finally, the GLF collapses to the Tversky 

loss when β2 = 1 with (αP, αN) ≥ 0, which corresponds to the unweighted harmonic mean 

between weighted precision and recall. It is worthwhile to note that the Dice loss function is 

a special case of the Effectiveness loss function, which is itself a special case of the Tversky 

loss function. Indeed, the Effectiveness loss function can be rearranged as the unweighted 

harmonic mean between weighted precision and weighted recall, where the weights in PαP
and RαN sum to two. The GLF formulation allows for more flexibility in weighting the 

relative importance of the different metrics in the loss. Thus, the GLF value ranks a possible 

solution more objectively through an adaptive combination of multi-dimensional 

information.
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With the conventional a priori tuning of the hyperparameters in the loss, the performance of 

the trained neural networks would be highly sensitive to the choice of the hyperparameters 

and they would require careful manual tuning in practice [13, 14]. Instead of adopting the 

conventional a priori tuning for the GLF coefficients, we propose an adaptive procedure to 

automatically evolve the coefficients at every optimization iteration during the training of the 

network as well. With this adaptive training method, only one simulation is run, and the loss 

coefficients adaptively determine the optimal loss during the training. At every iteration, 

there is a discrete set of possible actions for each parameter that is picked either based on a 

greedy algorithm, or deterministic heuristics that are motivated by a simple mathematical 

analysis of the loss function. Both approaches are concisely described in Fig. 2 and are 

detailed in the Methods section. It is noteworthy that the deterministic approach does not 

introduce computational overhead and can be easily incorporated in most existing deep 

learning frameworks.

B. Adaptive hyperparameter tuning methods

Conventional methods regard the coefficients in the loss function as fixed hyperparameters. 

It is well known that the performance of deep learning modeling is highly sensitive to the 

choice of these hyperparameters, e.g. for semantic segmentation [13], imbalanced 

classification, image reconstruction, and multi-task learning. Therefore, the coefficients are 

typically manually tuned and kept constant during the entire neural network training. 

Hyperparameter values that yield the best metric performance are prospectively picked as 

the optimal parameters. This is a computationally expensive procedure that relies on a time-

consuming trial-and-error human intervention. Furthermore, the conventional practice of 

manually tuning the hyperparameters a priori assumes that the optimal choice of the 

coefficients remains constant throughout the training phase, which inevitably leads to 

suboptimal or even erroneous results as shown below.

The first adaptive method (exploratory) loosens the above restriction by allowing each 

coefficient to take one of three possible actions: decrease by 10%, keep constant, or increase 

by 10%. Since there are three parameters, this yields a total of 27 possible actions A1 up to 

A27 at every iteration step i of the backpropagation algorithm. Each action Aj corresponds to 

a new instance of the generalized loss GAj
i  and is explored by the algorithm that 

backpropagates once with this loss to update the network parameters θAj
i + 1 at the next 

iteration step. The performance criterion used to evaluate each action is the batch-averaged 

Euclidian distance ℒAj
i + 1 between prediction and ground-truth label. The greedy action 

A* = argmin
Aj

ℒAj
i + 1 is then selected to decide the optimal update rule for the GLF 

coefficients, and the final network parameters are updated as θi + 1 = θA*
i + 1. The first 

approach is exploratory in nature and increases the computational cost of training the neural 

network. However, it allows to assess the relevance of the adaptive training concept for the 

loss coefficients. It is a viable approach in applications where deep neural network training 

time is not the bottleneck. An alternative refined algorithm would consist in training a 
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reinforcement learning algorithm to learn the optimal update rule, with a policy 

parameterized as a deep neural network and every iteration stage considered a state.

