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a b s t r a c t 

In this article, Coronavirus Disease COVID-19 transmission dynamics were studied to examine the util- 

ity of the SEIR compartmental model, using two non-singular kernel fractional derivative operators. This 

method was used to evaluate the complete memory effects within the model. The Caputo–Fabrizio (CF) 

and Atangana–Baleanu models were used predicatively, to demonstrate the possible long–term trajecto- 

ries of COVID-19. Thus, the expression of the basic reproduction number using the next generating matrix 

was derived. We also investigated the local stability of the equilibrium points. Additionally, we examined 

the existence and uniqueness of the solution for both extensions of these models. Comparisons of these 

two epidemic modeling approaches (i.e. CF and ABC fractional derivative) illustrated that, for non-integer 

τ value. The ABC approach had a significant effect on the dynamics of the epidemic and provided new 

perspective for its utilization as a tool to advance research in disease transmission dynamics for critical 

COVID-19 cases. Concurrently, the CF approach demonstrated promise for use in mild cases. Furthermore, 

the integer τ value results of both approaches were identical. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coronaviruses are a vast family of viruses, especially common 

n animals. Coronavirus was named for its corona or crown-like ap- 

earance under the microscope: the virus is surrounded by pointed 

tructures. The severity of earlier coronavirus outbreaks can be 

valuated by reflecting on the serious consequences of the SARS 

Severe Acute Respiratory Syndrome) outbreak, which occured in 

003 [1] . Similarly, the MERS (Middle East Respiratory Syndrome) 

utbreak in 2012 [2] had widespread socioeconomic impacts as 

ell. In December of 2019, a deadly respiratory viral infection ap- 

eared in the citizens of Wuhan, China. The virus was temporar- 

ly dubbed Novel Coronavirus 2019-nCoV. Then, on Feb 11, 2020, 

he virus was officially named by The World Health Organization 

WHO) as Coronavirus Disease 2019 short form–COVID-19, caused 

y the virus SARS-CoV-2, which is 96% identical at the whole- 

enome level to the coronavirus found in bats [3,4] . COVID-19 has 

n extremely high rate of transmission when compared to other 

oronaviruses such as SARS and MERS and other viruses such as 

IV and Ebola. Beginning Jan 23, 2020, the Chinese government 

nacted strict measures for disease containment. This included a 
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ockdown of Wuhan city to prevent the spread of this highly conta- 

ious disease. Finally, on Jan 30, 2020, the WHO declared the out- 

reak a global health emergency. Consequently, on March 11, 2020 

he WHO declared COVID-19 a pandemic. Preliminary reports in- 

icate 27 of 44 patients infected with COVID-19 had exposure to 

he Huanan seafood market in the city of Wuhan, in the Hubei 

rovince of China [5] . COVID-19 was transmitted from the animal 

o human population and is now communicable–spreading through 

uman to human contact. However, the route of transmission into 

he human population, at the start of this event remains unclear. 

here is a long list of proposed studies on the origins of COVID- 

9. Human to human transmission can be caused by respiratory 

roplets and contact with infected individuals. Symptoms include 

ever, expectoration, headache, fatigue, dry cough, dyspnoea and 

rgan failure in critical cases [6] . The incubation period as per the 

HO ranges from 1–14 days. The WHO confirms over many re- 

ions and countries, a total of 70,476,836 laboratory-confirmed in- 

ections of COVID-19 including 1,599,922 deaths worldwide as of 

ec 20, 2020 [7] . Laboratory-confirmed case data is considered the 

old standard, due to the specificity of this diagnostic test: reverse 

ranscription-polymerase chain reaction (RT-PCR) for COVID-19 [8] . 

esearch is consistent in its findings, with human to human trans- 

ission of COVID-19 occurring mainly via symptomatic individ- 

als. At present, with no effective treatment, the most effectual 

https://doi.org/10.1016/j.chaos.2021.110757
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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ay to prevent transmission of the disease is to avoid infection. 

his can be accomplished through personal protective measures. 

pecific disease transmission mitigation effort s include isolation of 

ll patients with flu-like symptoms, cluster investigations, proper 

ask wearing, avoiding close contact with people, and implement- 

ng strict hygiene measures [9] . 

In addition to all data mentioned above, Kilbas et al. [10] pro- 

ides a brief theory and application of various fractional differ- 

ntial equations. Fractional calculus is used to study the dynam- 

cs of real-world problems in various fields of science. A recently 

ublished survey-cum-expository review article [11] provides an 

lementary and introductory overview of fractional calculus for 

onprofessional readers. More specifically, the fields of engineer- 

ng, epidemiology and social sciences have various mathematical 

odeling applications for mitigating public health risks [12–18] . In 

pidemiology, deterministic mathematical models have an impor- 

ant function in investigating the dynamics of infectious diseases. 

ery recently, Srivastava et al. [19] , Srivastava and Saad [20] in- 

estigated fractional calculus and fractal-fractional calculus appli- 

ations in modeling the dynamics of the Ebola virus with three 

ifferent kernels using numerical simulations; also we can see 

he fractional models of Diabetes in [21] . Whereas, a compara- 

ive study of the fractional clock chemical model’s numerical re- 

ults (with a finding of an exact result) was carried out in [22] .

ecently published articles have been formulated on the transmis- 

ion dynamics of COVID-19. However, current research is mainly 

estricted to classical integer-order models, logistic models and de- 

ay or stochastic differential equation models [23–30] . Recently, 

he Atangana–Baleanu fractional derivative was applied in order to 

reate a mathematical model for the dynamics of the novel corona 

irus in [31] and pointed out the need for evaluating the compari- 

on with other derivative operators. 

Often, in epidemiological analysis, diseases caused by viruses 

row exponentially with a fixed reproduction rate. Similarly, the 

rowth curve for the number of COVID-19 diagnoses outside China 

re exponential, as demonstrated by Li et al. [32] , Lau and Khos- 

awipour [33] . The following research [34] supports the likelihood 

hat due to various prevention measures, growth decreased ex- 

onentially. Until present, research has not yet explored compar- 

sons of the CF and ABC fractional derivative operators against 

he transmission dynamics of the COVID-19 SEIR model, which 

as non-singular kernels, the memory effects, crossover proper- 

ies and other important properties when compared to the inte- 

er order derivative. The findings above make the CF fractional 

erivative and ABC fractional derivative promising options for use 

s a mathematical tool in modeling the transmission dynamics 

f COVID-19. 

In the following sections, the COVID-19 SEIR standard incidence 

ompartmental ODE model is extended to the fractional differen- 

ial equation model. This is accomplished by using two different 

on-singular kernel fractional derivatives, both CF and ABC frac- 

ional derivative operators. This approach is used to study the tra- 

ectory of transmission of infection. The expression for the basic 

eproduction number (using the next generating matrix method) is 

erived and local stability of the equilibrium points are analyzed. 

he existence and uniqueness of both COVID-19 fractional models 

re proved via the fixed-point theorem. We also analyze the chang- 

ng trends of the COVID-19 pandemic with graphs for numerical 

imulations of both CF and ABC approach models. Considering the 

imeline for disease onset to clinical recovery and severity of ill- 

ess, we discuss the suitability of using both operators, accompa- 

ied by relative similarities, as well as their differences. Lastly, we 

onclude the article by analyzing the importance of disease trans- 

ission models and discuss their future implications for disease 

ontrol policy development at both national and International lev- 

ls to interrupt or minimize transmission chains in humans. 
2 
. Definitions of the non-singular fractional order derivatives 

In this section, we present the basic definitions of the new frac- 

ional derivatives with exponential and Mittag-Leffler kernels. 

efinition 1. Consider ϒ ∈ H 

1 (b 1 , b 2 ) , b 2 > b 1 , τ ∈ [0 , 1] , then the

aputo-Fabrizio (CF) fractional derivative is defined as [35] : 

F 
1 D 

τ
t [ϒ(t)] = 

F(τ ) 

1 − τ

∫ t 

b 1 

ϒ ′ ( x ) exp 

[ 
− τ

t − x 

1 − τ

] 
dx, (1) 

here F(τ ) is a normalization function satisfying F(0) = F(1) = 1 

f ϒ / ∈ H 

1 (b 1 , b 2 ) then 

 

τ
t (ϒ(t)) = 

τF(τ ) 

1 − τ

∫ t 

b 1 

( ϒ( t) − ϒ(x )) exp 

[ 
− τ

t − x 

1 − τ

] 
dx. (2) 

efinition 2. Let 0 < τ < 1 , then the integral of the fractional or-

er τ for a function ϒ(t) is defined as [35,36] : 

 

τ
t (ϒ(t)) = 

2(1 − τ ) 

(2 − τ ) F(τ ) 
ϒ(t) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

ϒ(s ) ds, t ≥ 0 . 

