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Abstract: Psychiatric and neurological disorders severely hamper patient’s quality of life.
Despite their high unmet needs, the development of diagnostics and therapeutics has only made
slow progress. This is due to limited evidence on the biological basis of these disorders in humans.
Synapses are essential structural units of neurotransmission, and neuropsychiatric disorders are
considered as “synapse diseases”. Thus, a translational approach with synaptic physiology is crucial
to tackle these disorders. Among a variety of synapses, excitatory glutamatergic synapses play
central roles in neuronal functions. The glutamate ,-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid receptor (AMPAR) is a principal component of glutamatergic neurotransmission;
therefore, it is considered to be a promising translational target. Here, we review the limitations of
current diagnostics and therapeutics of neuropsychiatric disorders and advocate the urgent need for
the promotion of translational medicine based on the synaptic physiology of AMPAR. Furthermore,
we introduce our recent translational approach to these disorders by targeting at AMPARs.
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Introduction

Over 100 billion neurons constitute the adult
human brain. Within the brain, the synapse is the
structural unit used to convey information from one
neuron to other neurons. Upon propagation of
electrical excitation, called an action potential, to
a presynaptic terminal, chemical neurotransmitters
stored in the presynaptic vesicles are released by
exocytosis into the synaptic cleft and bind to
receptors on the postsynaptic membrane, leading to
the transmission of neuronal information. Neurons
in the brain are interconnected by thousands of
synapses. Rapid neurotransmission is mediated
mainly by excitatory glutamate synapses, in which
the binding of glutamate to postsynaptic receptors

induces elevation of postsynaptic membrane poten-
tial (depolarization) and inhibitory gamma-amino-
butyric acid (GABA) synapses where GABA binding
to its receptors leads to a decrease in postsynaptic
membrane potential (hyperpolarization) that de-
pends on the chloride equilibrium potential.1),2)

Psychiatric disorders such as depression, schiz-
ophrenia, and autism and neurological disorders
(e.g., stroke, epilepsy, Parkinson’s disease, and
dementia) severely impair the quality of life of
patients. The biological basis of these disorders
including their onset, progression, and recovery
process is still poorly elucidated, which prevents the
development of novel diagnostics and therapeutics.
Recent studies from animal disease models, genetics,
and postmortem brains suggest that alteration of
synaptic functions underlie these disorders. Among
various synapses, glutamatergic and GABAergic
synapses are considered to directly regulate the onset
and status of neuronal diseases.

Glutamate synapses are the most abundant
excitatory synapses in the brain and mediate the
majority of neuronal functions. ,-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid receptor (AMPAR)
is an ionotropic glutamate receptor.3),4) Glutamate
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binding activates AMPARs and elevates postsynaptic
membrane potential by the influx of cations. There
are four distinct subunits of AMPARs, GluA1,
GluA2, GluA3, and GluA4, which assemble into
tetramers to form a core functional ion channel.5),6)

GluA1–3 are expressed in the majority of neurons in
the nervous system of mature animals. On the other
hand, GluA4 is primarily expressed early in develop-
ment and in cerebellar granule neurons and some
populations of interneurons in the mature brain.4),7),8)

N-methyl-D-aspartate receptor (NMDAR) is another
ionotropic glutamate receptor. NMDAR is blocked
by magnesium at resting potential, and this blockade
is released by depolarization through AMPAR
activation leading to the influx of cations including
calcium. Because AMPAR contributes to a major
fraction of the glutamatergic synaptic current,9),10)

AMPAR may be a promising translational target to
tackle psychiatric and neurological disorders. How-
ever, despite its potential, translational approaches
targeting AMPAR have not been successful. In this
review, we discuss the current limitations of neuro-
psychiatric disorders and the need and potential of
translational medicine of AMPAR.

AMPAR trafficking and synaptic plasticity

Experience such as learning alters neural circuits
throughout development to adulthood, leading to an
infinite diversity of neural functions in the brain,
which is known as “neural plasticity”. These circuit
changes depend on the selective strengthening and
weakening of synaptic efficacy in the brain. The
most characterized forms of synaptic plasticity are
long-term potentiation (LTP) and long-term depres-
sion (LTD), in which a short period of synaptic
stimulation can trigger long-lasting strengthening
(in LTP) or weakening (in LTD) of synaptic trans-
mission.11)–14) Postsynaptic addition or removal of
AMPAR controls LTP and LTD.3),15)–18) Synaptic
trafficking and addition of AMPAR is one of the most
investigated synaptic molecular modifications under-
lying experience-dependent synaptic plasticity.19)

This molecular event was first characterized as a
molecular mechanism of persistent strengthening
of synaptic responses during LTP using in vitro
hippocampal slices.20)–22) In the hippocampal py-
ramidal synapses of mature rats, GluA1/2 and
GluA2/3 heteromers are the major configuration of
AMPARs.23),24) It has been considered that these
subunit compositions are largely maintained in the
brain, whereas the relative expression of AMPAR
subunits exhibits some regional differences.4),8),24)

Subunit composition is considered to rule synaptic
AMPAR trafficking.22) GluA1-containing AMPARs
are delivered and added into synapses during LTP in
an activity-dependent manner, leading to an increase
in AMPAR-mediated synaptic current.21) In the early
phase of LTP, GluA1 homomeric receptors, Ca2D

permeable AMPAR composition, are primarily deliv-
ered into synapses.25) Synaptic delivery of GluA2/3
heteromers is constitutive and activity independent,
which builds up the basal synaptic transmission,
and GluA2/3 heteromers are considered to re-
place GluA1-containing AMPARs and maintain
the increased synaptic transmission throughout
LTP.3),4),16),22),24) The role of synaptic AMPAR
trafficking in experience-dependent neural plasticity
was first reported in the developing rat barrel cortex,
which receives sensory input from the whiskers.26)

