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ABSTRACT

In this article, Coronavirus Disease COVID-19 transmission dynamics were studied to examine the util-
ity of the SEIR compartmental model, using two non-singular kernel fractional derivative operators. This
method was used to evaluate the complete memory effects within the model. The Caputo-Fabrizio (CF)
and Atangana-Baleanu models were used predicatively, to demonstrate the possible long-term trajecto-
ries of COVID-19. Thus, the expression of the basic reproduction number using the next generating matrix
was derived. We also investigated the local stability of the equilibrium points. Additionally, we examined
the existence and uniqueness of the solution for both extensions of these models. Comparisons of these
two epidemic modeling approaches (i.e. CF and ABC fractional derivative) illustrated that, for non-integer
T value. The ABC approach had a significant effect on the dynamics of the epidemic and provided new
perspective for its utilization as a tool to advance research in disease transmission dynamics for critical
COVID-19 cases. Concurrently, the CF approach demonstrated promise for use in mild cases. Furthermore,
the integer 7 value results of both approaches were identical.

Numerical simulation

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Coronaviruses are a vast family of viruses, especially common
in animals. Coronavirus was named for its corona or crown-like ap-
pearance under the microscope: the virus is surrounded by pointed
structures. The severity of earlier coronavirus outbreaks can be
evaluated by reflecting on the serious consequences of the SARS
(Severe Acute Respiratory Syndrome) outbreak, which occured in
2003 [1]. Similarly, the MERS (Middle East Respiratory Syndrome)
outbreak in 2012 [2] had widespread socioeconomic impacts as
well. In December of 2019, a deadly respiratory viral infection ap-
peared in the citizens of Wuhan, China. The virus was temporar-
ily dubbed Novel Coronavirus 2019-nCoV. Then, on Feb 11, 2020,
the virus was officially named by The World Health Organization
(WHO) as Coronavirus Disease 2019 short form-COVID-19, caused
by the virus SARS-CoV-2, which is 96% identical at the whole-
genome level to the coronavirus found in bats [3,4]. COVID-19 has
an extremely high rate of transmission when compared to other
coronaviruses such as SARS and MERS and other viruses such as
HIV and Ebola. Beginning Jan 23, 2020, the Chinese government
enacted strict measures for disease containment. This included a
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lockdown of Wuhan city to prevent the spread of this highly conta-
gious disease. Finally, on Jan 30, 2020, the WHO declared the out-
break a global health emergency. Consequently, on March 11, 2020
the WHO declared COVID-19 a pandemic. Preliminary reports in-
dicate 27 of 44 patients infected with COVID-19 had exposure to
the Huanan seafood market in the city of Wuhan, in the Hubei
province of China [5]. COVID-19 was transmitted from the animal
to human population and is now communicable-spreading through
human to human contact. However, the route of transmission into
the human population, at the start of this event remains unclear.
There is a long list of proposed studies on the origins of COVID-
19. Human to human transmission can be caused by respiratory
droplets and contact with infected individuals. Symptoms include
fever, expectoration, headache, fatigue, dry cough, dyspnoea and
organ failure in critical cases [6]. The incubation period as per the
WHO ranges from 1-14 days. The WHO confirms over many re-
gions and countries, a total of 70,476,836 laboratory-confirmed in-
fections of COVID-19 including 1,599,922 deaths worldwide as of
Dec 20, 2020 [7]. Laboratory-confirmed case data is considered the
gold standard, due to the specificity of this diagnostic test: reverse
transcription-polymerase chain reaction (RT-PCR) for COVID-19 [8].
Research is consistent in its findings, with human to human trans-
mission of COVID-19 occurring mainly via symptomatic individ-
uals. At present, with no effective treatment, the most effectual
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way to prevent transmission of the disease is to avoid infection.
This can be accomplished through personal protective measures.
Specific disease transmission mitigation efforts include isolation of
all patients with flu-like symptoms, cluster investigations, proper
mask wearing, avoiding close contact with people, and implement-
ing strict hygiene measures [9].

In addition to all data mentioned above, Kilbas et al. [10] pro-
vides a brief theory and application of various fractional differ-
ential equations. Fractional calculus is used to study the dynam-
ics of real-world problems in various fields of science. A recently
published survey-cum-expository review article [11] provides an
elementary and introductory overview of fractional calculus for
nonprofessional readers. More specifically, the fields of engineer-
ing, epidemiology and social sciences have various mathematical
modeling applications for mitigating public health risks [12-18]. In
epidemiology, deterministic mathematical models have an impor-
tant function in investigating the dynamics of infectious diseases.
Very recently, Srivastava et al. [19], Srivastava and Saad [20] in-
vestigated fractional calculus and fractal-fractional calculus appli-
cations in modeling the dynamics of the Ebola virus with three
different kernels using numerical simulations; also we can see
the fractional models of Diabetes in [21]. Whereas, a compara-
tive study of the fractional clock chemical model’s numerical re-
sults (with a finding of an exact result) was carried out in [22].
Recently published articles have been formulated on the transmis-
sion dynamics of COVID-19. However, current research is mainly
restricted to classical integer-order models, logistic models and de-
lay or stochastic differential equation models [23-30]. Recently,
the Atangana-Baleanu fractional derivative was applied in order to
create a mathematical model for the dynamics of the novel corona
virus in [31] and pointed out the need for evaluating the compari-
son with other derivative operators.