(3) 

efinition 3. Consider ϒ ∈ H 

1 (b 1 , b 2 ) , b 2 > b 1 , τ ∈ [0 , 1] , then the

tangana-Baleanu derivative in the Caputo sense (ABC) is defined 

s [37] : 

BC 
1 D 

τ
t [ϒ(t)] = 

B(τ ) 

1 − τ

∫ t 

b 1 

ϒ ′ ( x ) E τ
[ 

− τ
( t − x ) τ

1 − τ

] 
dx, (4) 

here E τ represent the Mittag-Leffler function and B(τ ) is a nor- 

alization function satisfying B(0) = B(1) = 1 and B(τ ) = 1 − τ + 

τ
�(τ ) 

. 

efinition 4. [37] Let 0 < τ < 1 , then the integral of the Atangana-

aleanu derivative in the Caputo sense, fractional order τ for a 

unction ϒ(t) is defined as: 

BC 
1 I τt [ϒ(t)] = 

1 − τ

B(τ ) 
ϒ(t) + 

τ

B(τ )�(τ ) 

×
∫ t 

b1 

(t − s ) τ−1 ϒ(s ) ds, t ≥ 0 . (5) 

. Model formulation of COVID-19 

Considering the transmission method is human to human, we 

hose a model for the transmission dynamics of COVID-19 based 

n the SEIR compartmental model (susceptible exposed infected 

ecovery model) with standard incidence [38] . Assuming all indi- 

iduals are susceptible, and that infected individuals can spread 

he disease, this model was represented via the nonlinear system 

elow. 

S ′ (t) = � − βS(t) I(t) 

N 

− mS(t) , 

 

′ (t) = 

βS(t) I(t) 

N 

− (m + ψ) E(t) , 

I ′ (t) = ψE(t) − (m + γ ) I(t) , 

 

′ (t) = γ I(t) − mR (t) . (6) 

The equations above created four compartments, for a total 

umber of individuals labelled at time t . As such, these were cat- 

gorized as ( S(t) ) susceptible individuals whom were not consid- 

red infected but as having the capacity to become infected, (E(t)) 

xposed individuals are those who have been infected but are not 

nfectious, (I(t)) infectious individuals are those who are symp- 

omatic and clinically tested. Lastly, (R (t)) removed individuals are 

hose who have recovered from the disease. The total population 

as denoted by N such that N = S(t) + E(t) + I(t) + R (t) was con-

idered constant with an assumption of birth rate represented as 
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, and death rate as m . All parameters were positive constants de- 

cribed as (� = nN) rate of recruitment of individuals, (β) trans- 

ission rate of the disease upon contact with symptomatic in- 

ected individuals. Moreover, the parameter (ψ 

−1 ) represented the 

atency period of 3 to 5 days and (γ −1 ) represented the infectious 

eriod within the range of 2 to 14 days [39] . 

The ODE model for COVID-19 was extended to the fractional or- 

er model using the CF derivative below: 

CF 
0 D 

τ
t S(t) = � − βS(t) I(t) 

N 

− mS(t) , 

F 
 

D 

τ
t E(t) = 

βS(t) I(t) 

N 

− (m + ψ) E(t) , 

CF 
0 D 

τ
t I(t) = ψE(t) − (m + γ ) I(t) , 

F 
 

D 

τ
t R (t) = γ I(t) − mR (t) . (7) 

Similarly, the ODE model for COVID-19 was extended to the 

ractional order model with Atangana-Baleanu in the Caputo sense 

ABC) fractional derivative provided below: 

ABC 
0 D 

τ
t S(t) = � − βS(t) I(t) 

N 

− mS(t) , 

BC 
 

D 

τ
t E(t) = 

βS(t) I(t) 

N 

− (m + ψ) E(t) , 

ABC 
0 D 

τ
t I(t) = ψE(t) − (m + γ ) I(t) , 

BC 
 

D 

τ
t R (t) = γ I(t) − mR (t) . (8) 

The initial conditions involved throughout the analysis were 

(0) = S 0 ≥ 0 , E(0) = E 0 ≥ 0 , I(0) = I 0 ≥ 0 , and R (0) = R 0 ≥ 0 . 

(9) 

.1. Equilibria and basic reproduction number 

Reproduction number is a crucial figure within the mathemati- 

al analysis of any disease model:- it aids in determining if an epi- 

emic will likely occur. The reproduction number R 0 of the model 

epresents the anticipated sum of infectious cases generated by 

ne infectious individual within a population of susceptible indi- 

iduals. The value of R 0 for the aforementioned models, utilized 

he next-generation matrix method given by Driessche and Wat- 

ough [40] . Findings indicated the relevant Jacobian matrices F 

nd V were associated with the rate of appearance of new infec- 

ions and with net rate out of the corresponding compartments, 

espectively were given by 

 = 

(
0 β
0 0 

)
, V = 

(
m + ψ 0 

−ψ m + γ

)
. (10) 

hus, we find 

 V 

−1 = 

(
β ψ 

( m + ψ ) ( m + γ ) 
β

m + γ
0 0 

)
= B. (11) 

olving for eigen values of B we find, 

1 = 

β ψ 

( m + ψ ) ( m + γ ) 
and λ2 = 0 . (12) 

he reproduction number R 0 is given by the dominant eigenvalue. 

recisely, 

 0 = 

ψβ

(m + ψ)(m + γ ) 
. (13) 

f R 0 < 1 then the disease would likely self-terminate. However, if 

 0 > 1 then the disease would likely prevail and become a pan- 

emic if containment procedures are not initiated. 
3 
We found two biologically meaningful equilibria. One was 

isease-free equilibrium T 0 and an endemic equilibrium (EE) T 1 . 
The disease-free equilibrium (DFE) T 0 of the system (7), (8) was 

ound by taking zero value for the derivatives side, considering 

here are no exposed individuals. 

Thus, by substitution in the aforementioned systems we found, 

 0 = (S 0 , 0 , 0 , 0) = 

(
�

m 

, 0 , 0 , 0 

)
. (14)

The endemic equilibrium points T 1 were derived by considering 

 population of infected individuals and all equations of models 

7), (8) are equal to zero. Effectively denoted in-terms of R 0 as 

 

◦ = 

N 

R 0 

; E ◦ = 

mN ( m + γ ) ( R 0 − 1 ) 

βψ 

;

I ◦ = 

mN ( R 0 − 1 ) 

β
; R 

◦ = 

γ N ( R 0 − 1 ) 

β
. (15) 

.2. Local stability analysis in terms of the basic reproduction 

umber 

In this subsection we worked on the stability analysis of the 

OVID-19 model ( 7,8 ). 

heorem 1. The DFE T 0 of the COVID-19 model ( 7 , 8 ) was locally

symptotically stable if and only if R 0 < 1 . 

roof. For the proof, we obtained at DFE T 0 , the Jacobian matrix 

elow, 

(T 0 ) = 

⎛ 

⎜ ⎝ 

−m 0 −β 0 

0 −( m + ψ ) β 0 

0 ψ −( m + γ ) 0 

0 0 γ −m 

⎞ 

⎟ ⎠ 

. (16) 

The characteristic equation for the Jacobian matrix mentioned 

bove is the form: 

 (λ) = −(λ + m ) 2 P (λ) = 0 , (17) 

 (λ) = λ2 + λ( ( m + ψ ) ( m + γ ) ) 

+ ( 1 − R 0 ) ( m + γ ) ( m + ψ ) ] = 0 . (18) 

For R 0 < 1 the P (λ) equation has all positive coefficients and by 

he criteria of Routh-Hurwitz for the second order polynomial a i > 

 for i = 0 , 1 , 2 . The DFE T 0 of the COVID-19 model ( 7,8 ) is locally

symptotically stable for R 0 < 1 . �

heorem 2. The EE T 1 of the COVID-19 model ( 7 , 8 ) is locally asymp-

otically stable for R 0 > 1 and unstable for R 0 < 1 . 

roof. For the proof, we obtain at EE T 1 , the Jacobian matrix be-

ow, 

(T 1 ) = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

−βI ◦

N 
− m 0 −βS ◦

N 
0 

βI ◦

N 
−( m + ψ ) 

βS ◦

N 
0 

0 ψ −( m + γ ) 0 

0 0 γ −m 

⎞ 

⎟ ⎟ ⎟ ⎠ 

. (19) 

The characteristic equation for the Jacobian matrix mentioned 

bove is the form: 

(λ) = −(λ + m ) 2 D (λ) = 0 , (20) 

 (λ) = λ3 + a 1 λ
2 + a 2 λ + a 3 = 0 , (21) 
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a (22) 

a (23) 

a (24) 

ositive coefficients by the criteria of Routh-Hurwitz for the third order 

p odel ( 7,8 ) is locally asymptotically stable for R 0 > 1 and unstable for 

R

4 der with CF derivative 

el into consideration. The following section focuses on investigation of 

b forementioned model (7) by applying the fixed-point theory. 

l integral [36] , our findings include the following; 

E

R (25) 

T lem yield the following results; 

− τ ) 

∫ t 

0 

{ 

� − βS ( ζ ) I( ζ ) 

N 

− mS ( ζ )) 
} 

dζ , 

E
 τ

2 − τ ) 

∫ t 

0 

{ 

βS(ζ ) I(ζ ) 

N 

− (m + ψ) E(ζ ) 
} 

dζ , 

τ ) 

∫ t 

0 

{ 

ψE(ζ ) − (m + γ ) I(ζ ) 
} 

dζ , 

R I(ζ ) − mR (ζ ) } dζ . (26) 

C

C

C (27) 

T

0

t . 