Using viral-mediated in vivo gene transfer in combi-
nation with electrophysiological whole cell recording,
we showed that GluA1-containing AMPARs are
delivered to synapses formed from layer 4 to
layer 2/3 pyramidal neurons of the developing rat
barrel cortex (postnatal day 12–14). This trafficking
was prevented in the absence of whisker inputs. As
was observed in LTP, GluA1-lacking (thus GluA2/3)
AMPARs were delivered into synapses in an experi-
ence-independent manner. This study demonstrated
that, in the developing rat barrel cortex, whisker-
experience drives GluA1-containing AMPARs into
synapses leading to the potentiation of synaptic
efficacy followed by replacement with GluA2/3,
whose experience-independent constitutive synaptic
delivery maintains elevated synaptic efficacy
(Fig. 1).26) Synaptic trafficking of AMPARs has been
proven to underlie experience-dependent plasticity
in other brain areas such as amygdala and hippo-
campus. Rumpel et al. showed that auditory fear
learning drives GluA1-containing AMPARs into
amygdala synapses.27) Furthermore, blockade of
synaptic delivery of GluA1-containing AMPARs in
the amygdala by overexpression of the cytoplasmic
portion of GluA1 (GluA1-ctail), which prevents
synaptic delivery of GluA1-containing AMPARs by
potential trapping of proteins required for trafficking
attenuated formation of auditory fear learning,
suggesting that GluA1-containing AMPAR delivery
in the amygdala is required for fear leaning.27) LTP-
like synaptic potentiation was reported in an
inhibitory avoidance (IA) task28): IA task, a hippo-
campus-dependent contextual fear learning. In this
task, rodents are allowed to cross from a light box to
a dark box, where an electric foot shock is delivered.
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Thus, animals learn to avoid the dark box and stay
in the light box, which they do not naturally prefer.
The latency to re-enter the dark box is prolonged
when the animal establishes IA learning. Consistent
with this study, we found that IA learning drives
GluA1-containing AMPARs into hippocampal CA3-
CA1 synapses.29),30) Furthermore, the expression of
GluA1-ctail in the dorsal hippocampus attenuated IA
learning formation, indicating that synaptic traffick-
ing of GluA1-containing AMPARs is required for
hippocampus-dependent learning, as observed in the
amygdala.29) Do synaptically delivered AMPARs
actually encode memory? To test this hypothesis,
we generated a monoclonal antibody against GluA1
(called Z9139) and labelled the antibody with light-
sensitive eosin so that we are able to inactivate
GluA1 by light exposure in vitro and in vivo through
chromophore-assisted light inactivation (CALI),
which can disrupt the functions of target molecules
using a photosensitizer producing short-lived reactive
oxygen upon irradiation with light (Fig. 2A).31)

CALI with eosin-labelled Z9139 selectively inacti-
vated GluA1 homomeric AMPARs.31) GluA1 homo-
meric AMPARs display conductance at negative but
not at positive potentials, which is inward rectifica-
tion, whereas GluA2-containing AMPARs such as
GluA1/2 and GluA2/3 heteromers allow conduct-
ance at both negative and positive potentials. We
observed increased inward rectification at hippo-
campal CA3-CA1 synapses within 2 hours after IA
conditioning (Figs. 2B, C), which disappeared 24
hours after conditioning, indicating that IA learning

transiently drives GluA1 homomeric AMPARs into
CA3-CA1 synapses.31) We injected eosin-labelled
Z9139 into the dorsal hippocampus in combination
with insertion of a light canula and conditioned these
animals with an IA task (Fig. 2B). The light
exposure of IA conditioned animals injected with
eosin-labelled Z9139 decreased the latency to re-enter
the dark box, indicating that disruption of GluA1
homomeric AMPARs erases fear memory
(Fig. 2D).31) This suggests that synaptically deliv-
ered GluA1 homomeric AMPARs with IA encode
fear memory. These results demonstrated that
synaptic AMPAR delivery is a fundamental molecu-
lar mechanism underlying experience-dependent
neuronal plasticity throughout the brain. Thus,
trafficking of AMPARs, and AMPARs themselves,
may be a highly promising translational target.

Imminent need to elucidate the pathophysiology
of psychiatric disorders

There are two major challenges in the field of
psychiatry. First, because there are no established
biological markers for psychiatric disorders, their
diagnostic system is solely based on the symptoms
that patients manifest. This principle is still the
rule even in the 21st century. In fact, neither of
two major diagnostic criteria in psychiatry, i.e., the
International Statistical Classification of Diseases
and Related Health Problems (ICD)32) by the World
Health Organization and the Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM)33) by
the American Psychiatric Association, includes any

Fig. 1. Experience-dependent GluA1-containing AMPARs trafficking to the post-synaptic membrane. GluA1-containing AMPARs are
trafficked to post-synaptic membranes in an experience-dependent manner, leading to the sustained potentiation of synaptic
transmission, as is observed in LTP. GluA2/3 heteromers replace GluA1-containing AMPARs and are delivered to synapses in an
experience-independent fashion, which maintains potentiated basal synaptic transmission.
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biological marker for any disorder. This lack of an
objective diagnostic system based on biological
markers often results in treatment delay, misdiag-
nosis, and resultant inappropriate treatment and
unfavorable outcomes34),35) as well as high social
cost.36) Second, currently available drugs for psychi-
atric disorders can relieve symptoms to some extent,
but they do not cure the disorders.37) Furthermore,
there is a significant proportion of patients who do
not respond to these drugs, which is referred to as
treatment resistance. For example, approximately
one-third of patients with depression and schizophre-
nia do not attain clinical response with antidepres-
sants and antipsychotics,38),39) respectively. Although
pharmaceutical companies have attempted to devel-
op new drugs for psychiatric disorders, many clinical
trials have failed recently, and there are only a few

candidates in the pipeline. In the light of such an
unpromising climate in this field, major mega-
pharmaceutical companies withdrew from the drug
market for the central nervous system. The most
significant reason for this frustrating situation is the
fact that the pathophysiology of psychiatric disorders
remains largely unclear.