Often, in epidemiological analysis, diseases caused by viruses
grow exponentially with a fixed reproduction rate. Similarly, the
growth curve for the number of COVID-19 diagnoses outside China
are exponential, as demonstrated by Li et al. [32], Lau and Khos-
rawipour [33]. The following research [34] supports the likelihood
that due to various prevention measures, growth decreased ex-
ponentially. Until present, research has not yet explored compar-
isons of the CF and ABC fractional derivative operators against
the transmission dynamics of the COVID-19 SEIR model, which
has non-singular kernels, the memory effects, crossover proper-
ties and other important properties when compared to the inte-
ger order derivative. The findings above make the CF fractional
derivative and ABC fractional derivative promising options for use
as a mathematical tool in modeling the transmission dynamics
of COVID-19.

In the following sections, the COVID-19 SEIR standard incidence
compartmental ODE model is extended to the fractional differen-
tial equation model. This is accomplished by using two different
non-singular kernel fractional derivatives, both CF and ABC frac-
tional derivative operators. This approach is used to study the tra-
jectory of transmission of infection. The expression for the basic
reproduction number (using the next generating matrix method) is
derived and local stability of the equilibrium points are analyzed.
The existence and uniqueness of both COVID-19 fractional models
are proved via the fixed-point theorem. We also analyze the chang-
ing trends of the COVID-19 pandemic with graphs for numerical
simulations of both CF and ABC approach models. Considering the
timeline for disease onset to clinical recovery and severity of ill-
ness, we discuss the suitability of using both operators, accompa-
nied by relative similarities, as well as their differences. Lastly, we
conclude the article by analyzing the importance of disease trans-
mission models and discuss their future implications for disease
control policy development at both national and International lev-
els to interrupt or minimize transmission chains in humans.
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2. Definitions of the non-singular fractional order derivatives

In this section, we present the basic definitions of the new frac-
tional derivatives with exponential and Mittag-Leffler kernels.

Definition 1. Consider Y € H!(by,b,), b, > by, T €[0, 1], then the
Caputo-Fabrizio (CF) fractional derivative is defined as [35]:

F t t—
g{ngw(t)]:]gfb T’(x)exp[—tl_);]dx, (1)
where F(7) is a normalization function satisfying 7(0) = 7(1) =1
if Y ¢ H' (b1, b,) then

]:

DI (T(t)) = (f) / (T (t) — T(x)) exp [ _ zlt ]dx 2)

Definition 2. Let 0 < T < 1, then the integral of the fractional or-
der 7 for a function Y'(t) is defined as [35 36]:

2(1-1)

() + f Y (s)ds. t > 0.

3)

Definition 3. Consider Y € H'(b;, b5), by > by, T €0, 1], then the
Atangana-Baleanu derivative in the Caputo sense (ABC) is defined
as [37]:

#Or 1= 10 [ 1o - 1 Jax @)

where E; represent the Mittag-Leffler function and B(t) is a nor-
malization function satisfying B(0) = B(1) =1and B(t)=1-1 +

2- )F( )

T
T@"
Definition 4. [37] Let 0 < T < 1, then the integral of the Atangana-

Baleanu derivative in the Caputo sense, fractional order T for a
function Y (t) is defined as:

- T
O] = 55 TO+ T
« / (t = )17 (s)ds, t > 0. (5)
b1

3. Model formulation of COVID-19

Considering the transmission method is human to human, we
chose a model for the transmission dynamics of COVID-19 based
on the SEIR compartmental model (susceptible exposed infected
recovery model) with standard incidence [38]. Assuming all indi-
viduals are susceptible, and that infected individuals can spread
the disease, this model was represented via the nonlinear system
below.