P

| ) 

∣∣∣
∣∣∣. (28) 

A

| ) || , 

(29) 
here, 

 1 = (2 m + ψ + γ ) + m R 0 . 

 2 = m (2 m + ψ + γ ) R 0 . 

 3 = 

βψm 

R 0 
( R 0 − 1 ) . 

It is clearly shown that for R 0 > 1 the above equation has all p

olynomial a 1 a 2 > a 3 for i = 0 , 1 , 2 , 3 . The EE T 1 of the COVID-19 m

 0 < 1 . �

. Existence and uniqueness of COVID-19 model of fractional or

In this article, we have taken a nonlinear fractional order mod

oth the existence and uniqueness of the solution concerning the a

The CF model is represented by Eq. (7) in applying the fractiona

S(t) − S(0) = 

CF 
0 I τt 

{ 

� − βS(t) I(t) 

N 

− mS(t) 
} 

, 

(t) − E(0) = 

CF 
0 I τt 

{ 

βS(t) I(t) 

N 

− (m + ψ) E(t) 
} 

, 

I(t) − I(0) = 

CF 
0 I τt 

{ 

ψE(t) − (m + γ ) I(t) 
} 

, 

 (t) − R (0) = 

CF 
0 I τt 

{ 

γ I(t) − mR (t) 
} 

. 

he notations [36] , when organized within the context of the prob

S(t) − S(0) = 

2(1 − τ ) 

F(τ )(2 − τ ) 

{ 

� − βS(t) I(t) 

N 

− mS(t) 
} 

+ 

2 τ

F(τ )(2 

(t) − E(0) = 

2(1 − τ ) 

F(τ )(2 − τ ) 

{ 

βS(t) I(t) 

N 

− (m + ψ) E(t) 
} 

+ 

2

F(τ )(

I(t) − I(0) = 

2(1 − τ ) 

F(τ )(2 − τ ) 

{ 

ψE(t) − (m + γ ) I(t) 
} 

+ 

2 τ

F(τ )(2 −

 (t) − R (0) = 

2(1 − τ ) 

F(τ )(2 − τ ) 
{ γ I(t) − mR (t) } + 

2 τ

F(τ )(2 − τ ) 

∫ t 

0 

{ γ
We interpret for clarity; 

C 1 (t, S) = � − βS(t) I(t) 

N 

− mS(t) , 

 2 (t, E) = 

βS(t) I(t) 

N 

− (m + ψ) E(t) , 

 3 (t, A ) = ψE(t) − (m + γ ) I(t) , 

 4 (t, C) = γ I(t) − mR (t) . 

heorem 3. If the inequality given below holds 

 ≤
(
βa 

N 

+ m 

)
< 1 , 

hen, the kernel C 1 justifies the Lipschitz condition and contraction

roof. Assume S and S 1 are two functions, with that we have 

| C 1 (t, S) − C 1 (t, S 1 ) || = 

∣∣∣
∣∣∣ − β(S(t) − S(t 1 )) I(t) 

N 

− m (S(t) − S(t 1 )

pplying the triangular inequality on Eq. (28) gives 

| C 1 (t, S) − C 1 (t, S 1 ) || ≤
∣∣∣∣∣∣βI(t)(S(t) − S(t 1 )) 

N 

∣∣∣∣∣∣ + || m (S(t) − S(t 1 )

≤
[ 
β|| I(t) || 

N 

+ m 

] 
|| (S(t) − S(t 1 )) || , 

≤
[ 
βa 

N 

+ m 

] 
|| S(t) − S(t 1 ) || , 

≤ θ1 ||{ S(t) − S(t 1 ) }|| . 

4 
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L t) || ≤ b are bounded functions, we get 

| (30) (
βa 
N + m 

)
< 1 provides C 1 , which satisfies contraction. 

raction can be performed and written as shown; 

|

| (31) 

T

ζ , 

E ζ , 

, 

R ζ . (32) 

W

ζ , 

ζ , 

, 

R ζ . (33) 

A

S (34) 

t e of successive terms are expressed as: 

) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 1 (ζ , S n −1 ) − C 1 (ζ , S n −2 )) dζ , 

ω ) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 2 (ζ , E n −1 ) − C 2 (ζ , E n −2 )) dζ , 

 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 3 (ζ , I n −1 ) − C 3 (ζ , I n −2 )) dζ , 

)) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 4 (ζ , R n −1 ) − C 4 (ζ , R n −2 )) dζ . (35) 

I⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(36) 

A

| , S n −2 )) + 

2 τ

F(τ )(2 − τ ) 

∫ t 

0 

(C 1 (ζ , S n −1 ) − C 1 (ζ , S n −2 )) dζ
∣∣∣
∣∣∣. (37) 

A

|  

2 τ

F(τ )(2 − τ ) 

∣∣∣
∣∣∣
∫ t 

0 

( C 1 ( ζ , S n −1 ) − C 1 (ζ , S n −2 )) dζ
∣∣∣
∣∣∣. (38) 

S

|
) 
θ1 

∫ t 

|| S n −1 − S n −2 || dζ . (39) 
et θ1 = 

βa 
N + m , where || S(t) || ≤ s, || R (t) || ≤ r, || I(t) || ≤ a and || E(

| C 1 (t, S) − C 1 (t, S 1 ) || ≤ θ1 || S(t) − S(t 1 ) || . 
Hence, the Lipschitz condition is obtained for kernel C 1 and 0 ≤
Similarly, for the other kernels the Lipschitz condition and cont

| C 2 (t, E) − C 2 (t, E 1 ) || ≤ θ2 || E(t) − E(t 1 ) || , 
|| C 3 (t, I) − C 2 (t, I 1 ) || ≤ θ3 || I(t) − I(t 1 ) || , 
| C 4 (t, R ) − C 2 (t, R 1 ) || ≤ θ4 || R (t) − R (t 1 ) || . 
aking the aforementioned kernels Eq. (26) becomes 

S(t) = S(0) + 

2(1 − τ ) 

(2 − τ ) F(τ ) 
C 1 (t, S) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 1 (ζ , S)) d

(t) = E(0) + 

2(1 − τ ) 

(2 − τ ) F(τ ) 
C 2 (t, E) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 2 (ζ , E)) d

I(t) = I(0) + 

2(1 − τ ) 

F(τ )(2 − τ ) 
C 3 (t, I) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 3 (ζ , I)) dζ

 (t) = R (0) + 

2(1 − τ ) 

F(τ )(2 − τ ) 
C 4 (t, R ) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 4 (ζ , R )) d

e focus on the following recursive formulae, given as 

S n (t) = 

2(1 − τ ) 

(2 − τ ) F(τ ) 
C 1 (t, S n −1 ) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 1 (ζ , S n −1 )) d

E n (t) = 

2(1 − τ ) 

(2 − τ ) F(τ ) 
C 2 (t, E n −1 ) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 2 (ζ , E n −1 )) d

I n (t) = 

2(1 − τ ) 

(2 − τ ) F(τ ) 
C 3 (t, I n −1 ) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 3 (ζ , I n −1 )) dζ

 n (t) = 

2(1 − τ ) 

(2 − τ ) F(τ ) 
C 4 (t, R n −1 ) + 

2 τ

(2 − τ ) F(τ ) 

∫ t 

0 

(C 4 (ζ , R n −1 )) d

long with 

 0 (t) = S(0) , E 0 (t) = E(0) , I 0 (t) = I(0) , R 0 (t) = R (0) . 

he initial conditions. The subsequent expressions for the differenc

λn (t) = S n (t) − S n −1 (t) = 

2(1 − τ ) 

(2 − τ ) F(τ ) 
(C 1 (t, S n −1 ) − C 1 (t, S n −2 )

 n (t)) = E n (t) − E n −1 (t) = 

2(1 − τ ) 

(2 − τ ) F(τ ) 
(C 2 (t, E n −1 ) − C 2 (t, E n −2 )

