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Abstract

Purpose of review—A complex network of hormones and other effectors characterize the 

hypermetabolic response in critical illness; these mediators work together to induce numerous 

pathophysiologic alterations. Increased incidence of infection, multiorgan failure, long-term 

debilitation, delays in rehabilitation, and death result from an inability to meet the prohibitively 

elevated protein and energy requirements, which occur during illness and can persist for several 

years. Pharmacologic interventions have been successfully utilized to attenuate particular aspects 

of the hypermetabolic response; these modalities are a component of managing critically ill 

patients – including those patients with severe burns. Here, we review recent advances in 

pharmacologically attenuating the hypermetabolic and catabolic responses.

Recent findings—Propranolol, a nonspecific β-adrenergic receptor antagonist, is one of the 

most widely used anticatabolic therapies. Oxandrolone, testosterone, and intensive insulin therapy 

represent anabolic pharmacological strategies. Promising therapies, such as metformin, glucagon-

like peptide 1, peroxisome proliferator-activated receptor agonists, are currently being 

investigated.

Summary—Profound metabolic derangements occur in critically ill patients; this hypermetabolic 

response is a major contributor to adverse outcomes. Despite the pharmacological therapies 

currently available to counteract this devastating cascade, future studies are warranted to explore 

new multimodality agents that will counteract these effects while maintaining glycemic control 

and preventing unfavorable complications.
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INTRODUCTION

Critical illness or injury results in an extensive and persistent hypermetabolic response 

which drives catabolism far longer than the duration of the initial insult [1]. The hallmarks 

of this response are supraphysiologic metabolic rates, including profoundly accelerated 

proteolysis, lipolysis, glycolysis, liver dysfunction, insulin resistance, and loss of total and 

lean body mass; fatal physiologic exhaustion occurs if this hypermetabolic response is left 

untreated [2–4]. Mediators of these complex responses are cytokines, acute-phase and 

constitutive proteins, as well as hormones. All these mediators are altered upon onset of any 

acute critical illness and remain abnormal for a much more prolonged period of time than 

previously thought [3,5].

When circulating levels of gluconeogenic hormones, glucagon, cortisol, and catecholamines 

are elevated in response to critical injury, inefficient liver glucose production is stimulated 

alongside substantially increased lipolysis, leading to futile substrate cycling [3,4]. Recent 

studies in critically ill and severely burned patients demonstrate significant derangements in 

energy-producing and mitochondrial pathways, inclusive of increased gluconeogenesis, 

glycogenolysis, lipolysis, and elevated glucogenic precursor circulation. Impaired insulin 

sensitivity and hyperglycemia result, which leads to postreceptor insulin resistance [6,7]. 

Lactate, the anaerobic glucose oxidation end product, is recycled to the liver to stimulate 

production of more glucose via gluconeogenic pathways [8]. Significant elevations in serum 

insulin and serum glucose remain [3], and characteristics of insulin resistance persist for at 

least 3 years postburn [6].

Lipid metabolism is another significantly altered metabolic pathway as a result of the 

hypermetabolic response. Lipolysis, characterized by the reduction of triacylglycerol into 

glycerol and free fatty acids (FFAs), contributes to postburn morbidity and mortality, and 

also organ infiltration and altered glucose metabolism [9]. FFAs specifically hamper insulin-

stimulated glucose uptake [10,11] and, through inhibition of glucose transport, induce 

insulin resistance [12]. Increased abundance of FFAs, in the context of type 2 diabetes, is 

predictive not only of the incidence but also of the disease severity[13]. Modulation of 

plasma FFA concentrations can be the result of hypoalbuminemia or elevations in 

intracellular FFA turnover, despite increased lipolysis. This is part of the futile cycle 

involving the generation of FFA from muscle and adipose triglycerides. In general, the 

anabolic effect of insulin is countered by catabolic hormones causing significant lipolysis, 

proteolysis, and hyperglycemia [6,7]. In an attempt to fulfill unmet metabolic and energy 

requirements, the body inefficiently utilizes lipids and proteins after critical illness [6,7]. 