Previous brain imaging findings of two major
psychiatric disorders, depression and schizophrenia,
are summarized below as examples. In depression
research, the serotoninergic system is the most
investigated neural system. Previous post-mortem,
in vivo brain imaging, and metabolite studies have
shown reductions in the constituents in this system
such as serotonin transporters40) and 5-HT1A recep-
tors.41) Alterations are also the case for the norepi-
nephrine system in patients with depression.42),43)

Fig. 2. In vivo CALI erases contextual fear memory. (A) Schematic representation of CALI for GluA1 using an anti-GluA1 monoclonal
antibody (called Z9139) labeled with eosin, a photosensitizer. (B) IA learning increased the synaptic delivery of homomeric GluA1.
Left: synaptic responses at the hippocampal CA3-CA1 synapses in acute brain slices obtained from animals with or without IA 1h
after conditioning. Right: average rectification index (the ratio of AMPA current of !60mV to D40mV) at hippocampal CA3-CA1
synapses with or without conditioning 1 h after IA learning. Note that the rectification index is increased at hippocampal CA3-CA1
synapses of animals with IA learning compared with those animals without. (C) Experimental procedure for in vivo CALI in
combination with IA learning. (D) In vivo CALI with Z9139-eosin erased hippocampus-dependent fear memory. Latency for
reentering the dark box in untrained mice or mice trained using the IA task. Animals were treated with Z9139-eosin, anti-Myc-eosin,
or Z9139-Fab-eosin, with or without CALI. Note that the latency to reenter the dark box for trained mice treated with Z9139-eosin-
CALI was shorter than those treated without CALI or with Myc-eosin-CALI. * P < 0.001. This derives from Ref. 31.
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Previous brain imaging studies attempted to find
regional differences in biomarkers between patients
with depression and healthy controls and actually
have found the alteration in many regions.44)–46)

However, importantly, these findings are not always
consistent among, even within, imaging modalities.
The dopaminergic system has been most extensively
investigated in an attempt to elucidate the patho-
physiology of schizophrenia and to devise therapeu-
tics,47) which developed the concept of the dopami-
nergic hypothesis of schizophrenia. However, there
are a number of phenomena that cannot be explained
with this hypothesis, such as treatment resistance
to dopamine antagonists39) and superior efficacy of
clozapine despite its low affinity to dopamine
receptors.48) Several lines of evidence suggest that
hypofunction of the glutamatergic neural system is
also involved in the pathogenesis of schizophrenia.
The classic support for this hypothesis is the acute
psychomimetic effects of non-competitive antagonists
of NMDARs such as ketamine49) and phencycli-
dine.50) However, these findings together with pre-
vious studies of anatomical, functional, and molecu-
lar alterations in schizophrenia are mixed and
inconsistent,51)–58) and they have not identified
neural regions or tracts responsible for the patho-
physiology of this illness.

One of the critical limitations in previous
psychiatric research in humans is that it has
attempted to characterize phenomenon that patients
with each illness manifest in comparison to healthy
people or other patient groups, but these have largely
failed to underpin the molecular basis of the illness.
In fact, despite accumulating evidence, again, there
has been no diagnostic system based on biological
markers.32),33) Moreover, it is also a fact that a
significant proportion of psychiatric patients do not
respond to current therapeutics.38),39) In this context,
a totally new molecular target beyond the conven-
tional schemes, such as the monoaminergic hypoth-
esis for depression and the dopaminergic or NMDA
hypothesis for schizophrenia, has been long desired
in psychiatry. If this becomes true, it will have the
potential to be utilized for the development of a
new molecular-based diagnostic system as well as
drugs that have brand-new mechanisms of action
based on a precise understanding of the pathophysi-
ology of psychiatric disorders.

There has been a growing interest in AMPARs
as a new molecular target of investigations of
pathophysiology in psychiatric disorders as evidence
from animal models has accumulated.59)–63) Indeed,

as described in the previous section, there is a huge
body of robust data on the neuronal functions of
AMPARs with experimental animals in the litera-
ture.26)–31) Furthermore, mutations of AMPARs have
been reported in neuropsychiatric disorders such as
schizophrenia, autism and metal retardation,64)–67)

indicating the importance of AMPARs in neuro-
psychiatric disorders. On the other hand, it is also
true that there is still a huge gap between the bench
and bedside especially due to the lack of means of
translating those previous findings at the bench to
actual patients in clinical settings. This is simply
because it was not possible to visualize AMPARs
in the living human brain. There have been post-
mortem brain studies that measure AMPARs in the
brain. According to systematic literature reviews,
there are differences in AMPAR subunit expression
and receptor binding in the postmortem brain
between patients with psychiatric conditions, includ-
ing schizophrenia, depression, and addictive disor-
ders, and healthy controls68) (Uchida et al. and
Koizumi et al., in preparation for publication);
however, the findings regarding their relative quan-
tity in comparison to healthy controls and the
affected regions were inconsistent across the studies.
Degrading changes after death and the activity-
dependent nature of AMPARs render human post-
mortem studies challenging.68) Moreover, subjects
included in these post-mortem studies were not
comprehensively characterized in terms of their
diagnosis and illness severity. Such a stagnating
situation clearly highlighted the necessity for exam-
ining AMPARs in the living brain of well-charac-
terized patients with psychiatric disorders in the real-
world.