ξn (t) = I n (t) − I n −1 (t) = 

2(1 − τ ) 

(2 − τ ) F(τ ) 
(C 3 (t, I n −1 ) − C 3 (t, I n −2 )) +

ηn (t) = R n (t) − R n −1 (t) = 

2(1 − τ ) 

(2 − τ ) F(τ ) 
(C 4 (t, R n −1 ) − C 4 (t, R n −2 

t is obvious that 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S n (t) = 

∑ n 
i =1 ω i (t) , 

E n (t) = 

∑ n 
i =1 λi (t) , 

I n (t) = 

∑ n 
i =1 ξi (t) , 

R n (t) = 

∑ n 
i =1 ηi (t) . 

pplying the norm on Eq. (35) , yields; 

| λn (t) || = || S n (t) − S n −1 (t) || = 

∣∣∣
∣∣∣ 2(1 − τ ) 

(2 − τ ) F(τ ) 
(C 1 (t, S n −1 ) − C 1 (t

pplying the triangular inequality, Eq. (37) reduces to 

| S n (t) − S n −1 (t) || ≤ 2(1 − τ ) 

(2 − τ ) F(τ ) 

∣∣∣
∣∣∣(C 1 (t, S n −1 ) − C 1 (t, S n −2 )) 

∣∣∣
∣∣∣ +

ince, the kernel C 1 satisfies the Lipschitz condition, we have 

| S n (t) − S n −1 (t) || ≤ 2(1 − τ ) 

(2 − τ ) F(τ ) 
θ1 || S n −1 − S n −2 || + 

2 τ

(2 − τ ) F(τ
 0 

5 
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T

|
 

(ζ ) || dζ . (40) 

S

|
 −1 (ζ ) || dζ , 

 

(ζ ) || dζ , 

1 (ζ ) || dζ . (41) 

: 

T can find a t 0 , such that: 

P ctions S(t) , E(t ) , I(t ) and R (t ) are bounded and the kernels justify the 

L recursive method: 

 

| , 

 , 

] 
n . (42) 

T r the COVID-19 model (7) . For the sake of clarity, the above functions 

a

E

R (43) 

T

|
∫ t 

0 

(C 1 (ζ , S) − C 1 (ζ , S n −1 )) dζ
∣∣∣∣∣∣, 

 

∫ t 

0 

|| (C 1 (ζ , S) − C 1 (ζ , S n −1 )) || dζ , 

 

|| t. (44) 

A

| (45) 

A  0 . 

 �

assuming S 1 (t) , E 1 (t) , I 1 (T ) and R 1 (t) are a distinct set of solutions 

p

S

 t 

0 

(C 1 (ζ , S) − C 1 (ζ , S 1 )) dζ . (46) 

C d taking norm on Eq. (46) , prompts to the inequality given below: 

| 0 . (47) 

T(
herefore, we conclude; 

| λn (t) || ≤ 2(1 − τ ) 

(2 − τ ) F(τ ) 
θ1 || λn −1 (t) || + 

2 τ

(2 − τ ) F(τ ) 
θ1 

∫ t 

0 

|| λn −1

imilarly, we gain the following results 

| ω n (t)) || ≤ 2(1 − τ ) 

(2 − τ ) F(τ ) 
θ2 || ω n −1 (t) || + 

2 τ

F(τ )(2 − τ ) 
θ2 

∫ t 

0 

|| ω n

|| ξn (t) || ≤ 2(1 − τ ) 

(2 − τ ) F(τ ) 
θ3 || ξn −1 (t) || + 

2 τ

F(τ )(2 − τ ) 
θ3 

∫ t 

0 

|| ξn −1

|| ηn (t) || ≤ 2(1 − τ ) 

(2 − τ ) F(τ ) 
θ4 || ηn −1 (t) || + 

2 τ

F(τ )(2 − τ ) 
θ4 

∫ t 

0 

|| ηn −

�

Considering the above results, we present the following theorem

heorem 4. The COVID-19 fractional model (7) has a solutions if we 

2(1 − τ ) 

(2 − τ ) F(τ ) 
θ1 + 

2 τ

(2 − τ ) F(τ ) 
θ1 t 0 < 1 . 

roof. Considering Eqs. (40) and (41) , along with the fact that fun

ipschitz condition. We have the following relation employing the 

|| λn (t) || ≤ || S n (0) || 
[ (

2(1 − τ ) 

F( τ )( 2 − τ ) 
θ1 

)
+ 

(
2 τ

F( τ )( 2 − τ ) 
θ1 t 

)] 
n ,

| ω n (t)) || ≤ || E n (0) || 
[ (

2(1 − τ ) 

F( τ )( 2 − τ ) 
θ2 

)
+ 

(
2 τ

F( τ )( 2 − τ ) 
θ2 t 

)] 
n 

|| ξn (t) || ≤ || A n (0) || 
[ (

2(1 − τ ) 

F( τ )( 2 − τ ) 
θ3 

)
+ 

(
2 τ

F( τ )( 2 − τ ) 
θ3 t 

)] 
n

|| ηn (t) || ≤ || C n (0) || 
[ (

2(1 − τ ) 

2 F( τ ) − τF(τ ) 
θ4 

)
+ 

(
2 τ

F( τ )( 2 − τ ) 
θ4 t 

)

hus, we demonstrate solutions exist and also satisfy continuity, fo

re the solution of Eq. (7) . We suppose 

S(t) − S(0) = S n (t) − G n (t) , 

(t) − E(0) = E n (t) − H n (t) , 

I(t) − I(0) = I n (t) − J n (t) , 

 (t) − C(0) = R n (t) − K n (t) . 

herefore, we get 

| G n (t) || = 

∣∣∣∣∣∣ 2(1 − τ ) 

F(τ )(2 − τ ) 
(C 1 (t, S) − C 1 (t, S n −1 )) + 

2 τ

F(τ )(2 − τ ) 

≤ 2(1 − τ ) 

(2 − τ ) F(τ ) 
|| (C 1 (t, S) − C 1 (t, S n −1 )) || + 

2 τ

(2 − τ ) F(τ )

≤ 2(1 − τ ) 

(2 − τ ) F(τ ) 
θ1 || S − S n −1 || + 

2 τ

(2 − τ ) F(τ ) 
θ1 || S − S n −1

fter repeating same process, then at t 0 we obtained 

| G n (t) || ≤
(

2(1 − τ ) 

F(τ )(2 − τ ) 
+ 

2 τ

F(τ )(2 − τ ) 
t 0 

)
n +1 θn +1 

1 a. 

s n approaches infinity, taking limit on Eq. (45) we get || G n (t) || →
Similarly, we find || H n (t) → 0 || , || J n (t) → 0 || and || K n (t) → 0 || .
For clarity on uniqueness for the solutions of the model (7) , 

ertaining to Eq. (7) , then 

(t) − S 1 (t) = 

2(1 − τ ) 

(2 − τ ) F(τ ) 
(C 1 (t, S) − C 1 (t, S 1 )) + 

2 τ

(2 − τ ) F(τ ) 

∫

onsidering the fact that kernel satisfies the Lipschitz condition an

| S(t) − S 1 (t) || 
(

1 − 2(1 − τ ) 

2 F(τ ) − τF(τ ) 
θ1 − 2 τ

2 F( τ ) − τF(τ ) 
θ1 t 

)
≤

heorem 5. If the following inequality holds 

1 − 2(1 − τ ) 

2 F(τ ) − τF(τ ) 
θ1 − 2 τ

2 F(τ ) − τF(τ ) 
θ1 t 

)
> 0 . 
6 
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t

P

| 0 . (48) 

S

| (49) 

T

S (50) 

I

E

(51) 

W 19 model (7) . �

5 gana-Baleanu derivative in Caputo sense (ABC). 

lution for model (6) with ABC fractional derivative operator represented 

b

 model can be written as follows: 

E

R (52) 

T lem yield the following results; 

 − ζ ) τ−1 
{ 

� − βS (ζ ) I(ζ ) 

N 

− mS (ζ )) 
} 

dζ , 

E
t 

(t − ζ ) τ−1 
{ 

βS(ζ ) I(ζ ) 

N 

− (m + ψ) E(ζ ) 
} 

dζ , 

ζ ) τ−1 
{ 

ψE(ζ ) − (m + γ ) I(ζ ) 
} 

dζ , 

R I(ζ ) − mR (ζ ) } dζ . (53) 

C

C

C (54) 

T

0

t . 