The second adaptive approach (deterministic) consists in updating each coefficient via a 

deterministic rule that outputs one of five possible actions: decrease by 50%, decrease by 

25%, keep constant, increase by 25%, or increase by 50%. The deterministic rule is 

motivated by the results obtained with the exploratory rule, from which we have inferred 

possible heuristics that explain the dynamic change of the coefficients. Since gradient-based 

optimizers primarily rely on the first-order gradient information [22–28], we mathematically 

analyze the gradients of the GLF with respect to the network parameters, which can be 

formulated as

∇(1 − G)
1 − G = 1

1
PαP

+ β2
RαN

∇PαP
PαP

2 + β2∇RαN
RαN

2 ,
(2)

where the two gradient terms on the right side can be further decomposed as

∇PαP = TP αPFP
TP + αPFP 2

∇TP
TP − ∇FP

FP , (3)

∇RαN = TP αNFN
TP + αNFN 2

∇TP
TP − ∇FN

FN . (4)

It is instructive to consider the order of magnitude of the prefactors on the right side of Eq. 

(3) when the coefficient αP is of order 1. For example, when FP ≫ TP, the prefactor in Eq. 

(3) is of the order of TP/FP ≪ 1 (i.e., TP is much smaller than FP). In contrast, when FP ≪ 
TP, the prefactor is of the order of FP/TP ≪ 1. These results in an artificial attenuation of the 

learning rate along the TP and FP directions. This can be partially circumvented by 

adaptively changing αP to counterbalance the effect: decreasing αP when FP ≫ TP as 

typically occurs in early stages of training, and increasing it when TP ≫ FP. A similar 

interpretation can be made for αN by considering the right side of Eq. (4). A possible 

interpretation for β2 consists in arguing that the relative weight along the ∇PαP /PαP  and 

∇RαN /RαN directions should be of the same order (as they are in Eq. (3) and Eq. (4) for TP, 

FP, and FN). The relative weight β2 PαP /RαN  therefore justifies increasing β2 when 

PαP ≪ RαN and decreasing it when PαP ≫ RαN. The exact heuristics that are picked for each 

coefficient in this work are shown in Fig. (2b). We hypothesize that the induced dynamic 

changes minimize the risks for the network to get trapped in a local minimum during 

training. The rule-based deterministic adaptive does not introduce significant computational 

overhead as compared with the conventional approaches based on the Dice, Effectiveness or 

Tversky loss functions.

Seo et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C. Training details

The 2D segmentation network employed in this study is the modified U-Net (mU-Net) 

architecture [29] implemented in Tensorflow [30]. In all cases, neural network parameters 

are randomly initialized using a truncated normal distribution with mean value of 0, standard 

deviation of 0.05, and constant bias values of 0.1. During training, they are updated using 

Adam’s optimization algorithm [25]. The initial learning rate is 0.0001. The decay value of 

the moving average in the batch normalization was 0.9 for regularization and the dropout 

probability was 0.6 minimize overfitting. During training, the continuous values of the 

output layer are used to calculate the loss function and its gradient.

Public lung and liver tumor datasets were used [31, 32]. The lung tumor dataset is composed 

of very small targets in large images (largest tumor size: 0.18 % of the total 5122 number of 

pixels). The liver tumor dataset similarly contains small targets that also have relatively 

irregular boundaries. Supplementary Table 11 shows the breakdown of patients and 2D CT 

scans into training, validation, and testing datasets. All input images are 512×512 and data 

processing and analysis are implemented using MATLAB (9.4.0.813654, R2018a, The 

MathWorks Inc., Matrick, MA). The performance metrics are calculated by thresholding the 

continuous output layer values with a threshold 0.5.

Throughout the study, we compare the performances of the proposed methods based on the 

GLF against the results obtained with the Dice, Effectiveness and Tversky loss functions. In 

the two latter cases, the comparisons are done against the choice of hyperparameters that 

yield the highest Dice coefficient, in order to make the comparison more robust. The most 

accurate Effectiveness and Tversky loss functions were found by training a number of neural 

networks with different choices of the manually tuned hyperparameters. Supplemental 

Figure 11 shows the results of these parametric studies.

The main data supporting the results in this study are available within the paper and its 

supplementary information1. The lung and liver tumor datasets are publicly available at 

https://medicaldecathlon.com and https://competitions.codalab.org/competitions/17094, 

respectively.