S(t) =T— % —mS(t),

Fo = P00 oy,

I'(t) = YE@t) — (m+ y)I(t),

R(t) = yI(t) — mR(t). (6)

The equations above created four compartments, for a total
number of individuals labelled at time t. As such, these were cat-
egorized as (S(t)) susceptible individuals whom were not consid-
ered infected but as having the capacity to become infected, (E(t))
exposed individuals are those who have been infected but are not
infectious, (I(t)) infectious individuals are those who are symp-
tomatic and clinically tested. Lastly, (R(t)) removed individuals are
those who have recovered from the disease. The total population
was denoted by N such that N = S(t) + E(t) +I(t) + R(t) was con-
sidered constant with an assumption of birth rate represented as
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n, and death rate as m. All parameters were positive constants de-
scribed as (IT = nN) rate of recruitment of individuals, (8) trans-
mission rate of the disease upon contact with symptomatic in-
fected individuals. Moreover, the parameter (y~!) represented the
latency period of 3 to 5 days and (1) represented the infectious
period within the range of 2 to 14 days [39].

The ODE model for COVID-19 was extended to the fractional or-
der model using the CF derivative below:

SFDES(t) =TT — w —mS(t),

gore@ = PO ye),
§"DFI(t) = YE(t) — (m+ y)I(t),
CEDIR(t) = yI(t) — mR(¢). (7)

Similarly, the ODE model for COVID-19 was extended to the
fractional order model with Atangana-Baleanu in the Caputo sense
(ABC) fractional derivative provided below:

SBCDES(I) —I— % —mS(t),

wopE@) = PO oy,
8BCDFI(t) = YE(t) — (m+p)I(D),
0CDIR(t) = yI(t) —mR(t). (8)

The initial conditions involved throughout the analysis were
S(0)=S9=>0, E(0)=Ey>0, I(0)=Iy>0,and R(0) =Ry > 0.
9)

3.1. Equilibria and basic reproduction number

Reproduction number is a crucial figure within the mathemati-
cal analysis of any disease model:- it aids in determining if an epi-
demic will likely occur. The reproduction number R of the model
represents the anticipated sum of infectious cases generated by
one infectious individual within a population of susceptible indi-
viduals. The value of Ry for the aforementioned models, utilized
the next-generation matrix method given by Driessche and Wat-
mough [40]. Findings indicated the relevant Jacobian matrices F
and V were associated with the rate of appearance of new infec-
tions and with net rate out of the corresponding compartments,
respectively were given by

(0 B _(m+y 0
F_(O 0>’V‘<w m+y>. (10)
Thus, we find
__ By B
Fv-1= ((mw 6<m+y> m(+)y>:3. (11)

solving for eigen values of B we find,

_ By
(m+vy Y(m+y)

The reproduction number Ry is given by the dominant eigenvalue.
precisely,

)L] and )Lz =0. (12)

N S (13)
(m+y)m+y)
If Ry <1 then the disease would likely self-terminate. However, if

Ro > 1 then the disease would likely prevail and become a pan-
demic if containment procedures are not initiated.

Ro

Chaos, Solitons and Fractals 145 (2021) 110757

We found two biologically meaningful equilibria. One was
disease-free equilibrium 73 and an endemic equilibrium (EE)7;.

The disease-free equilibrium (DFE) 7y of the system (7), (8) was
found by taking zero value for the derivatives side, considering
there are no exposed individuals.

Thus, by substitution in the aforementioned systems we found,

To=(5°,0,0,0) = (%,0,0,0). (14)

The endemic equilibrium points 7; were derived by considering
a population of infected individuals and all equations of models
(7), (8) are equal to zero. Effectively denoted in-terms of Ry as

o N o mNmty)Re-1)
Ro’ BY '
Io:mN(%_l);Ro:yN(Ro_l). (15)

3.2. Local stability analysis in terms of the basic reproduction
number

In this subsection we worked on the stability analysis of the
COVID-19 model (7,8).

Theorem 1. The DFE Ty of the COVID-19 model (7,8) was locally
asymptotically stable if and only if Rg < 1.

Proof. For the proof, we obtained at DFE 7y, the Jacobian matrix
below,

—-m 0 -B 0
J(To) = 8 —(me) _(mﬂw) 8 . (16)
0 0 y -m

The characteristic equation for the Jacobian matrix mentioned
above is the form:

B(A) = —(A+m)?P(1) =0, (17)

P(A) = A2+ A((m+ ) (m+y))
+ (1 =Ro)(m+y )(m+y )] =0. (18)
For Ry < 1 the P()) equation has all positive coefficients and by
the criteria of Routh-Hurwitz for the second order polynomial a; >

0 for i =0, 1, 2. The DFE 7y of the COVID-19 model (7,8) is locally
asymptotically stable for Rg < 1. O

Theorem 2. The EE 77 of the COVID-19 model (7,8) is locally asymp-
totically stable for Ry > 1 and unstable for Rg < 1.