P

| ) 

∣∣∣∣∣∣. (55) 

A

| ) || , 
hen a unique solution for the COVID-19 model (7) exists. 

roof. With the condition that (47) holds, taking 

| S(t) − S 1 (t) || 
(

1 − 2(1 − τ ) 

2 F(τ ) − τF(τ ) 
θ1 − 2 τ

2 F( τ ) − τF(τ ) 
θ1 t 

)
≤

o, we obtain 

| S(t) − S 1 (t) || = 0 . 

hen, 

(t) = S 1 (t) . 

n the same manner, we gain 

(t) = E 1 (t) , 

I(t) = I 1 (t) , 

R (t) = R 1 (t) . 

hich verifies the proof for uniqueness of the solutions for COVID-

. Existence and uniqueness of solution for COVID-19 with Atan

In this section we will prove the existence and uniqueness of so

y Eq. (8) . 

Implementing the fractional integral to both sides of Eq. (8) , the

S(t) − S(0) = 

ABC 
0 I τt 

{ 

� − βS(t) I(t) 

N 

− mS(t) 
} 

, 

(t) − E(0) = 

ABC 
0 I τt 

{ 

βS(t) I(t) 

N 

− (m + ψ) E(t) 
} 

, 

I(t) − I(0) = 

ABC 
0 I τt 

{ 

ψE(t) − (m + γ ) I(t) 
} 

, 

 (t) − R (0) = 

ABC 
0 I τt 

{ 

γ I(t) − mR (t) 
} 

. 

he notations [37] , when organized within the context of the prob

S(t) − S(0) = 

1 − τ

B(τ ) 

{ 

� − βS(t) I(t) 

N 

− mS(t) 
} 

+ 

τ

B(τ )�(τ ) 

∫ t 

0 

(t

(t) − E(0) = 

1 − τ

B(τ ) 

{ 

βS(t) I(t) 

N 

− (m + ψ) E(t) 
} 

+ 

τ

B(τ )�(τ ) 

∫ 
0 

I(t) − I(0) = 

1 − τ

B(τ ) 

{ 

ψE(t) − (m + γ ) I(t) 
} 

+ 

τ

B(τ )�(τ ) 

∫ t 

0 

(t −

 (t) − R (0) = 

1 − τ

B(τ ) 
{ γ I(t) − mR (t) } + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 { γ
We interpret for clarity; 

C̄ 1 (t, S) = � − βS(t) I(t) 

N 

− mS(t) , 

 ̄2 (t, E) = 

βS(t) I(t) 

N 

− (m + ψ) E(t) , 

 ̄3 (t, A ) = ψE(t) − (m + γ ) I(t) , 

 ̄4 (t, C) = γ I(t) − mR (t) . 

heorem 6. If the inequality given below holds 

 ≤
(
β ā 

N 

+ m 

)
< 1 , 

hen, the kernel C̄ 1 justifies the Lipschitz condition and contraction

roof. Assume S and S 1 are two functions, with that we have 

| ̄C 1 (t, S) − C̄ 1 (t, S 1 ) || = 

∣∣∣∣∣∣ − β(S(t) − S(t 1 )) I(t) 

N 

− m (S(t) − S(t 1 )

pplying the triangular inequality on Eq. (55) gives 

| ̄C 1 (t, S) − C̄ 1 (t, S 1 ) || ≤
∣∣∣
∣∣∣βI(t)(S(t) − S(t 1 )) 

N 

∣∣∣
∣∣∣ + || m (S(t) − S(t 1 )
7 
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(56) 

|| E(t) || ≤ b̄ are bounded functions, we get 

| (57) (
β ā 
N + m 

)
< 1 provides C̄ 1 , which satisfies contraction. 

ndition and contraction. 

ζ , 

E  dζ , 

, 

R  dζ . (58) 

W

ζ , 

ζ , 

ζ , 

R  dζ . (59) 

A

S (60) 

s are expressed as: 

τ

)�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( ̄C 1 (ζ , S n −1 ) − C̄ 1 (ζ , S n −2 )) dζ , 

ω
τ

)�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( ̄C 2 (ζ , E n −1 ) − C̄ 2 (ζ , E n −2 )) dζ , 

�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( ̄C 3 (ζ , I n −1 ) − C̄ 3 (ζ , I n −2 )) dζ , 

τ

τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( ̄C 4 (ζ , R n −1 ) − C̄ 4 (ζ , R n −2 )) dζ . (61) 

I⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(62) 

A

|  + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( ̄C 1 (ζ , S n −1 ) − C̄ 1 (ζ , S n −2 )) dζ
∣∣∣
∣∣∣. (63) 

A

|
(τ ) 

∣∣∣∣∣∣
∫ t 

(t − ζ ) τ−1 ( ̄C 1 (ζ , S n −1 ) − C̄ 1 (ζ , S n −2 )) dζ
∣∣∣∣∣∣. (64) 
≤
[ 
β|| I(t) || 

N 

+ m 

] 
|| (S(t) − S(t 1 )) || , 

≤
[ 
β ā 

N 

+ m 

] 
|| S(t) − S(t 1 ) || , 

≤ θ̄1 ||{ S(t) − S(t 1 ) }|| . 
Let θ̄1 = 

β ā 
N + m , where || S(t) || ≤ s̄ , || R (t) || ≤ r̄ , || I(t) || ≤ ā and 

| ̄C 1 (t, S) − C̄ 1 (t, S 1 ) || ≤ θ̄1 || S(t) − S(t 1 ) || . 
Hence, the Lipschitz condition is obtained for kernel C̄ 1 and 0 ≤
Similarly, the other kernels C̄ 2 , C̄ 3 and C̄ 3 satisfy the Lipschitz co

Taking the aforementioned kernels Eq. (53) becomes 

S(t) = S(0) + 

1 − τ

B(τ ) 
C̄ 1 (t, S) + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( C̄ 1 (ζ , S)) d

(t) = E(0) + 

1 − τ

B(τ ) 
C̄ 2 (t, E) + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( C̄ 2 (ζ , E))

I(t) = I(0) + 

1 − τ

B(τ ) 
C̄ 3 (t, I) + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( C̄ 3 (ζ , I)) dζ

 (t) = R (0) + 

1 − τ

B(τ ) 
C̄ 4 (t, R ) + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( C̄ 4 (ζ , R ))

e focus on the following recursive formulae, given as 

S n (t) = 

1 − τ

B(τ ) 
C̄ 1 (t, S n −1 ) + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( C̄ 1 (ζ , S n −1 )) d

E n (t) = 

1 − τ

B(τ ) 
C̄ 2 (t, E n −1 ) + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( C̄ 2 (ζ , E n −1 )) d

I n (t) = 

1 − τ

B(τ ) 
C̄ 3 (t, I n −1 ) + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( C̄ 3 (ζ , I n −1 )) d

 n (t) = 

1 − τ

B(τ ) 
C̄ 4 (t, R n −1 ) + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ−1 ( C̄ 4 (ζ , R n −1 ))

long with initial conditions: 

 0 (t) = S(0) , E 0 (t) = E(0) , I 0 (t) = I(0) , R 0 (t) = R (0) . 

The subsequent expressions for the difference of successive term

λ̄n (t) = S n (t) − S n −1 (t) = 

1 − τ

B(τ ) 
( ̄C 1 (t, S n −1 ) − C̄ 1 (t, S n −2 )) + B(τ

¯  n (t)) = E n (t) − E n −1 (t) = 

1 − τ

B(τ ) 
( ̄C 2 (t, E n −1 ) − C̄ 2 (t, E n −2 )) + B(τ

ξ̄n (t) = I n (t) − I n −1 (t) = 

1 − τ

B(τ ) 
( ̄C 3 (t, I n −1 ) − C̄ 3 (t, I n −2 )) + 

τ

B(τ )

η̄n (t) = R n (t) − R n −1 (t) = 

1 − τ

B(τ ) 
( ̄C 4 (t, R n −1 ) − C̄ 4 (t, R n −2 )) + B(

t is obvious that 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S n (t) = 

∑ n 
i =1 ω̄ i (t) , 

E n (t) = 

∑ n 
i =1 λ̄i (t) , 

I n (t) = 

∑ n 
i =1 ξ̄i (t) , 

R n (t) = 

∑ n 
i =1 η̄i (t) . 

pplying the norm on Eq. (61) , yields; 

| ̄λn (t) || = || S n (t) − S n −1 (t) || = 

∣∣∣
∣∣∣1 − τ

B(τ ) 
( ̄C 1 (t, S n −1 ) − C̄ 1 (t, S n −2 ))

pplying the triangular inequality, Eq. (63) reduces to 

| S n (t) − S n −1 (t) || ≤ 1 − τ

B(τ ) 

∣∣∣∣∣∣( ̄C 1 (ζ , S n −1 ) − C̄ 1 (ζ , S n −2 )) 

∣∣∣∣∣∣ + 

τ

B(τ )�
 0 

8 
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S

| ζ ) τ−1 || S n −1 − S n −2 || dζ . (65) 

T

|
 

(ζ ) || dζ . (66) 

S

|
 −1 (ζ ) || dζ , 

1 (ζ ) || dζ , 

1 (ζ ) || dζ . (67) 

: 

T can find a t 0 , such that: 

f

P  functions S(t) , E(t ) , I(t ) and R (t) are bounded and the kernels justify 

t the recursive method: 

|

(68) 

W COVID-19 model (8) . For the sake of clarity, the above functions are the 

s

E

R (69) 

T

|  

τ−1 ( ̄C 1 (ζ , S) − C̄ 1 (ζ , S n −1 )) dζ
∣∣∣
∣∣∣, 

) τ−1 || ( ̄C 1 (ζ , S) − C̄ 1 (ζ , S n −1 )) || dζ , 

(70) 

A

| (71) 

A  0 . 