III. Results

The GLF in conjunction with the deterministic (D) and exploratory (E) adaptive training 

methodologies is applied the detection and segmentation of lung and liver cancer tumors in 

CT scans. The performances of the two methods are evaluated with delineations from 

physicians as ground truths.

The averaged precision, recall, and Dice coefficient of the two proposed methods are shown 

in Fig. 3, where they are compared against three conventional methods based on the Dice, 

Effectiveness, and Tversky loss functions. The precision of the deep learning segmentation 

algorithm exhibits little sensitivity to the choice of the training loss, with less than 2% and 

0.01% difference between the worst and best methods for the lung and liver datasets, 

1Supplementary materials are available in the supporting documents /multimedia tab.
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respectively. The precision reach very high values up to 96.3% and 98.1%, suggesting that 

detected tumors are accurately delineated. On the other hand, the recall performance of the 

algorithms varies significantly by up to 10% depending on the choice of the training loss. In 

particular, the proposed training methods yield values of 88.3% (D) and 90.4% (E) for the 

lung dataset, and 84.3% (D) and 85.8% (E) for the liver dataset, all statistically significantly 

larger compared to the 82% and 83.3% best recall performance obtained with the 

conventional loss functions. The Dice coefficients, displayed in the rightmost column, show 

that the new methods overall outperform the existing methods by nearly 10% and 2% for the 

lung and liver datasets, respectively. The exploratory strategy of the adaptive loss performs 

slightly better than its deterministic counterpart. This is expected as the deterministic version 

of the adaptive loss aims at approximating the exploratory loss using simple heuristics. 

However, it is noteworthy that the results obtained with the deterministic generalized loss 

function still outperform the existing methods with no computational overhead.

To gain insights into the difference in performance of different methods, Fig. 4(a,c) show the 

distribution of the Dice coefficient across all tumor sizes encountered in the test datasets. 

While all methods exhibit similar performance for the largest tumors, significant differences 

are observed in the small-size tumor range, corresponding to sizes below approximately 100 

pixels in both cases (less than 0.04% of the total 5122 number of pixels). The adaptive 

methods based on the GLF are consistently able to detect and segment small-size tumors 

that would have remained undetected otherwise, increasing the sample wise Dice score from 

0% with existing method to well above 50% when the GLF and adaptive training methods 

are used. This analysis of the accuracy of the methods for various tumor sizes provides 

insights into their averaged precision and recall metrics discussed above. Indeed, with 

conventional loss functions and training methodologies, small tumors are not detected and 

are counted as false negatives, thereby penalizing the recall scores of the methods but with 

no negative effect on the precision scores. This observation is visually ratified on Fig. 4(b,d) 

that qualitatively show the segmentation performances of all methods for one small and one 

intermediate-size tumor in each dataset. While all methods perform equally well for the 

larger tumors, only the two proposed methods are able to detect and segment the smallest-

size tumors. Figure 5 shows the Dice coefficients of the different methodologies in the more 

special case when the test data samples that do not contain any tumor. The proposed 

methods outperform the existing methods on both datasets. On the lung (liver) data, the Dice 

coefficient is increased from 71.6% (87.2%) for the Tversky loss to 75.4% (88.8%) and 

77.4% (90.1%) for the deterministic and exploratory training of the GLF, respectively.

The improvement in predictive capability of the deep learning model owes to the adaptive 

training strategy that enables the GLF to be automatically tuned during the training process 

of the network, according to the performance at the current iteration. Figures 6(a,c,e) show 

the evolution of the coefficients αP, αN, and β2 during model training for the lung dataset, 

where all three coefficients are initialized to the corresponding Dice values. Remarkably, the 

deterministic and exploratory methods produce similar trends, with the exploratory method 

producing a smoother evolution overall. This can be understood by considering the discrete 

nature of the deterministic procedure that has a fixed number of threshold values for the 

deciding parameters. The parameters αP and αN oscillate around 1 while the parameter β2 

remains larger than 1. The right panel of Fig. 6(b,d,f) shows the evolution of the 
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corresponding metrics that we deemed relevant in explaining the dynamic behavior of the 

coefficients. The plots confirm the interpretation of the required change in parameters 