Current challenge in developing novel thera-
peutics for neurological disorders

Novel diagnostic and therapeutic methods for
neurological diseases such as stroke, epilepsy, Parkin-
son’s disease, and Alzheimer’s disease (AD) are in
high demand because current diagnostics and ther-
apeutics are still insufficient in improving their
unfavorable prognoses and reducing social burdens.69)

Stroke. Neuroscientists and clinicians have
explored potential drugs that could augment func-
tional recovery after brain damage such as stroke.
Among various kinds of agents, d-amphetamine and
serotonin reuptake inhibitors have been prime
candidates as rehabilitation enhancers. In fact, d-
amphetamine stimulates the release of the catechol-
amines and increases extracellular catecholamines by
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blocking their reuptake. Motor activation after d-
amphetamine injection was observed in decerebrate
cats, which was the first report on the influence of
d-amphetamine upon motor functions.70) A spectro-
fluorometer study of brain samples showed that
unilateral middle cerebellar artery occlusion yielded
variable changes in norepinephrine-epinephrine con-
tents in cerebral tissues.71) Based on these previous
reports, it was revealed that d-amphetamine injec-
tion with rehabilitative training in a rat cortical
injury model promoted motor functional recovery.
The first report on functional recovery with d-
amphetamine showed that hemiplegic rats treated
with d-amphetamine exhibited continuous recovery
in the beam-walking task.72) A following study
revealed that d-amphetamine recovered forelimb
dexterity in a reach-to-grasp task over 3 weeks in
rats with unilateral lesions in the cerebral cortex.73)

Contrary to these promising effects in rats, the effects
are limited in non-human primates and inconsistent
in humans.74) A recent randomized clinical trial
reported in 2018 showed that d-amphetamine did not
alter rehabilitation effects after stroke independent
of lesion site and severity.75) Although d-amphet-
amine promotes plastic changes such as axonal
growth, synaptogenesis, and LTP induction,76),77)

d-amphetamine can induce hyperexcitability, which
may result in a low signal-to-noise ratio between
circuits required for functional recovery and
others.78) Selective serotonin reuptake inhibitors
(SSRIs), which are mainly used as antidepressant
drugs, have also been examined as a candidate for
pharmacological restorative therapy. According to a
3-month placebo-controlled randomized clinical trial
including 42 severely disabled hemiplegic patients
who were receiving physical therapy, fluoxetine
demonstrated the greatest improvements in motor
performance, compared with placebo and tetracyclic
antidepressants.79) This finding was corroborated by
a functional magnetic resonance imaging (MRI)
study showing that fluoxetine evoked motor cortical
excitability in stroke patients.80) In animal models,
fluoxetine restored ocular dominant plasticity in
adult rodents via the upregulation of brain-derived
neurotrophic factors.81) On the other hand, it should
be noted that there are no reports on the efficacy of
fluoxetine in improving motor functions after cortical
injury in animal models. Despite the lack of proof
in animal models, the effects of fluoxetine on motor
function recovery have been tested for the past 10
years, yielding mixed results. For example, the
FLAME (fluoxetine for motor recovery after acute

ischaemic stroke) study, a randomized placebo-
controlled trial reported in 2011, showed that
continuous oral fluoxetine combined with physio-
therapy promoted motor functional recovery.82) In
contrast, the FOCUS (Fluoxetine Or Control Under
Supervision) trial in 2019 demonstrated that oral
fluoxetine for six months after the onset did not
change the functional status in patients with some
neurological deficits.83) Moreover, a subgroup of
patients with motor deficits did not show any
significant motor function recovery. In 2020, the
meta-analysis of 13 randomized controlled trials with
a total of 4,145 patients that evaluated the efficacy of
fluoxetine in terms of recovery of stroke concluded
that fluoxetine does not reduce disability and
dependency after stroke.84) Thus, these negative
results of d-amphetamine and SSRIs for restorative
therapy clearly indicates that it is crucial to modify
specific circuits necessary for functional recovery
based on a substantial enhancement of circuit-
specific plasticity rather than the induction of
global alteration of neurotransmitters. Considering
that glutamatergic synapses play central roles in
neuronal functions, synaptic pharmacology targeting
AMPARs should be a reasonable translational
approach for revising therapeutic strategies to
achieve functional recovery after traumatic damage
to central nervous system such as stroke. Further-
more, there is an enormous need for imaging tools to
visualize changes in AMPARs induced during the
recovery process in living humans, so as to evaluate
functional restoration with tangible biological evi-
dence and optimize methods of intervention during
rehabilitation.

Epilepsy. Epilepsy is a neurological disorder
characterized by recurrent epileptic seizures induced
by overexcitation of neurons. Symptoms can be
determined according to the brain regions responsible
for seizure onset.85) In case these brain regions are
limited to focal area, patients show impaired aware-
ness, motor and nonmotor seizures. Expansion of
the seizure onset areas to the whole brain leads to
generalized convulsion. The lifetime prevalence of
epilepsy is reported to be 7.60 per 1,000 population,
and its incidence shows two peaks in children and
older-aged populations.86) Epilepsy is progressive in
some cases, and the affected area sometimes spreads
widely over the whole brain over months to years,
increasing severity of the symptoms.87)

The initial treatment for epilepsy usually begins
with antiepileptic drugs (AEDs). The choice of AEDs
is usually determined according to seizure type, and
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an appropriate dose of AEDs suppresses epileptic
seizures in approximately two-thirds of patients.86)

Classical targets of AEDs are sodium channels and
the GABAergic system. Recently, an AED with a
new mechanism as a selective non-competitive
antagonist of AMPARs became available in clinical
practice, expanding the range of drug treatment
options.88) On the other hand, seizures cannot be
controlled with AEDs alone in approximately one-
third of the patients, which is referred to as refractory
epilepsy. Surgical treatment is considered for some
refractory epilepsy patients. One of the most common
surgical intervention is a focal resection. Focal
resection is indicated for patients with refractory
epilepsy whose epileptogenic focus has been identi-
fied. Favorable outcomes such as postoperative
elimination of epileptic seizures can be expected in
patients who suffer from mesial temporal lobe
epilepsy with hippocampal sclerosis and partial
epilepsy with well-defined lesions.89),90) Even for those
whose obvious pathological lesion is not observed, if
an epileptogenic focus can be predicted with clinical
symptoms and scalp electroencephalogram (EEG)
and by chronic intracranial EEG recording, focal
resection is performed.91) Although surgical treat-
ment is effective, this treatment option is under-used
because of technical difficulties in identifying an
epileptogenic focus before surgery. Thus, there is an
exigent need to develop non-invasive imaging tech-
nology to locate the epileptogenic focus.92) Because
an increase in AMPARs was observed in surgically
resected brain tissues responsible for seizure onset,93)

a technology to visualize AMPARs in patients with
epilepsy is expected to lead to more frequent and
successful surgical treatment for this difficult-to-treat
population.