 �

assuming S 1 (t) , E 1 (t) , I 1 (T ) and R 1 (t) are a distinct set of solutions 

p

S −1 ( ̄C 1 (ζ , S) − C̄ 1 (ζ , S 1 )) dζ . (72) 
ince, the kernel C̄ 1 satisfies the Lipschitz condition, we have 

| S n (t) − S n −1 (t) || ≤ 1 − τ

B(τ ) 
θ̄1 || S n −1 − S n −2 || + 

τ

B(τ )�(τ ) 
θ̄1 

∫ t 

0 

(t −

herefore, we conclude; 

| ̄λn (t) || ≤ 1 − τ

B(τ ) 
θ̄1 || ̄λn −1 (t) || + 

τ

B(τ )�(τ ) 
θ̄1 

∫ t 

0 

(t − ζ ) τ−1 || ̄λn −1

imilarly, we gain the subsequent results 

| ̄ω n (t)) || ≤ 1 − τ

B(τ ) 
θ̄2 || ̄ω n −1 (t) || + 

τ

B(τ )�(τ ) 
θ̄2 

∫ t 

0 

(t − ζ ) τ−1 || ̄ω n

|| ̄ξn (t) || ≤ 1 − τ

B(τ ) 
θ̄3 || ̄ξn −1 (t) || + 

τ

B(τ )�(τ ) 
θ̄3 

∫ t 

0 

(t − ζ ) τ−1 || ̄ξn −

|| ̄ηn (t) || ≤ 1 − τ

B(τ ) 
θ̄4 || ̄ηn −1 (t) || + 

τ

B(τ )�(τ ) 
θ̄4 

∫ t 

0 

(t − ζ ) τ−1 || ̄ηn −

�

Considering the above results, we present the following theorem

heorem 7. The COVID-19 fractional model (8) has a solutions if we 

1 − τ

B(τ ) 
θ̄i + 

t τ0 
B(τ )�(τ ) 

θ̄i < 1 

or i = 1,2,3,4. 

roof. Considering the Eqs. (66) and (67) , along with the fact that

he Lipschitz condition. We have the following relation employing 

|| ̄λn (t) || ≤ || S n (0) || 
[ (

1 − τ

B( τ ) 
θ̄1 

)
+ 

(
t τ0 

B( τ )�( τ ) 
θ̄1 

)] 
n , 

| ̄ω n (t)) || ≤ || E n (0) || 
[ (

1 − τ

B( τ ) 
θ̄2 

)
+ 

(
t τ0 

B( τ )�( τ ) 
θ̄2 

)] 
n , 

|| ̄ξn (t) || ≤ || A n (0) || 
[ (

1 − τ

B( τ ) 
θ̄3 

)
+ 

(
t τ0 

B( τ )�( τ ) 
θ̄3 

)] 
n , 

|| ̄ηn (t) || ≤ || C n (0) || 
[ (

1 − τ

B( τ ) 
θ̄4 

)
+ 

(
t τ0 

B( τ )�( τ ) 
θ̄4 

)] 
n . 

e demonstrate solutions exist and also satisfy continuity, for the 

olution of Eq. (8) . We suppose 

S(t) − S(0) = S n (t) − Ḡ n (t) , 

(t) − E(0) = E n (t) − H̄ n (t) , 

I(t) − I(0) = I n (t) − J̄ n (t) , 

 (t) − C(0) = R n (t) − K̄ n (t) . 

herefore, we get 

| ̄G n (t) || = 

∣∣∣
∣∣∣1 − τ

B(τ ) 
( ̄C 1 (t, S) − C̄ 1 (t, S n −1 )) + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ )

≤ 1 − τ

B(τ ) 
|| ( ̄C 1 (t, S) − C̄ 1 (t, S n −1 )) || + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ

≤ 1 − τ

B(τ ) 
θ1 || S − S n −1 || + 

t τ

B(τ )�(τ ) 
θ̄1 || S − S n −1 || . 

fter repeating same process, then at t 0 we obtained 

| ̄G n (t) || ≤
(

1 − τ

B(τ ) 
+ 

t τ0 
B(τ )�(τ ) 

)
n +1 θ̄n +1 

1 M. 

s n approaches infinity, taking limit on Eq. (71) we get || ̄G n (t) || →
Similarly, we find || ̄H n (t) → 0 || , || ̄J n (t) → 0 || and || ̄K n (t) → 0 || .
For clarity on uniqueness for the solutions of the model (8) , 

ertaining to Eq. (8) , then 

(t) − S 1 (t) = 

1 − τ

B(τ ) 
( ̄C 1 (t, S) − C̄ 1 (t, S 1 )) + 

τ

B(τ )�(τ ) 

∫ t 

0 

(t − ζ ) τ
9 
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Fig. 1. Numerical simulation for the new Coronavirus Disease COVID-19 model involving the Caputo-Fabrizio derivative given by Eq. (7) for several values of τ, arbitrarily 

chosen. 
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M

i

f

f  
onsidering the fact that kernel satisfies the Lipschitz condition 

nd taking norm on Eq. (72) , prompts to the inequality: 

| S(t) − S 1 (t) || 
(

1 − 1 − τ

B(τ ) 
θ̄1 − t τ

B(τ )�(τ ) 
θ̄1 

)
≤ 0 . (73) 

heorem 8. If the following inequality holds 

1 − 1 − τ

B(τ ) 
θ̄1 − t τ

B(τ )�(τ ) 
θ̄1 

)
> 0 . 

hen a unique solution for the COVID-19 model (8) exists. 

roof. With the condition that (73) holds, taking 

| S(t) − S 1 (t) || 
(

1 − 1 − τ

B(τ ) 
θ̄1 − t τ

B(τ )�(τ ) 
θ̄1 

)
≤ 0 . (74) 

o, we obtain 

| S(t) − S 1 (t) || = 0 . (75) 

hen, 

(t) = S 1 (t) . (76) 
10 
n the same manner, we gain 

(t) = E 1 (t) , 

I(t) = I 1 (t) , 

R (t) = R 1 (t) . (77) 

hich verifies the proof for uniqueness of the solutions for COVID- 

9 model (8) . �

. Numerical results and discussion 

In this section, we provide the numerical simulations using 

atlab for both CF approach and ABC approach model mentioned 

n Eqs. (7) and (8) respectively. Next, we compare and discuss the 

ollowing results. 

Caputo-Fabrizio sense. 

Using Wuhan City as an example, we created the following 

ramework: � = 0 . 36 , β = 2 . 5 − 5 , m = 0 . 30 , ψ represents the
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Fig. 2. Numerical simulation for the new Coronavirus Disease COVID-19 model involving the Atangana-Baleanu derivative given by Eq. (8) for several values of τ, arbitrarily 

chosen. 
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v

t  
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f

τ
i
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t

w

v

t

i

m

t

a

d

ean latency period of COVID-19 in humans, considering 14 days, 

 = 1 / 14 , γ represents the infectious period in days. Consider- 

ng 5 days, γ = 1 / 5 . The initial conditions are given by S(0) =
08 × 10 5 , E(0) = 2 × 10 5 , I(0) = 278 and R (0) = 0 , all values were

ssumed. The dynamics of the new Coronavirus Disease COVID-19 

odel involving the non-singular fractional derivative of Caputo- 

abrizio type is given by Eq. (7) for various values of τ ∈ (0 , 1] ,

rbitrarily chosen, are plotted in Fig. 1 a–d. 

Atangana-Baleanu-Caputo sense. 

Again, using Wuhan City as an example we created the follow- 

ng: � = 0 . 36 , β = 2 . 5 − 5 , m = 0 . 30 , ψ represents the mean la-

ency period of COVID-19 in humans, considering 14 days, ψ = 

 / 14 , γ represents the infectious period in days. Considering 5 

ays, γ = 1 / 5 . The initial conditions are given by S(0) = 108 × 10 5 ,

(0) = 2 × 10 5 , I(0) = 278 and R (0) = 0 , all values were assumed.

he dynamics of the new Coronavirus Disease COVID-19 model in- 

olving the non-singular fractional derivative of Atangana-Baleanu 
d

11 
ype is given by Eq. (8) for various values of τ ∈ (0 , 1] , arbitrarily

hosen, are plotted in Fig. 2 a–d. 