Proof. For the proof, we obtain at EE 77, the Jacobian matrix be-
low,

B _m 0 -8 0
pI- Bs:
= w™ —m+v) v o1 (9
0 v —(m+y) 0
0 0 y —m

The characteristic equation for the Jacobian matrix mentioned
above is the form:

C(A) = —(A+m)?D(A) =0, (20)

D) =23 +a A2+ ah +a3 =0, (21)
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where,
ap = 2m+y +y) +mRo. (22)
a, = mQ2m+ ¥ + yY)Re. (23)
a; = ﬂwm(n ~1). (24)

It is clearly shown that for Ry > 1 the above equation has all positive coefficients by the criteria of Routh-Hurwitz for the third order
polynomial aia, > a3 for i =0, 1,2, 3. The EE 7; of the COVID-19 model (7,8) is locally asymptotically stable for Ry > 1 and unstable for
Ro<1. O

4. Existence and uniqueness of COVID-19 model of fractional order with CF derivative

In this article, we have taken a nonlinear fractional order model into consideration. The following section focuses on investigation of
both the existence and uniqueness of the solution concerning the aforementioned model (7) by applying the fixed-point theory.
The CF model is represented by Eq. (7) in applying the fractional integral [36], our findings include the following;

s(t) _ 5(0) CFI‘L' {1-[ _ IBS(t)I(t)

- mS(t)},
E(6) —E(0) = ‘Fr{ﬁs(”’“) -+ 9)ED],

10 -10) = FE{WE® - (m+ IO},

R(t) — R(0) = ngg{yz(t) - mR(t)}. (25)
The notations [36], when organized within the context of the problem yield the following results;
20 -1) BS(DI(t) 27 ,BS(C)I(C)

S0 -50) = 3T (M- E g —mso f+ 0= [ fr- - mS() e,

271 BSMOI(t) /35@)1@)
B0 -0 = 20 U | P -] g [ - (m 4 PIEQ) e

231

10 -10) = W{wm) ~(m+ y)l(t)} m/ {vE@) - m+ o) fag.

231

RO -RO) = 520~ y10) - mRO) + o [ 1716 - mR@)bde. (26)
We interpret for clarity;

Ci(t,S) =T — % —mS(),
B = B0 ke,
G(t,A) = YE(t) — (m+ p)I(t),
C4(t.C) = yI(t) — mR(t). (27)

Theorem 3. If the inequality given below holds
0< (% + m) <1,
then, the kernel C; justifies the Lipschitz condition and contraction.

Proof. Assume S and S; are two functions, with that we have

‘ ~ BEE) = SE)IE)
N

Applying the triangular inequality on Eq. (28) gives

‘ﬂl(t)(S(t) —S(t1))
N

IC1(E.S) — Ci (6. S]] = —m(s(t) fS(n))H. (28)

G (E.S) — Gy (£, S]] < H+||m<s<r>—s<r1>>||,

'ﬂlll(t)ll

=

+m]||<5(r)—5(t1>>||,

- [£a +m]||5(t) _s@)ll.
- 91||{5(r> =Sl (29)
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Let 6 = +m where ||S(t)|| <s, [IR(®)|| <1, |[I(t)|| <a and ||E(t)|| < b are bounded functions, we get
||C1(t,5)—C1(t,51)|| SN GEN G

Hence, the Lipschitz condition is obtained for kernel C; and 0 < (% + m) < 1 provides C;, which satisfies contraction.
Similarly, for the other kernels the Lipschitz condition and contraction can be performed and written as shown;
G (¢t E) = G(t ED| = 6ol [E(t) — E(t)]I,
G, 1) = G(t, )| < O3]]I(t) — I(t)]],
[ICa(t. R) — Go(t. R[] < O4l[R(t) — R(t1)]].

Taking the aforementioned kernels Eq. (26) becomes

2(1-1) 2T ¢
S(t) = S(0) + mcl (t,S) + m / (G1(¢.9)d¢,
2(1-1)
EO = E0) + 26w n + s [ @B,
2(1-1)
I(t) = 1(0) + m@(ﬂ) + m/ (G(¢.D)de,
2(1-1)
R(t) = R(0) + m&(ty R) + m[ (C4(¢.R))dS.
We focus on the following recursive formulae, given as
2(1-1)
Sa(t) = mcl(fasn—l)-i- W/ (G1(¢. Sn-1))dg,
2(1-1)
En(t) = mcz(tslfnq)‘f' W/ (G(&, En1))dg,
2(1-1)
I(t) = mCE;(taln—l)'i' m/ (G(&, In1))dE,
2(1-1)
R0 = DGt Ry + s [ (@ R,
Along with

So(t) =S(0), Eo(t) = E(0), Io(t) =1(0), Ro(t) =R(0).

the initial conditions. The subsequent expressions for the difference of successive terms are expressed as:

2(1-1)
m(&(f,an)*C1(f,5n72))+mf (G(Z,Sn-1) — G (g, Sp2))dE,

2(1-1) 2T
m(cz(t, Epn1) —G(t Enn)) + 2-0F@ Jo

21-1)
En(t) = L) — L1 (t) = m(@(fs 1n—1)—C3(fJn—2))+m/ (G(&, In—1) —G(&, I2))dg,

2(1-1) 2T
Na(t) = Ra(t) — Ry_1(t) = m(&(taan) —C4(t,Rp2)) + 2-0F@ Jo

An(t) = Sn(t) = Sp-a (t) =

wn(t)) = En(t) — Epq (t) = (Cz@, En1) = G(&. En2))dg,

(C4(§, Ri—1) = C4(8. Ry2))d¢.