Neurodegenerative disease. Although con-
ventional neurotransmitter replacement therapy has
yielded some symptomatic relief for patients with
neurodegenerative diseases, it does not cure them
or offer complete recoveries to date. For example,
Parkinson’s disease, which is a neurodegenerative
disease accompanied by ,-synuclein accumulations
primarily in the substantia nigra and dopamine
deficits,94) is treated with L-dopa replacement ther-
apy.95) This treatment transiently relieves motor
symptoms in the early phase with the elevation of
dopamine in the central nervous system, but often
cause difficult-to-treat motor complications such as
dyskinesia and wearing off in the late phase. More
importantly, L-dopa replacement therapy does not
suppress disease progression.96),97) This is also true

for Alzheimer’s disease; replacement of acetylcholine
with acetylcholine esterase inhibitors (e.g., donepezil,
galantamine, and rivastigmine) does not result in
satisfactory results for memory deficits.98),99)

Dementia due to neurodegeneration is consid-
ered to be caused by pathological aggregates such
as AO, tau and ,-synuclein and subsequent neural
atrophy. For example, the AO-tauopathy cascade has
been considered to be the central pathology of AD.
In this cascade, amyloid precursor protein (APP) is
cleaved by O-secretase (BACE1) and .-secretase,
which yields AOs.100),101) In AOs, AO42 oligomers have
neurotoxic effects and forms aggregates. AO42
aggregate is called a senile plaque and can be an
initiator of abnormal tau-phosphorylation.102) AO42
aggregates and phosphorylated tau can promote
neural atrophy, which in turn can result in memory
deficits.103) A possibility that AO42 aggregates might
be a therapeutic target of AD was pointed out by
Schenk et al. In this report, AD model mice that
received an injection of an antibody against AO42
did not exhibit AO42 aggregations.104) Based on this
finding, anti-AO antibodies (e.g., solanezumab, cren-
ezumab, bapinezmab, aducanumab, and ganteneru-
mab) have been developed as therapeutics. In 2016,
interim results of the PRIME study confirmed the
safety and tolerability of aducanumab and found
that it reduced AO deposition in the human brain
measured using AO positron emission tomography
(PET) imaging of patients with cognitive decline.105)

The PRIME study targeted not only patients with
mild AD but also those with mild cognitive impair-
ment (MCI). On the other hand, the EXPEDITION3
study targeting patients with mild to moderate AD
reported that solanezumab did not suppress cognitive
decline in 2014.106) The latter result suggested that
the use of anti-AO antibodies is too late to suppress
neurodegenerative progression for those with mild to
moderate AD.

Recently, neurodegenerative diseases have also
been considered as synapse diseases.107) Indeed,
synaptic dysfunction is observed from the earliest
stage of disease progression of AD.108) A human brain
autopsy study showed that the degree of synaptic
reduction correlates with the severity of cognitive
dysfunction and the duration of illness in AD
patients.109) Immunohistochemical studies have also
shown that AMPARs are decreased before neuronal
cell death.110),111) Moreover, according to a study
using AD model animals, secretion of AO into the
synaptic cleft likely causes endocytosis of AMPARs
on the synaptic surface, resulting in a decrease in
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the number of synapses.112),113) In another transgenic
mice study, difficulties in spatial memory tasks were
associated with LTP deficits, but not with synaptic
or cellular loss.114) These findings showed that not
synaptic or cellular loss but early synaptic dysfunc-
tion occurs before AO plaque formation. Notably,
epileptic activity is often associated with AD.115),116)

Recording with intracranial foramen ovale electrodes
detected epileptiform spikes in the mesial temporal
lobe of patients with AD.116) In AD model mice,
two-photon Ca2D imaging exhibited that soluble AO

increased the hyperactive neural population in
hippocampus CA1 before AO plaque deposition.117)

These results suggested that hyperactive neurons are
mixed with hypofunctional neurons. Hyperactive
neurons might contain increased synaptic AMPARs
and cause epileptic seizures. Neurons with hypofunc-
tion in AD patients can be produced with pathogenic
proteins such as AO and tau. Consistent with this
concept, certain classes of AEDs have disease-
modifying properties in AD model animals. For
example, chronic lamotrigine administration in
APP/PS1(presenilin 1) transgenic mice attenuated
learning deficits following the reduction of epileptic
spike activity in the cortex and the hippocampus.118)

The underlying mechanism of the production of
hyperactive neurons remains to be elucidated. One
possibility is that functional compensation is induced
in these hyperactive neurons by the loss of function of
fractions of neurons with pathological changes. These
observations highlight the importance of detecting
functional and malfunctional circuits in the brains
of AD patients, leading to a novel concept in
therapeutics, in which maintaining or strengthening
healthy synapses or neural circuits in MCI due to AD
or early AD may reduce the degenerative progression.
Thus, early pathological changes in glutamatergic
synaptic functions have now been considered to be a
therapeutic target for AD. However, because there
were no methods that can reliably detect glutama-
tergic synaptic dysfunction in the early, potentially
reversible phase in living human brain, a feasible
treatment target used to be the pathological aggre-
gates such as AO and tau in the late irreversible
phase. However, previous clinical trials targeting AO

in neurodegenerative diseases have not been success-
ful. This frustrating situation underscores the need
for a novel tool to examine glutamatergic synapses
in the living human brain. Among constituents of
glutamate synapses, AMPARs have garnered wide-
spread attention in the light of abundant evidence
on the important roles of AMPARs in AD model

animals.119)–121) Characterization of AMPARs in AD
patients is expected to be a crucial step toward
elucidation of the pathogenesis and development of
early diagnostics and novel therapeutics. However,
this was not possible for years simply due to the lack
of technology to visualize AMPARs in living patients
with AD.