The numerical simulations’ comparison of Figs. 1 a–d and 2 a–d 

or both the CF model (7) and ABC model (8) demonstrates that for 

= 1 with same the initial conditions and parameter values gives 

dentical output. Whereas, for the same non integer values of τ, 

oth models show dissimilar trajectories. Thus, observation finds 

hat smaller τ susceptible populations decrease at a slower rate 

ith the ABC approach compared to the CF approach. It is clearly 

isible from graph Fig. 1 (b)–(c) and Fig. 2 (b)–(c) comparisons that 

he ABC approach provides comparatively more variation in both 

nfected and recovered individuals than the CF approach, which is 

ore likely to suit real data. Another important aspect considers 

hat exposed and infected individuals show a sharp increase for 

ll values of τ due to the high transmissibility of COVID-19 of the 

isease advocated by Karako et al. [26] . 

Furthermore, upon deep consideration of the comparisons in- 

icated in graph Fig 1 (c) with (d) we find a difference of approx- 
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mately 2 weeks between the peak of infected and recovered in- 

ividuals. However, notably in Fig 2 (c) with (d) the difference be- 

ween the peak points is 3 weeks, calculated at τ = 0 . 7 . The slope

f curves for other values of τ share similarities with the findings. 

his indicates that infected individuals are recovering very quickly, 

ith a delay of approximately 2 weeks, shown by the CF approach, 

hich is valid for mild cases. Conversely, the ABC approach shows 

pproximately a 3-week delay in the transfer of infected individu- 

ls to recovered compartments. This is valid for severe or critical 

isease states, as per the WHO-China Joint Mission on Coronavirus 

isease 2019 (COVID-19) report [41] . 

The effectiveness of both models, when compared, found no- 

able differences under identical parameter values. This is due to 

he memory properties of the kernel in the definitions of the frac- 

ional operators. The Caputo-Fabrizio derivative has an exponential 

ernel, whereas the ABC approach uses a generalized Mittag-Leffler 

ernel. The latter shows a partial exponential decay memory, and 

lso power-law memory (see [42,43] ). It is clear from the above 

imulation graphs that the model relies upon the fractional order 

emarkably, for various values of τ it displays a clear difference. 

he suggested model explores new aspects at the fractional value 

f τ, which is inappreciable for the model at τ = 1 . 

. Conclusion 

Disease-relevant contact increases with an escalation in popu- 

ation size. Thus, Coronavirus disease COVID-19 transmission non- 

nteger order model is considered, using the CF derivative and ABC 

erivative (with standard incidence) are formulated. Expression for 

he basic reproduction number along with equilibrium points and 

heir local stability are analyzed. The uniqueness and existence is 

erified by employing the fixed-point theorem for both CF and ABC 

odels. Numerical simulation graphs for the proposed COVID-19 

ractional order models are shown with distinct fractional order 

alues τ ∈ (0 , 1] and briefly compared, discussed and investigated. 

he graphical results demonstrate the CF approach provides better 

uitability for mild cases (studies suggest approximately 80% of pa- 

ients have had mild disease). Whereas, the ABC approach provides 

uperior and more flexible results for critical cases. These results 

how that CF and ABC approach implementation in real life situ- 

tions are both plausible and doable as per the severity of illness 

or patient management. 

For future research work we propose COVID-19 spread for dif- 

erent geographical areas can be achieved by examining the mod- 

ls with relevant parameter values as per data trends of the region. 

e anticipate this research will provide significance and will thus 

trengthen the research relevant to COVID-19 transmission dynam- 

cs, so that progressive disease control policies are formulated to 

rovide patients with better medical care for all in need. 

uthorship statement 

Conception and design of study: Virender Singh Panwar; Acqui- 

ition of data: Virender Singh Panwar; Analysis and/or interpre- 

ation of data: Virender Singh Panwar, P.S. Sheik Uduman. Cate- 

ory 2 Drafting the manuscript: Virender Singh Panwar, J.F. Gómez- 

guilar; Revising the manuscript critically for important intellec- 

ual content: Virender Singh Panwar, J.F. Gómez-Aguilar. Category 

 Approval of the version of the manuscript to be published Viren- 

er Singh Panwar, P.S. Sheik Uduman, J.F. Gómez-Aguilar. 

eclaration of Competing Interest 

None. 
12 
cknowledgments 

José Francisco Gómez Aguilar acknowledges the support pro- 

ided by CONACyT: cátedras CONACyT para jóvenes investigadores 

014 and SNI-CONACyT. 

eferences 

[1] Drosten C, Gunthe S, Preiser W, et al. Identification of a novel coron- 

avirus in patients with severe acute respiratory syndrome. N Engl JMed 

2003;348(20):1967–76. doi: 10.1056/NEJMoa030747 . 
[2] M Zaki A, Boheemen SV, Bestebroer TM, D M E Osterhaus A, Fouchier RAM. 

Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. 
N Engl JMed 2012;367(19):1814–20. doi: 10.1056/NEJMoa1211721 . 

[3] Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a 
new coronavirus of probable bat origin. Nature 2020;579(7798):270–3. doi: 10. 

1038/s41586- 020- 2012- 7 . 

[4] Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly
identified coronavirus 2019-nCoV. J Med Virol 2020;92(4):433–40. doi: 10.1002/ 

jmv.25682 . 
[5] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features

of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 
2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5 . 

[6] Jiang F, Deng L, Xia Z, et al. Review of the clinical characteristics of coronavirus

disease 2019 (COVID-19). J Gen Intern Med 2020;35(5):1545–9. doi: 10.1007/ 
s11606- 020- 05762- w . 

[7] World Health Organization. Coronavirus disease (COVID-2019) situa- 
tion reports. Geneva: WHO; 2020 . www.who.int/emergencies/diseases/ 

novel-coronavirus-2019/situation-reports [Accessed 20 Dec 2020] 
[8] Lake MA. What we know so far: COVID-19 current clinical knowledge and re- 

search. Clin Med 2020;20(2):124–7. doi: 10.7861/clinmed.2019-coron . 
[9] World Health Organization. Coronavirus disease (COVID-19) advice for the 

public. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/ 

advice- for- public [Accessed 20 Dec 2020]. 
[10] Kilbas AA , Srivastava HM , Trujillo JJ . Theory and applications of fractional dif-

ferential equations. North Holland Mathematical Studies, vol 204. Amsterdam, 
London and New York: Elsevier (North Holland) Science Publishers; 2006 . 

[11] Srivastava HM. Fractional-order derivatives and integrals: introductory 
overview and recent developments. Lancet 2019;60(1):73–116. doi: 10.5666/ 

KMJ.2020.60.1.73 . 

12] Uçar S. Analysis of a basic SEIRA model with Atangana-Baleanu derivative. 
AIMS Math 2020;5(2):1411–24. doi: 10.3934/math.2020097 . 

[13] Area I, Batarfi H, Losada J, et al. On a fractional order Ebola epidemic model. 
Adv Differ Equ 2015;278(2015). doi: 10.1186/s13662-015- 0613- 5 . 

[14] Hanert E, Schumacher E, Deleersnijder E. Front dynamics in fractional-order 
epidemic models. J Theor Biol 2011;279(1):9–16. doi: 10.1016/j.jtbi.2011.03.012 . 

[15] S T Alkahtani B, Atangana A. Controlling the wave movement on the surface of 

shallow water with the Caputo-Fabrizio derivative with fractional order. Chaos 
Solitons Fractals 2016;89:539–46. doi: 10.1016/j.chaos.2016.03.012 . 

[16] Kumar D, Singh J, A Qurashi M, Baleanu D. Analysis of logistic equation per- 
taining to a new fractional derivative with non-singular kernel. Adv Mech Eng 

2017;9(2). doi: 10.1177/1687814017690069 . 
[17] Yang X-J, M Srivastava H, Tenreiro JAM. A new fractional derivative without 

singular kernel: application to the modelling of the steady heat flow. Therm 

Sci 2016;20(2):753–6. doi: 10.2298/TSCI151224222Y . 
[18] Moore EJ, Sirisubtawee S, Koonprasert S. A Caputo-Fabrizio fractional differen- 

tial equation model for HIV/AIDS with treatment compartment. Adv Differ Equ 
2019;200(2019). doi: 10.1186/s13662-019- 2138- 9 . 

[19] Srivastava HM, Saad KM, Khader MM. An efficient spectral collocation method 
for the dynamic simulation of the fractional epidemiological model of the 

Ebola virus. Chaos Solitons Fractals 2020;140:110174. doi: 10.1016/j.chaos.2020. 