It is obvious that

Sa(t) = YiLy wi(t),
En(t) = Y i, Ai(D),
In(t) =YL, &(D),

Ra(t) = 3oLy mi(t).
Applying the norm on Eq. (35), yields;

2(1-1)

P11 = 11550 50101l = | 2952 @510 -GS0 + e [ @€ S0 - Ge 5 nie |
Applying the triangular inequality Eq. (37) reduces to

( t
1500 =110l = s 2| @S0 eS| |+ rmg—s || [ @@ s - siande |
Since, the kernel C; satisfies the Lipschitz condition, we have

1-1)
1500 = S04 Ol = 20T 0nlIS0 1 = Suall + ozt [ N1Sn—Siallde.

5

(30)

(32)

(35)

(36)

(37)

(38)
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Therefore, we conclude;

POl = sl 1 O]+ g6 /0 [n 1§12 (40)
Similarly, we gain the following results
lon@)ll = 52D allon 1Ol + 530 [, llona©llde,

IOl = s bl Ol + W%/ €01 (112,

@1 = 2Dl Ol + o [ N1 ©lde. (41)

O
Considering the above results, we present the following theorem:

Theorem 4. The COVID-19 fractional model (7) has a solutions if we can find a ty, such that:
2(1-1) . 2t
C-nF@ T 2-0)F([)

Proof. Considering Eqs. (40) and (41), along with the fact that functions S(t), E(t), I(t) and R(t) are bounded and the kernels justify the
Lipschitz condition. We have the following relation employing the recursive method:

1Ol < 15:01[ (55 5258) + (g0t
w1l = HE O] (505 25%) + (e t) ]

01ty < 1.

I\F(T)2-1) F(1)2-1)
r( 2(1-1) 27 .
151 = 14O (75 25%) + (Fma—a)]"
i 2(1-1) 27 n
[Ma (O] < [1Gi(0)]] _(m&) + (m&t)] . (42)

Thus, we demonstrate solutions exist and also satisfy continuity, for the COVID-19 model (7). For the sake of clarity, the above functions
are the solution of Eq. (7). We suppose

5(t) = S(0) = Sa(t) — Gn(t),
E(t) — E(0) = En(t) — Ha(0),
I(t) —1(0) = In(t) —Ju (L),

R(t) —C(0) = Ry (t) — K (£). (43)
Therefore, we get
_ t
G011 = | %(@(t,swqa,snﬂnﬁf @5 -GS
2(1 -
= 7(2 7( )||(C1(f S) - Cl(tssn—l))HJ"ir)]__(r)[ [1(C1(¢,S) —Ci (&, Spmi)ldE,
20-1)
=< 7(2_”]_-(”91”5—5:171”+W91||5 Sn-1llt. (44)
After repeating same process, then at t; we obtained
< 20 -1) 27 n+1gn+1
16011 = (507 * FE=nh)" e (45)

As n approaches infinity, taking limit on Eq. (45) we get ||G,(t)|| — O.
Similarly, we find ||Hn(t) — Ol|, |Un(t) — O]| and ||Ky(t) — O]|. O

For clarity on uniqueness for the solutions of the model (7), assuming S;(t), E;(t), ;(T) and R;(t) are a distinct set of solutions
pertaining to Eq. (7), then

2(1-1)
SO =50 =557 e / (€1(5.5) = Ci(g.S))de. (46)

Considering the fact that kernel satisfies the Lipschitz condition and taking norm on Eq. (46), prompts to the inequality given below:

(Ci (£, S) = Ci (£, 51)) +

2(1-1) 2T
150 - O1(1 = 35755 =255 ~ 370 —s7 ™) =0 (47)

Theorem 5. If the following inequality holds

2(1-1) 2T
(1 “3Fm) Fo N T 3F0) - t}'(r)01t) >0
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then a unique solution for the COVID-19 model (7) exists.
Proof. With the condition that (47) holds, taking

2(1-1) 2T

150 =51 011 - 5755 ~ 57— F ) <© (48)
So, we obtain

[1S() = S1(®)|] = 0. (49)
Then,
S(t) =S1(b). (50)
In the same manner, we gain
E(t) = E1 (1),

I(t) = h(t),

R(t) = Ry (¢). (51)

Which verifies the proof for uniqueness of the solutions for COVID-19 model (7). O
5. Existence and uniqueness of solution for COVID-19 with Atangana-Baleanu derivative in Caputo sense (ABC).