Limitations of current neuropsychiatric
diseases animal models

Elucidation of biological mechanisms underlying
neuropsychiatric disorders is indispensable to pro-
mote a translational approach, which can lead to
the development of novel diagnostics and therapeu-
tics. The initial step at the bench is to establish
appropriate disease animal models.122) However,
there are two major challenges to achieve this. First,
there are technical difficulties to apply the conven-
tional strategy of creating animal models to neuro-
psychiatric disorders. It is a current standard to
produce transgenic animals carrying genetic muta-
tions identified in human patients with a family
history of certain diseases.123),124) However, mutations
among multiple genes in combination with environ-
mental factors are involved in developing major
neuropsychiatric disorders.125) Second, psychiatric
and psychological symptoms (e.g., depressive mood,
hallucination, anxiety) that patients experience are
essentially subjective, which may not be appropri-
ately reproduced in animals.126) Moreover, patients
with potentially different biological backgrounds
often exhibit similar symptoms and are categorized
into the same diagnosis. Such heterogenous features
of neuropsychiatric disorders in humans should be
acknowledged when data from neuropsychiatric
disease animal models are interpreted.127) Thus, there
is an imminent need to develop reliable and valid
neuropsychiatric disease animal models for a success-
ful translational approach.

Synaptic functions are the central effector of
these complicated multiple genetic and environ-
mental etiologies, and these pathogenic factors may
result in similar alterations of synaptic functions.128)

Considering the fact that glutamate AMPAR is one
of the most fundamental components of neuro-
transmission in the brain, characterization of neuro-
psychiatric disorders with a focus on AMPAR in
actual living patients has the potential to delineate
the biological basis of symptomatology of neuro-
psychiatric disorders that result from a variety of
etiologies. This in turn could lead to the optimization
and categorization of numerous animal models based
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on the alteration of synaptic functions, i.e., from
bedside to bench. In this context, the technology to
visualize AMPARs in living human brain has also
long been desired to move the field forward.

Synaptic AMPAR trafficking as a translational
target for enhancing functional recovery

Functional recovery after brain damage such as
stroke is considered to be a plastic event with
functional compensation in intact brain areas.129)

We have previously found that visual deprivation
drives AMPARs in layer 4 to layer 2/3 pyramidal
synapses in the juvenile barrel cortex leading to the
enhancement of the function of whisker-barrel
systems, which may help animals with visual loss
to capture spatial information with their whiskers.130)

In addition, rehabilitation in hemiplegia promotes
functional reorganization in intact peri-lesional re-
gions.131) These led us to hypothesize that synaptic
AMPAR trafficking can be a translational target for
the functional recovery after brain damage such as
stroke. For restoring motor function in hemiplegic
patients, the specific activation of motor circuits is
needed. Here, we introduce our recent identification
of a small compound, edonerpic maleate (also called
T817), which accelerates motor function recovery
after traumatic damage of the central nervous system
including stroke by the facilitation of synaptic
AMPARs trafficking.7) After a series of in vitro
screening of the library of compounds to modify
neuronal morphology, we focused on edonerpic
maleate (T-817MA) to monitor its effect on experi-
ence-dependent synaptic AMPAR trafficking. As was
described above, whisker-experience drives GluA1-
containing AMPARs into synapses formed from
layer 4 to layer 2/3 pyramidal neurons of developing
rodent barrel cortex.26) This experience-dependent
synaptic GluA1-containing AMPAR trafficking
ceases by juvenile age when the barrel cortex is
functionally matured.130) We administered edonerpic
maleate to adult mice and examined synaptic
functions at layer 4–2/3 pyramidal synapses with
whole cell recordings of acute brain slices. We found
an increased AMPAR-mediated synaptic current at
these synapses of animals treated with edonerpic
maleate compared with vehicle-treated animals. The
increase of AMPAR-mediated synaptic current with
edonerpic maleate was abolished in the absence of
whiskers, indicating that edonerpic maleate facili-
tates synaptic AMPAR (GluA1-containing AMPAR,
see also below) trafficking in an experience-dependent
manner (Fig. 3A).7) A target protein of edonerpic

maleate appeared to be CRMP2 (collapsin-response-
mediator-protein 2), which was first identified as a
downstream molecule of semaphorin (Fig. 3A).132)

The semaphorin family was initially isolated as a
chemorepellent of developing axons133),134) and later
reported to regulate synaptic functions.135),136) Ac-
cordingly, CRMP2 was also reported to regulate
dendritic spine morphology.137)–139) The facilitation
of experience-dependent synaptic AMPAR delivery
with edonerpic maleate was abolished in CRMP2-
deficient mice, demonstrating that the effect of
edonerpic maleate on synaptic AMPAR delivery is
mediated by binding to CRMP2.7) Dephosphorylated
(activated) actin depolarizing factor (ADF)/cofilin
increases actin turnover and facilitates AMPARs
trafficking during LTP.140) Edonerpic maleate-in-
duced facilitation of AMPAR trafficking was pre-
vented by the dominant-negative form of ADF/
cofilin. Thus, edonerpic maleate/CRMP2 complex
increased dephosphorylated (thus activated) ADF/
cofilin, which leads to facilitation of AMPAR
trafficking.7) Based on the pharmacological action of
edonerpic maleate, we applied edonerpic maleate to
acute brain injury models to examine if it accelerates
rehabilitation. In a rodent model, mice were admin-
istered edonerpic maleate or vehicle for 21 days
after cryogenic injury. In this examination, the group
of mice with edonerpic maleate administration in
combination with rehabilitative training exhibited
remarkably greater improvements in a reach-to-grasp
task compared with a control group. Of note, mice
with edonerpic maleate administration without
rehabilitative training showed no improvements
(Fig. 3B).7) These contrasting results suggested that
edonerpic maleate accelerates motor function recov-
ery in a training-dependent fashion. Mice adminis-
tered edonerpic maleate 3 days after cryogenic injury
also showed motor function recovery.7) Collectively,
edonerpic maleate showed rehabilitation accelerating
effects in a rodent cryogenic injury model with
independent dose and its priming timing. Edonerpic
maleate-induced augmentation of functional recovery
was accompanied by the increase in AMPAR-
mediated synaptic currents in the peri-injured brain
region and was prevented by the expression of
GluA1-ctail in these areas, indicating that edonerpic
maleate facilitates training-dependent synaptic deliv-
ery of GluA1-containing AMPARs leading to the
acceleration of functional recovery with edonerpic
maleate (Figs. 3A, B).7) Consistent with the electro-
physiological experiments, the effect of ednonerpic
maleate on functional recovery was blocked in
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CRMP2-deficient mice, suggesting that this effect is
mediated by the binding of ednonerpic maleate to
CRMP2.7) In a non-human primate model, Macaca
fascicularis administered with edonerpic maleate
after the induction of internal capsule hemorrhage
also showed a more drastic recovery in a dexterity
task than the control group (Fig. 3C).7) These trans-
species effects of edonerpic maleate for functional
restoration should be emphasized to translate the
results of a basic study to clinical trials. From 2019 to
today, a Phase-II trial is being conducted to evaluate
the efficacy of edonerpic maleate on restoring motor
function in hemiplegia patients in Japan (JapicCTI-
194633).