110174 . 
20] Srivastava HM, Saad KM. Numerical simulation of the fractal-fractional Ebola 

virus. Fractal Fract 2020;4(4):49. doi: 10.3390/fractalfract4040049 . 
21] Srivastava HM. Diabetes and its resulting complications: mathematical 

modeling via fractional calculus. Lancet 2020;4(3):0 0 0163. doi: 10.23880/ 
phoa-160 0 0163 . 

22] Srivastava HM, Saad KM. A comparative study of the fractional-order clock 

chemical model. Mathematics 2020;8(9):1436. doi: 10.3390/math8091436 . 
23] Majumder M, Mandl KD. Early transmissibility assessment of a novel coron- 

avirus in Wuhan, China. SSRN; 2020. p. 3524675. doi: 10.2139/ssrn.3524675 . 
24] Zhao S, Chen H. Modeling the epidemic dynamics and control of COVID-19 

outbreak in China. Quant Biol 2020:1–9. doi: 10.1007/s40484- 020- 0199- 0 . 
25] Yang C, Wang J. A mathematical model for the novel coronavirus epidemic 

in Wuhan, China. Math Biosci Eng 2020;17(3):2708–24. doi: 10.3934/mbe. 
2020148 . 

26] Karako K, Song P, Chen Y, Tan W. Analysis of COVID-19 infection spread in 

Japan based on stochastic transition model. Biosci Trends 2020;14(2):134–8. 
doi: 10.5582/bst.2020.01482 . 

27] Shim E, Tariq A, Choi W, Lee Y, Chowell G. Transmission potential and severity 
of COVID-19 in South Korea. Int J Infect Dis 2020;93:339–44. doi: 10.1016/j.ijid. 

2020.03.031 . 

https://doi.org/10.1056/NEJMoa030747
https://doi.org/10.1056/NEJMoa1211721
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1002/jmv.25682
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1007/s11606-020-05762-w
http://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.7861/clinmed.2019-coron
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
http://refhub.elsevier.com/S0960-0779(21)00110-7/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00110-7/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00110-7/sbref0010
http://refhub.elsevier.com/S0960-0779(21)00110-7/sbref0010
https://doi.org/10.5666/KMJ.2020.60.1.73
https://doi.org/10.3934/math.2020097
https://doi.org/10.1186/s13662-015-0613-5
https://doi.org/10.1016/j.jtbi.2011.03.012
https://doi.org/10.1016/j.chaos.2016.03.012
https://doi.org/10.1177/1687814017690069
https://doi.org/10.2298/TSCI151224222Y
https://doi.org/10.1186/s13662-019-2138-9
https://doi.org/10.1016/j.chaos.2020.110174
https://doi.org/10.3390/fractalfract4040049
https://doi.org/10.23880/phoa-16000163
https://doi.org/10.3390/math8091436
https://doi.org/10.2139/ssrn.3524675
https://doi.org/10.1007/s40484-020-0199-0
https://doi.org/10.3934/mbe.2020148
https://doi.org/10.5582/bst.2020.01482
https://doi.org/10.1016/j.ijid.2020.03.031


V.S. Panwar, P.S. Sheik Uduman and J.F. Gómez-Aguilar Chaos, Solitons and Fractals 145 (2021) 110757 

[

[

[

[

[  

[

[  

[

[

[

[  

[  

[

[

[

[  
28] Giuliani D, Dickson MM, Espa G, Santi F. Modelling and predicting the spatio- 
temporal spread of COVID-19 in Italy. BMC Infect Dis 2020;20(1):700. doi: 10. 

1186/s12879- 020- 05415- 7 . 
29] Shao N, Zhong M, et al. Dynamic models for coronavirus disease 2019 and data 

analysis. Math Methods Appl Sci 2020;43(7):4943–9. doi: 10.1002/mma.6345 . 
30] Volpert V, Banerjee M, Petrovskii S. On a quarantine model of coronavirus in- 

fection and data analysis. Math Model Nat Phenom 2020;15:25. doi: 10.1051/ 
mmnp/2020 0 06 . 

31] A Khan M, Atangana A. Modeling the dynamics of novel coronavirus (2019- 

nCoV) with fractional derivative. Alex Eng J 2020;59(4):2379–89. doi: 10.1016/j. 
aej.2020.02.033 . 

32] Li Y, Liang M, Jin L, et al. COVID-19 epidemic outside China: 34 founders and
exponential growth. J Investig Med 2020. doi: 10.1136/jim- 2020- 001491 . Jim- 

2020-001491 
33] Lau BSH, Khosrawipour V, et al. The positive impact of lockdown in Wuhan on 

containing the COVID-19 outbreak in China. J Travel Med 2020;27(3):taaa037. 

doi: 10.1093/jtm/taaa037 . 
34] He S, Y Tang S, Rong L. A discrete stochastic model of the COVID-19 outbreak:

forecast and control. Math Biosci Eng 2020;17(4):2792–804. doi: 10.3934/mbe. 
2020153 . 

35] Caputo M, Fabrizio M. A new definition of fractional derivative with-out sin- 
gular kernel. Progr Fract Differ Appl 2015;1:73–85. doi: 10.12785/pfda/010201 . 

36] Losada J, Nieto JJ. Properties of the new fractional derivative without singular 

kernel. Progr Fract Differ Appl 2015;1:87–92. doi: 10.12785/pfda/010202 . 
13 
37] Atangana A, Baleanu D. New fractional derivatives with nonlocal and non- 
singular kernel: theory and application to heat transfer model. Therm Sci 

2016;20(2):763–9. doi: 10.2298/TSCI160111018A . 
38] H A Biswas M, T Paiva L, de Pinho M. A SEIR model for control of infec-

tious diseases with constraints. Math Biosci Eng 2014;11(4):761–84. doi: 10. 
3934/mbe.2014.11.761 . 

39] Xu X-W, Wu X-X, Jiang X-G, Xu K-J, et al. Clinical findings in a group of patients
infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, 

China: retrospective case series. BMJ 2020;368:m606. doi: 10.1136/bmj.m606 . 

40] Driessche PVd, Watmough J. Reproduction numbers and sub-threshold en- 
demic equilibria for compartmental models of disease transmission. Math 

Biosci 2002;180:29–48. doi: 10.1016/S0025-5564(02)00108-6 . 
41] World Health Organization. Report of the WHO-China joint mission on coro- 

navirus disease 2019 (COVID-19). https://www.who.int/docs/default-source/ 
coronaviruse/who- china- joint- mission- on- covid- 19- final- report [Accessed 20 

Dec 2020]. 

42] Atangana A, Gmez-Aguilar JF. Decolonisation of fractional calculus rules: 
breaking commutativity and associativity to capture more natural phenomena. 

Eur Phys J Plus 2018;133(166). doi: 10.1140/epjp/i2018- 12021- 3 . 
43] Imran MA, Aleem M, Riaz MB, Ali R, Khan I. A comprehensive report on con-

vective flow of fractional (ABC) and (CF) MHD viscous fluid subject to gen- 
eralized boundary conditions. Chaos Solitons Fractals 2018;118:274–89. doi: 10. 

1016/j.chaos.2018.12.001 . 

https://doi.org/10.1186/s12879-020-05415-7
https://doi.org/10.1002/mma.6345
https://doi.org/10.1051/mmnp/2020006
https://doi.org/10.1016/j.aej.2020.02.033
https://doi.org/10.1136/jim-2020-001491
https://doi.org/10.1093/jtm/taaa037
https://doi.org/10.3934/mbe.2020153
https://doi.org/10.12785/pfda/010201
https://doi.org/10.12785/pfda/010202
https://doi.org/10.2298/TSCI160111018A
https://doi.org/10.3934/mbe.2014.11.761
https://doi.org/10.1136/bmj.m606
https://doi.org/10.1016/S0025-5564(02)00108-6
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report
https://doi.org/10.1140/epjp/i2018-12021-3
https://doi.org/10.1016/j.chaos.2018.12.001

	Mathematical modeling of coronavirus disease COVID-19 dynamics using CF and ABC non-singular fractional derivatives
	1 Introduction
	2 Definitions of the non-singular fractional order derivatives
	3 Model formulation of COVID-19
	3.1 Equilibria and basic reproduction number
	3.2 Local stability analysis in terms of the basic reproduction number

	4 Existence and uniqueness of COVID-19 model of fractional order with CF derivative
	5 Existence and uniqueness of solution for COVID-19 with Atangana-Baleanu derivative in Caputo sense (ABC).
	6 Numerical results and discussion
	7 Conclusion
	Authorship statement
	Declaration of Competing Interest
	Acknowledgments
	References