Additionally, as the body fails to recognize fat as a source of energy, skeletal muscle is 

utilized as the major obligatory fuel, resulting in substantial muscle protein catabolism [3]. 

Owing to the extensive depletion of net protein, consequential muscle wasting and loss of 
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body mass occur, ostensibly contributing to reduced strength and an inability to completely 

rehabilitate [14]. In addition to changes in tissue loss, protein degradation also interferes 

with cross-leg and whole-body nitrogen balance [8,14]. Hence, protein catabolism is directly 

associated with elevated metabolic rate [15]. The loss of body mass affects other key 

processes needed for recovery: a reduction of total body mass by 10% induces immune 

dysfunction, wound healing is compromised with decreases of 20%, severe infections result 

from loss of 30%, and a 40% loss becomes fatal [16].

Anabolic and anticatabolic treatment options

Elevations in circulating glucagon, cortisol, and catecholamines perpetuate the extensive 

alterations in metabolic rate, physiology, and growth observed following critical illness or 

severe injury. Over the past several decades, the utility of pharmacologic agents to increase 

anabolism has been studied, including recombinant human growth hormone (rhGH), insulin, 

the combination of insulin-like growth factor 1 (IGF-1) with IGF-binding protein-3 

(IGFBP-3), testosterone, and oxandrolone. A catecholamine surge is a hallmark of critical 

illness, the effects of which can be circumvented with the administration of propranolol, a 

nonselective β-adrenergic receptor antagonist. The administration of anabolic or 

anticatabolic therapies to the critically ill has led to significant decreases in protein 

catabolism when given in addition to the current standards of care.

Recombinant human growth hormone and insulin-like growth factor 1

Significant improvements in cardiac function, bone mineral content, lean body mass, height 

velocities, and weight gain result from rhGH administration 0.2 mg/kg via daily 

intramuscular injection to severely burned children [17,18]. The hepatic acute-phase 

response is favorably influenced by rhGH as indicated by the increase in serum IGF-1 

concentrations in the serum [4,19]. Furthermore, muscle protein kinetics improved, muscle 

growth is maintained [17,20], time to donor site healing reduces by 1.5 days [21], and 

cardiac output and resting energy expenditure is decreased [22]. IGF mediates these 

beneficial effects of rhGH. Relative to healthy controls, serum IGFBP-3 and IGF-1 increased 

100% in patients receiving rhGH [21]. However, these findings did not translate well into 

critically ill adult patients. The results from a prospective, multicenter, double-blind, 

randomized, placebo-controlled trial of 0.10±0.02 mg/kg body weight rhGH administered to 

285 critically ill nonburned patients demonstrated that these relatively high rhGH doses were 

associated with greater morbidity and mortality [21–23] and hyperglycemia and insulin 

resistance [21,22]. Further examination of the short-term compared with the long-term 

administration of rhGH in severely burned children revealed that there was no increased risk 

of mortality in this patient population [22].

Taking into consideration that the effects of growth hormone are mediated by IGF-1, the 

infusion of equimolar doses of recombinant human IGF-1 and IGFBP-3 effectively 

improved protein metabolism without inducing hypoglycemia, such as seen with rhGH 

administration in catabolic pediatric study participants and adults [21,24,25]. The 

combination of recombinant human IGF-1 (rhIGF-1) and IGFBP-3 diminishes muscle 

catabolism and concurrently improves gut mucosal integrity in severely burned children 

[21,25]. The attenuation of the type 1 and type 2 hepatic acute-phase responses improves 
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ratios of circulating constitutive proteins that modify the hypercatabolic usage of body 

proteins [25,26]. The administration of IGF-1 alone as an independent therapy should be 

cautioned against as studies by Langouche and van den Berghe [27] showed that in 

nonburned, critical care patients, IGF-1 alone lacks efficacy.