In this section we will prove the existence and uniqueness of solution for model (6) with ABC fractional derivative operator represented

by Eq. (8).
Implementing the fractional integral to both sides of Eq. (8), the model can be written as follows:
S(¢) — S(0) = 457 {1‘1 _ % _ mS(t)},
£© O = 35 [P0 ).
1©) -10) = {VE© - m+ )10 |,
R(t) — R(0) = 457 {)/I(t) - mR(t)}. (52)
The notations [37], when organized within the context of the problem yield the following results;
_1-x BSOI(L) T ‘ -1 BS()I(E)
S0 =50) = ey {1 = =5 = mSO )+ gy [ -0 n- P - ms@ac,
1 -7 [ BSOI() T ‘ 1 BS(I(E)
E(©) - E©) = {T - (m—Hﬁ)E(t)} + m/{) t-¢) 1{T ~(m+ w)E(;)}d;,
1010 = 5 {VEO ~ m+ IO ] + g /t(t =0 WE@) - (m i) fds
B(t) B(@)'(t) Jo ’
ROy = LT _ LI AP _
RO) = RO) = o5 (Y1) = mRO) + grospeems [ (=07 yI(@) ~ mR(@))de (53)
We interpret for clarity;
G(t,S) =T - % —mS(t),
Gep = B0 k.
G(t,A) = YE(t) — (m+ p)I(t),
Ca(t,C) = yI(t) — mR(¢). (54)

Theorem 6. If the inequality given below holds

05(%+m><1,

then, the kernel C; justifies the Lipschitz condition and contraction.

Proof. Assume S and S; are two functions, with that we have

B(S(t) — S(t))I(t)
N

165 -GEsoll = || - - m(s(e) - s(en)|| (55)

Applying the triangular inequality on Eq. (55) gives

m(t)mg —S(t) H +Im(S() = S))|].

I6i(€.5) - G50l < |

7
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= [POW ]l - s@ll,
= [+ m]iiso - sl
< Gillis® — Sl (56)
Let 6 = £3 1 m, where ||S(t)]| <5, |IR@)|| <7 |It)]] < d and [[E(t)]| < b are bounded functions, we get
I6:6.9) G 5l = Bills© - Sl (57)

Hence, the Lipschitz condition is obtained for kernel C; and 0 < (% + m) < 1 provides C;, which satisfies contraction.

Similarly, the other kernels G, G; and G satisfy the Lipschitz condition and contraction.
Taking the aforementioned kernels Eq. (53) becomes

() = 5(0) + B(T)cl(t 9+ g [ €O G 9

E©) = E©) + 1 @ b B + s [ O G Ende,

10 = 10) + Bm@(t D+ e L € O Gemds,

RO =RO) + Gt R+ s [ - 0 G Re. (58)

We focus on the following recursive formulae, given as

1-71 - T t 107
$u(6) = 5 Gt + g [ €= O G @ S,
1-7-= T t 1,5
En(O) = 505 G Eat) + ey b €~ 7 G B
1-71 - T t 107
h(®) = 5 Gt + gt [ (=07 G e,
1- T t 1
Ra(0) = ey G0 Run) + vy [ (€= 07 (Gl Rz, (59)
Along with initial conditions:
So() = 5(0). Eo(6) =E(0), Io() =1(0), Ro(¢) = R(0). (60)

The subsequent expressions for the difference of successive terms are expressed as:

Jn(®) = S (6) = Su1(6) = 2 (C1 (€. Sp1) = G (€. S02)) + )" NG Se1) = Gi(E, Sa2))dE,

T t
B( ) s )

(Cz(t En1) —G(t En2)) + ) NG(E En1) — G(8 L Enn))dE,

T t
5 s ¢
L) -Gl + s [0 GE ) -G s,

wn(t)) = En(t) — Epq (t) =

En(t) = In(t) — L1 () =

( )

Mn(t) = Ra(t) — Ry (t) = ( )(C4(t Rn-1) = Ca(t, Ru_z)) + B(I)F(t)/o (t = )" NG4S Ra1) — Ca(L, Ry2))dC. (61)
It is obvious that

Sn(t) = XiLg @i(0),

En(t) = Y1y A(0).

- (62)

I (t) = XL, (D).