described above. For example, when the precision is low, as in early stages of training, it is 

preferable to choose lower values of the parameters weighting the false positives in the loss, 

whereas the values augment towards the end because of its simplicity and the intuitive 

results analyzed above, the observed discrepancies between the exact evolution of both 

adaptive strategies suggest that a more suitable approach might employ a reinforcement 

learning approach in order to learn an optimal adaptive strategy more efficiently from the 

data, rather than exploring all possibilities as in the exploratory method. Nevertheless, the 

methods reveal clearly the roles of loss functions in machine learning and shed important 

insights into the optimal design of neural networks. Given their simplicity and effectiveness, 

the proposed methods should find broad applications in future applications of deep learning.

Figure 7 shows the trajectory of the GLF coefficients in a 2D space obtained by projecting 

the values of the coefficients along the axes αP,tversky = 2 αP⁄(1 + β2) and 

αN, tversky = 2β2αP / 1 + β2 . This step is motivated by noticing that with this change of 

variable, the GLF also collapses to the conventional Tversky loss function. This figure 

shows that in both cases, a large portion of the parameter space is explored during the 

training of the network, which would have remained unexplored if the coefficients had been 

fixed ahead of training. Figure 7 visually ratifies the intuition that at some point during 

training, due to poor performance of the network, it is necessary to alter the values of these 

coefficients, for example by significantly decreasing the false positive weighting to favor the 

false negative weighting, but that towards the end of training, the parameter values recover 

more balanced values (1.4, 0.5) and (1.2, 0.8) for the deterministic and exploratory methods, 

respectively.

IV. Discussion

A number of pitfalls exist in current deep learning modeling, which often adversely affects 

the performance of deep learning-based decision-making. Among them are the choice of the 

loss function and the way of deciding the involved hyperparameter values. These two 

fundamental issues have received relatively little attention despite the known intimate 

relationship between the choice of loss function and the outcome of model prediction. In this 

study, we bring up a three-dimensional parameterization of a GLF and an adaptive training 

scheme to close the gap between deep neural network modeling and decision-making 

metrics. The multi-dimensional parameterization of the loss function allows the flexible 

weighting of distinct metrics relevant to the final decision-making, and the adaptive 

evolution of the model parameters during neural network training makes it possible to 

maximally utilize the capacity of deep neural network.

Two intuitive algorithms are developed to meet the challenges of the new learning 

framework. The first one, a greedy adaptive method, relies on choosing the best parameter 

update following the exhaustive exploration of 3 predefined actions for each parameter at 

each iteration step of the optimization algorithm. And the second approach, a deterministic 

adaptive method, updates the parameters using a rule-based algorithm. Partly motivated by a 

mathematical analysis of the gradient of the loss function, this second interpretable method 
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introduces little computational overhead and is flexible enough to be deployed into most 

existing deep learning frameworks. The hyperparameter of the proposed adaptive loss can, in 

principle, be tuned based on reinforcement learning. But this will entail a careful 

implementation and detailed evaluation of a computationally intensive reinforcement 

learning scheme. Due to the large scope of the approach, we postpone the investigation to 

the future.

In the context of biomedical image segmentation, the proposed formalism generalizes the 

conventional Dice, Effectiveness and Tversky loss functions. Additionally, the adaptive 

training methods allow dynamic exploration of a larger portion of the parameter space. 

Numerical experiments demonstrated that the detection and segmentation of lung and liver 

tumors are consistently improved compared to conventional training methodologies. Most 

remarkably, networks trained with the proposed methods are capable of discerning small 

tumors less than 100 pixels in size, which is less than 0.04% of the total 5122 pixel 

dimension of an entire CT scan slice.

Deep learning networks are often criticized for their “black box” nature [33, 34], and for the 

difficulty to rationalize the manual tuning of the numerous hyperparameters. Similar to that 

of model parameters optimization in treatment planning [9, 35], the proposed methodology 

improves the performance of deep learning-based decision-making while concurrently 

providing better interpretability of the evolution of the parameters. The examples presented 

in this study showcased how the adaptive changes in the parameters can be intuitively related 

to imbalance in the training related to small regions of interest in otherwise large input data. 