Insulin

Insulin remains one of the most extensively studied therapeutic agents, leading to the 

discovery of novel uses for this hormone. Apart from decreasing blood glucose via 

mediation of peripheral glucose uptake into adipose tissue and skeletal muscle, or 

suppressing hepatic gluconeogenesis, insulin also increases DNA replication and protein 

synthesis via modulating amino acid uptake, increasing fatty acid synthesis, and decreasing 

proteolysis [28]. Owing to the latter property, insulin is particularly attractive as an 

antihyperglycemia therapy in severely burned patients in light of the findings that muscle 

protein synthesis increases, donor site healing accelerates, and lean body mass loss and the 

acute-phase response each decrease when insulin is administered during acute 

hospitalization [29–31]. The European multicenter trial Efficacy of Volume Substitution and 

Insulin Therapy in Severe Sepsis found that when administered to patients with severe 

infections and sepsis, insulin administration did not affect mortality; however, severe 

hypoglycemia was four-fold higher with intensive insulin as opposed to conventional 

therapy [32]. Another large multicenter study reported a dramatic increase in serious 

hypoglycemic episodes with the use of a continuous hyperinsulinemic–euglycemic clamp 

throughout ICU stay [33]. The gap in knowledge that remains is to determine the ideal target 

glucose range, although clinical trials to determine ideal glucose levels for ICU and burned 

patients are underway. Suggestions for reduction of glucose levels to 140 mg/dl or less [34] 

or to less than 150 mg/dl [35] have been made. For severely burned patients, reductions to 

140 mg/dl resulted in decreased morbidity and mortality, whereas attenuation of the 

hypermetabolic response was seen with blood glucose levels 130 mg/dl or less [36].

Although maintaining a continuous hyperinsulinemic–euglycemic clamp in burn patients is 

particularly difficult because of the necessity for continuous enteral feeding to maintain 

euglycemia, the occasional halt in enteral feeding because of daily dressing changes or 

weekly operations may disrupt gastrointestinal motility and increase the incidence of 

hypoglycemia [8].

Testosterone, ketoconazole, and oxandrolone

Despite the profound improvements anabolic agents have on improving lean body mass, 

physical activity is imperative to developing strength [37]. Burn patients have significant 

reductions in testosterone such that severely burned men have similar concentrations of 

serum testosterone to women [38]. Exogenous testosterone administration for 2 weeks 

resulted in a two-fold reduction in muscle protein breakdown and improved net muscle 

balance and protein synthesis efficiency [38]. Similarly, the antifungal imidazole 

ketoconazole reduces steroid synthesis by blocking P450-dependent enzyme systems 

[39,40]. However, in burned children, although cortisol levels were reduced to a normal 

range for up to 60 days after injury, ketoconazole administration did not impact 
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inflammation, hormone secretion (IGF-1, rhGH, and IGFBP-3), hypermetabolism, organ 

function, or net protein balance/synthesis [41].

Administration of the testosterone analog oxandrolone leads to increased muscle protein 

catabolism via improved protein synthesis efficiency [42], better donor site wound healing 

times, and reduced weight loss [43]. Length of hospital stay resulted from the administration 

of 10 mg of oxandrolone every 12 h in a prospective randomized study [44]. In a large 

single-center, prospective, double-blinded, randomized trial, 0.1 mg/kg of oxandrolone 

administered every 12 h, in an age-independent manner, reduced length of hospital stay, 

maintained lean body mass, and improved hepatic protein synthesis [45,46]. Compliance 

with long-term administration of oxandrolone is good because of the oral, and not injected, 

route of administration. The effects of burn-associated hypermetabolism on body tissues are 

significantly reduced, leading to significant increases in total body mass, lean body mass, 

and bone mineral content throughout the 1-year administration period [47]; resting energy 

expenditure and the rate pressure product were reduced [48], whereas lung function 

improved [49■] with the 1-year administration of oxandrolone. In a 5-year follow-up study, 

the improvements in bone mineral content with oxandrolone were found to persist for up to 

5 years postburn – despite cessation of oxandrolone treatment 1 year after injury [48]. 