Despite the potentials of edonerpic maleate as a
plasticity enhancer, its application to neurodegener-
ative diseases such as PD and amyotrophic lateral
sclerosis (ALS) is challenging. As neurodegenerative
diseases progress, compensatory circuits responsible
for maintaining motor functions may change, and

edonerpic maleate can enhance these circuits to
sustain or augment motor function. However, this
should be combined with therapies to neutralize
potential toxic pathogenic proteins.

Development of a PET tracer to visualize
and quantify the density of AMPAR

in living human brains

As described above, it is crucial to evaluate
AMPAR in the living human brain to elucidate the
biological basis of neuropsychiatric disorders with the
goal of developing novel diagnostics and therapeutics
based on tangible biological evidence. Therefore, a
technology to visualize AMPARs in living human
brains has long been desired, which has led to
extensive efforts to develop PET tracers for AMPAR.
However, many previous efforts have been unsuc-
cessful.141) PET tracers for AMPAR have been
designed and radiolabeled to assess AMPAR-binding
characteristics, which are largely divided into two

Fig. 3. An action of edonerpic maleate (T-817MA) and its efficacy on motor function recovery after brain damage. (A) Facilitation of
edonerpic maleate on training (and experience)-dependent synaptic GluA1-contaning AMPAR trafficking. Edonerpic maleate-
CRMP2 complex dephosphorylates ADF/cofilin, which activates ADF/cofilin and promotes AMPAR trafficking to post-synaptic
membranes, presumably via an increase in actin turnover. (B) In reach-to-grasp task with mice, edonerpic maleate augments motor
function recovery after brain damage in a training-dependent manner. Edonerpic maleate facilitates the synaptic trafficking of GluA1-
containing AMPARs in a peri-injured region. (C) In a non-human primate, edonerpic maleate drastically promotes dexterity of a
paralytic upper limb after internal capsule hemorrhage. This derives from Ref. 7.
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groups, antagonists and potentiators.142) These are
also subdivided into competitive or noncompetitive
for glutamate. Compared with noncompetitive an-
tagonists, fewer tracers based on potentiators have
been reported.141) For example, [11C]HMS011, a
noncompetitive antagonist of AMPAR, reached
clinical evaluation.143),144) However, this tracer was
reported to be unsuitable for practical PET imaging
with a small dynamic range in the brain, which could
be due to its pharmacodynamic behavior as a
substrate of P-glycoprotein, a main efflux transporter
expressed in blood–brain barrier (BBB).144) Further-
more, other AMPAR antagonists have been devel-
oped as PET tracers; however, the development of
these tracers were stopped during preclinical evalua-
tion for the following reasons: 1) the binding patterns
in the brain were likely a combination of regional
blood flow and nonspecific binding, 2) brain uptake
levels were too low to delineate binding potential in
animals, and 3) no specific binding was observed with
PET imaging in animals due to insufficient affinity
in vivo.145),146) Likewise, AMPAR potentiators also
share the same problems with their development,
which showed a rapid decrease in the brain content,
a uniform distribution, and high nonspecific binding
due to their low affinity. In conclusion, an ideal PET
tracer for AMPAR requires outstanding properties
including high BBB penetration, low nonspecific
binding, and high binding potential.

We have recently developed the first PET tracer
for AMPARs, named [11C]K-2, which enables the
visualization and quantification of AMPAR density
in living human brains.147) As candidates of PET
tracer for AMPARs, we focused on noncompetitive
positive allosteric modulators (PAMs), which do not
compete with glutamate for binding to AMPARs and
have high permeability of the BBB. Based on the
chemical structure and affinity, we selected 4-[2-
(phenylsulphonylamino)ethylthio]-2,6-difuluoro-phe-
noxyacetamide (PEPA) for radiolabeling with a
[11C]methyl group. We designed a 11C-labelled
derivative of PEPA and finally produced [11C]K-2
(Fig. 4A).147) Using in vitro and in vivo experimental
approach, we accumulated evidence that [11C]K-2
exhibited specific binding to AMPARs as follows: 1)
K-2 application potentiated AMPAR-mediated syn-
aptic current at a therapeutic dose, as was observed
with PEPA; 2) [11C]K-2 uptake was decreased in the
striatum where AMPAR expression was knocked
down with a short hairpin RNA technique (Fig. 4B);
and 3) off-target binding assays proved that K-2 does
not bind to 160 major proteins expressed in the

central nervous system.147) Furthermore, PET imag-
ing of healthy subjects with [11C]K-2 confirmed its
reversible binding using Logan graphical analysis
(Figs. 4C, D).147) We also conducted a [11C]K-2 PET
study to measure AMPAR density in patients with
mesial temporal lobe epilepsy who were planned to
undergo a surgery to resect the epileptogenic focus
and then quantified AMPAR protein distribution in
surgical specimens. As a result, we detected increased
uptake of [11C]K-2 in the epileptogenic focus, and the
uptake was closely correlated with the local AMPAR
protein distribution in the resected surgical speci-
mens from the same individuals (Figs. 4E, F).147)

These results demonstrated that [11C]K-2 is a potent
PET tracer for AMPARs.