Ra(t) = XLy 71i(0).
Applying the norm on Eq. (61), yields;

- t - -
(O] = 11S2() = Su_1 (©)]] = H i )(Cl(t (Su1) —Ci(t,Su2)) + 3(r)tr(r) /0 (t—g)f—l(q@,snfl)—Cl(g“,snfz))d;“H. (63)
Applying the triangular inequality, Eq. (63) reduces to
1500 =11 Ol = 5 | €@ @50 =G .52)|| + gemrs || [ €97 @@ S0 -G sands] | (64)

8
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Since, the kernel C; satisfies the Lipschitz condition, we have

-1

[1Sn(t) = Sp1 (D] < B( )91||Sn 1= Sn- 2”+W91/ =8 ISn1 — Sn2ldg. (65)
Therefore, we conclude;

_ 1—17- - _oqt i}
B 11 = ey Olhar Ol + g [ €= 0 s @)llde. (66)
Similarly, we gain the subsequent results

- 1-7t5 - = [t -
1on(E)I] = gz Pell@nr Ol + ey [ €= O Ndnr @)z,

&I = gy el Ol + ey [ €O NE@)l1de,

T _ ot
IO = oo Gallna Ol + ey [ €= O na @llde. (67)
d

Considering the above results, we present the following theorem:

Theorem 7. The COVID-19 fractional model (8) has a solutions if we can find a ty, such that:

1- Té tt = 1
50 Bor@m?” =
fori=1234.

Proof. Considering the Eqs. (66) and (67), along with the fact that functions S(t), E(t), I(t) and R(t) are bounded and the kernels justify
the Lipschitz condition. We have the following relation employing the recursive method:

3 (©1] < 1151 [ (A

6,

g

(

@ ()] < [1En(0)]]

B(T)
1-1

)+

B(t)I'(7)

T

(

B(t)

=

)

%)+ (B(rgorméz): ’

=

- r(l1—t~ t; \1n
&N = 140 (55%) + (erm ) |
1O < 16O (5e564) + (5 ) | (68)

We demonstrate solutions exist and also satisfy continuity, for the COVID-19 model (8). For the sake of clarity, the above functions are the

solution of Eq. (8). We suppose
S(t) = S(0) = Sa(t) — Gal(t),

E(t) — E(0) = En(t) — Ha(t),
1) =100) = In(t) = Ja(®).

R(t) = C(0) = Ru(t) — Kq(t). (69)
Therefore, we get
1Ga(o)]] = H woey GES) =GOS + gy [ €O G@s) -G@sne |

< 3 lIGES) -GS, 1>)||+B( )rm/“ O MG E.) =@ Sellde.

1-

< B0 )91||5 Sn— ]||+B(r)I‘(r)GlHS*S"’IH' (70)

After repeating same process, then at ty we obtained
~ < 1-7 t(g n+1Agn+1

1601l < (555 * Fmrm) ™ 7

As n approaches infinity, taking limit on Eq. (71) we get ||G,(t)]] — O.

Similarly, we find ||H,(t) — 0||,

|Un(¢) — 0] and [|Kn(t) — OI.

O

For clarity on uniqueness for the solutions of the model (8), assuming S;(t), E;(t), 1(T) and R;(t) are a distinct set of solutions

pertaining to Eq (8), then

(0 -51(0) = 5

LGS -G 51))+B( )F( )[ -G, 9) -G, S))dg.

(72)
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Fig. 1. Numerical simulation for the new Coronavirus Disease COVID-19 model involving the Caputo-Fabrizio derivative given by Eq. (7) for several values of t, arbitrarily

chosen.

Considering the fact that kernel satisfies the Lipschitz condition
and taking norm on Eq. (72), prompts to the inequality:

1-7; t* =
150 =1 011~ 5t = grmEa?) <0 (73)
Theorem 8. If the following inequality holds
(1- 550 r01) =0
— — > 0.
B(r) ' B@I(r) '
then a unique solution for the COVID-19 model (8) exists.
Proof. With the condition that (73) holds, taking
1-7; tT =
150 =101 (1 - 5ot~ grEE?) <0 (74)
So, we obtain
1S(®) = S1(O)]] = 0. (75)
Then,
S(t) = S1(t). (76)

10

In the same manner, we gain

E(t) = E1(0),
I(t) =L (1),
R(t) = Ry (b). (77)

Which verifies the proof for uniqueness of the solutions for COVID-
19 model (8). O

6. Numerical results and discussion

In this section, we provide the numerical simulations using
Matlab for both CF approach and ABC approach model mentioned

in Egs. (7) and (8) respectively. Next, we compare and discuss the
following results.