The proposed formalism opens new opportunities for numerous other practical applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Definition of the generalized loss function and schematic of its relationships to conventional 

Dice, Effectiveness and Tversky loss functions. The definition of the generalized loss 

function involves three coefficients αP, αN, and β2. For specific values of these coefficients, 

the generalized loss function collapses to conventional loss functions.
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Fig. 2. 
Adaptive training methodologies for the coefficients in the Generalized loss function. (a) 

Exploratory model where all possible actions (−10%, no change, +10%) are explored at each 

iteration step for each of the three parameters, and the action triplet yielding the best 

performance (argmin
Aj

ℒAj
i + 1) is picked. (b) Deterministic model based on rule-based update 

formula for the three coefficients that can each take one of five possible actions. For 

example, αP decreases by a factor of 50% if TP/FP is smaller than 1/15. In order to avoid the 

unbounded divergence of the parameters, the parameters αP and αN are not updated when 

<FP> ≤5 and <FN> ≤ 1, respectively, where the symbols <·> denote batch-averaged values.
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Fig. 3. 
Quantitative results for the test data samples that contain at least one tumor. The averaged 

(a,d) precision, (b,e) recall, and (c,f) Dice coefficients are shown for the lung dataset (upper 

panel) and liver dataset (lower panel). D, E, T, G (D), and G (E)are results obtained with the 

Dice loss, Effectiveness loss, Tversky loss, generalized loss based on the deterministic 

approach, and generalized loss based on exploratory approach, respectively. Numerical 

values are reported in Supplementary Tables 2 and 4.
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Fig. 4. 
Segmentation results for the test data samples that contain at least one tumor. Distribution of 

Dice coefficients across tumor sizes for the (a) lung and (c) liver datasets. Visualizations of 

the algorithms’ delineations for the (b) lung and (d) liver datasets. In (b) and (d), the top row 

corresponds to an intermediate-size tumor example while the bottom row corresponds to a 

small tumor example. For reference for the liver dataset in (d): the full length 512 pixels of 

the CT scan corresponds to 30cm, the large tumor magnification window length 131px 

corresponds to 76mm, and the small tumor magnification window length 42 pixels 

corresponds to 24mm. D, E, T, G (D), and G (E) correspond to the Dice loss, Effectiveness 

loss, Tversky loss, generalized loss based on deterministic approach, and generalized loss 

based on exploratory approach, respectively.
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Fig. 5. 
Quantitative results for the test data samples that do not contain any tumor. The averaged 

Dice coefficient is shown for the (a) lung and (b) liver datasets. D, E, T, G (D), and G (E) 

refer to the Dice loss, Effectiveness loss, Tversky loss, generalized loss based on 

deterministic approach, and generalized loss based on exploratory approach, respectively. 

Numerical values are reported in Supplementary Tables 3 and 5.
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Fig. 6. 
Evolution of the generalized loss function coefficients (a) αP, (c) αN, and (e) β2 during the 

training phase of the deep learning network for the deterministic and exploratory adaptive 

strategies. We show the evolution of the corresponding relevant metrics (b) precision, (d) 

recall, and (f) ratio of weighted recall and weighted precision based on Fig. 2 in the right 

panel.
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Fig. 7. 
Two-dimensional trajectory of the coefficients αP, αN, and β2 during training mapped in the 

Tversky coefficients space αP,tversky = 2 αP/(1 + β2) and αN, tversky = 2 β2αP / 1 + β2 . In this 

representation, using the Dice loss corresponding to operating at a fixed point (1,1), using 

the Effectiveness loss corresponding to operating at a fixed point on the gray line αP,tversky + 

αN,tversky = 2, and using the Tversky loss corresponding operating at a fixed point anywhere 

in the plane defined by αP,tversky ≥ 0 and αN,tversky ≥ 0. With the adaptive training 

methodology, the parameters are updated at every iteration step leading to a dynamic 

trajectory as the optimization is carried out (colormap correspond to iteration number).
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