Ongoing clinical trials with [11C]K-2

Approximately one-third of patients with epi-
lepsy are drug resistant, and surgical resection of
the epileptogenic focus is often effective to control
seizures of these patients. However, due to technical
limitations to non-invasively identify the epilepto-
genic focus, there are still few surgical cases. In our
previous exploratory clinical study, we observed
elevated uptake of [11C]K-2 in the epileptogenic
focus of patients with mesial temporal lobe epilepsy.
We are currently conducting a clinical trial to
examine the potential of [11C]K-2 as a diagnostic
tool to locate the epileptogenic focus with high
sensitivity and specificity in comparison with conven-
tional multiple assessments with 18F-fluorodeoxyglu-
cose(FDG)-PET, MRI, magnetoencephalography
(MEG), cerebral blood flow scintigraphy (SPECT),
and video-electroencephalography (EEG) (Table 1).
If this diagnostic method is proven to be superior, it
could increase the number of successful surgical cases.

PET scans of [11C]K-2 are also incorporated in
the clinical trial to examine the efficacy of edonerpic
maleate in patients with stroke. The lack of a
biomarker to evaluate functional recovery in stroke
patients hampers optimization of rehabilitation
methods, and imaging with [11C]K-2 will provide a
biological basis of functional recovery based on
synaptic physiology of stroke patients who undergo
rehabilitation in combination with edonerpic maleate
(Table 1).

Future perspectives

We are currently conducting clinical [11C]K-2
PET studies to measure AMPARs in the brain
among patients with various psychiatric disorders,
including schizophrenia, depression, bipolar disorder,
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and autism and neurological disorders such as
dementia and epilepsy (Table 1). This will provide
us with biological information on these disorders
based on synaptic physiology, which will lead to re-
categorization of neuropsychiatric disorders accord-
ing to the distribution of AMPAR and the develop-
ment of a novel molecular disease concept, “AMPAR
disorders” (Fig. 5). This approach will not only
provide a brand-new diagnostic system but also

enable choice of appropriate treatment options (e.g.,
AMPAR agonist, AMPAR antagonist, focal stim-
ulation) for the morbid conditions based on the
distribution of AMPARs (Fig. 5). Moreover, this
diagnostic system will be able to delineate a more
homogenous group of patients. Although many
clinical trials of psychotropic drugs have failed due
to the heterogeneity of the psychiatric patients
included, the use of [11C]K-2 as a companion

Fig. 4. The preclinical and clinical characteristics of [11C]K-2. (A) [11C]K-2 is synthesized by addition of 11CH3I to the sulfonamide of
PEPA. (B) Summation image of [11C]K-2 over the 20–40min after [11C]K-2 injection in an shRNA-injected rat showing that [11C]K-2
decreased in right striatum (shRNA targeted to AMPAR injected side) compared with left striatum (scrambled construct injected
side). (C) LGA plot showing the ratio between the integrated tissue TAC in the reference region (white matter; CR) and a tissue TAC
(C) (x axis) plotted against the ratio of integrated C with C itself (y axis). A representative LGA plot is presented. The gradient was
computed between 36 and 116min after administration of the radiotracer. This result presents a good linear relationship observed in
the graphical plots, indicating reversible binding kinetics for [11C]K-2. (D) Representative orthogonal parametric PET images of
averaged standardized uptake value ratio (SUVR) using white matter as a reference during 30–50min (SUVR30–50min) after [11C]K-2
injection. (E) Correlations between SUVR30–50min for [11C]K-2 and the biochemical protein amount of AMPARs (OD) in multiple
brain regions from patient 2 (left) and patient 7 (right) with mesial temporal lobe epilepsy (MTLE). These results exhibit a
prominent strong significant positive correlation between the protein amount of AMPAR and SUVR30–50min, demonstrating that
SUVR30–50min (with white matter as a reference region) reflects the regional abundance of AMPARs. (F) SUVR30–50min images of
[11C]K-2 and corresponding MRI images were obtained from a patient with MTLE. White arrowheads indicate the epileptogenic
focus. This derives from Ref. 147.
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diagnostic could dramatically improve the success
rate of future clinical trials because their target
samples will be homogenous.

Moreover, the biological evidence obtained at
the bedside will be used to classify, optimize, or
produce appropriate and valid animal disease models
at the bench in accordance with synaptic phenotypes
in patients, leading to the elucidation of biological
mechanisms of neuropsychiatric disorders such as
dissection of the circuits responsible for pathogenesis.
These findings at the bench will enable the develop-
ment of therapeutics with novel mechanisms of
action, which in turn will bring therapeutic benefits
to patients at the bedside.

In addition to drugs directly acting on
AMPARs, edonerpic maleate, which modulates
trafficking of AMPARs is also a promising therapeu-

tic compound. This compound enhances functional
recovery after brain damage, such as stroke, in a
unique manner that is rehabilitative training depend-
ent. This therapeutic scheme may be applicable to
other motor function disorder (e.g., Parkinson’s
disease, spinal cord injury). Furthermore, edonerpic
maleate may also be effective for psychiatric disorders
in combination with cognitive behavioral therapy.

In summary, AMPAR has enormous potential
as a translational target. Rigorous scientific ap-
proaches will open the door of translational medicine
of AMPARs, which is expected to greatly increase
the quality of life of patients suffering from neuro-
psychiatric disorders.
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