Caputo-Fabrizio sense.
Using Wuhan City as an example, we created the following
framework: I1=0.36, 8 =25-5, m=0.30, ¥ represents the
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021
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Fig. 2. Numerical simulation for the new Coronavirus Disease COVID-19 model involving the Atangana-Baleanu derivative given by Eq. (8) for several values of 7, arbitrarily

chosen.

mean latency period of COVID-19 in humans, considering 14 days,
Y =1/14, y represents the infectious period in days. Consider-
ing 5 days, y =1/5. The initial conditions are given by S(0) =
108 x 10°, E(0) = 2 x 10°, I(0) = 278 and R(0) = 0, all values were
assumed. The dynamics of the new Coronavirus Disease COVID-19
model involving the non-singular fractional derivative of Caputo-
Fabrizio type is given by Eq. (7) for various values of 7 € (0, 1],
arbitrarily chosen, are plotted in Fig. 1a-d.

Atangana-Baleanu-Caputo sense.

Again, using Wuhan City as an example we created the follow-
ing: [1 =0.36, B8 =2.5-5, m=0.30, Y represents the mean la-
tency period of COVID-19 in humans, considering 14 days, ¥ =
1/14, y represents the infectious period in days. Considering 5
days, y = 1/5. The initial conditions are given by S(0) = 108 x 10°,
E(0) =2 x 10°, I(0) = 278 and R(0) = 0, all values were assumed.
The dynamics of the new Coronavirus Disease COVID-19 model in-
volving the non-singular fractional derivative of Atangana-Baleanu

1

type is given by Eq. (8) for various values of t € (0, 1], arbitrarily
chosen, are plotted in Fig. 2a-d.

The numerical simulations’ comparison of Figs. 1a-d and 2 a-d
for both the CF model (7) and ABC model (8) demonstrates that for
T =1 with same the initial conditions and parameter values gives
identical output. Whereas, for the same non integer values of 7,
both models show dissimilar trajectories. Thus, observation finds
that smaller t susceptible populations decrease at a slower rate
with the ABC approach compared to the CF approach. It is clearly
visible from graph Fig. 1(b)—(c) and Fig. 2(b)-(c) comparisons that
the ABC approach provides comparatively more variation in both
infected and recovered individuals than the CF approach, which is
more likely to suit real data. Another important aspect considers
that exposed and infected individuals show a sharp increase for
all values of t due to the high transmissibility of COVID-19 of the
disease advocated by Karako et al. [26].

Furthermore, upon deep consideration of the comparisons in-
dicated in graph Fig 1(c) with (d) we find a difference of approx-
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imately 2 weeks between the peak of infected and recovered in-
dividuals. However, notably in Fig 2(c) with (d) the difference be-
tween the peak points is 3 weeks, calculated at T = 0.7. The slope
of curves for other values of 7 share similarities with the findings.
This indicates that infected individuals are recovering very quickly,
with a delay of approximately 2 weeks, shown by the CF approach,
which is valid for mild cases. Conversely, the ABC approach shows
approximately a 3-week delay in the transfer of infected individu-
als to recovered compartments. This is valid for severe or critical
disease states, as per the WHO-China Joint Mission on Coronavirus
Disease 2019 (COVID-19) report [41].

The effectiveness of both models, when compared, found no-
table differences under identical parameter values. This is due to
the memory properties of the kernel in the definitions of the frac-
tional operators. The Caputo-Fabrizio derivative has an exponential
kernel, whereas the ABC approach uses a generalized Mittag-Leffler
kernel. The latter shows a partial exponential decay memory, and
also power-law memory (see [42,43]). It is clear from the above
simulation graphs that the model relies upon the fractional order
remarkably, for various values of t it displays a clear difference.
The suggested model explores new aspects at the fractional value
of 7, which is inappreciable for the model at t = 1.

7. Conclusion

Disease-relevant contact increases with an escalation in popu-
lation size. Thus, Coronavirus disease COVID-19 transmission non-
integer order model is considered, using the CF derivative and ABC
derivative (with standard incidence) are formulated. Expression for
the basic reproduction number along with equilibrium points and
their local stability are analyzed. The uniqueness and existence is
verified by employing the fixed-point theorem for both CF and ABC
models. Numerical simulation graphs for the proposed COVID-19
fractional order models are shown with distinct fractional order
values 7 € (0, 1] and briefly compared, discussed and investigated.
The graphical results demonstrate the CF approach provides better
suitability for mild cases (studies suggest approximately 80% of pa-
tients have had mild disease). Whereas, the ABC approach provides
superior and more flexible results for critical cases. These results
show that CF and ABC approach implementation in real life situ-
ations are both plausible and doable as per the severity of illness
for patient management.

For future research work we propose COVID-19 spread for dif-
ferent geographical areas can be achieved by examining the mod-
els with relevant parameter values as per data trends of the region.
We anticipate this research will provide significance and will thus
strengthen the research relevant to COVID-19 transmission dynam-
ics, so that progressive disease control policies are formulated to
provide patients with better medical care for all in need.
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