Children treated with oxandrolone gained greater height percentiles as well. The 

combination of exercise with oxandrolone was even more effective, leading to greatest 

efficacy in children between the ages of 7 and 18 years, with significant increases in lean 

body mass and muscle strength. Duration of administration of oxandrolone directly impacts 

the outcomes; patients receiving oxandrolone for up to 2 years postburn had significantly 

greater increases in bone mineral content, bone mineral density, and height velocities 

compared with control patients. Interestingly, when compared with patients treated with 

oxandrolone for up to 1 year, those patients in the cohort receiving oxandrolone for 2 years 

had significantly improved bone mineral density and content [50■■]. Thus, despite the 

elusive benefits of steroid hormones such as testosterone or ketoconazole, oxandrolone is 

superior in terms of improving outcomes in severely injured patients.

Propranolol

Propranolol has shown great promise in terms of reversing the effects of injury. Propranolol 

administration to severely burned patients reduced resting energy expenditure, marked 

tachycardia, and thermogenesis [4,51,52]. With a reduction in heart rate of 20%, cardiac 

work decreased significantly [51,52]. Propranolol prevents peripheral lipolysis by blocking 

the activation of the β-2-adrenergic receptor by catecholamines, which are elevated to 

supraphysiologic levels postburn [4,51,53,54]. At the same time, a significant decrease in 

fatty infiltration of the liver occurs with propranolol administration [55]. Decreased skeletal 

muscle wasting and improvements in lean body mass were found with propranolol 

administration [51]. Despite the numerous benefits, the mechanisms underlying propranolol 

administration have yet to be fully elucidated. The efficacy of propranolol may be a result of 

increased protein synthesis taking place in an environment that promotes reduction in 

peripheral lipolysis and persistent protein breakdown [56]. Glucose levels, typically elevated 

in severely burned patients, can be normalized with propranolol administered 4 mg/kg body 

weight/q24, significantly reducing the amount of insulin needed [52]. Taken together, 
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propranolol is a promising treatment to counteract postburn insulin resistance. The 

advantages attributed to postburn propranolol administration persist beyond the acute 

hospitalization period. In patients receiving propranolol for 1 year following burn injury, 

significant reductions in the percentage of predicted resting energy expenditure and in the 

percentage of the predicted heart rate were found [57]. Additionally, central mass and central 

fat accumulation were significantly reduced. Long-term administration of propranolol also 

improved the accretion of lean body mass and prevented bone loss over the course of 1 year.

Novel agents

In severely injured patients, metformin, a member of the biguanide family, has recently 

emerged as an alternative therapy for the management of hyperglycemia [58]. Metformin 

counteracts the major metabolic processes that drive injury-induced hyperglycemia via 

preventing gluconeogenesis and impaired peripheral insulin sensitivity [59]. In addition, 

metformin is not typically associated with inducing hypoglycemic events associated with the 

administration of exogenous insulin [60■■]. A small, randomized study showed the 

reduction of glucose concentrations and of endogenous glucose production alongside faster 

glucose clearance with metformin treatment [58]. Metformin increased the muscle protein 

fractional synthetic rate and improved net muscle protein balance as well [59]. In a recent 

phase II randomized control trial, metformin administered to adult burn patients 

demonstrated safety and efficacy and appears to be an alternative to insulin [60■■]. As a 

replacement for insulin to control blood glucose, metformin is a promising alternative that 

has proven efficacy for counteracting hyperglycemia and muscle protein wasting in critically 

injured patients. Despite therapeutic potential and numerous benefits, metformin is 

associated with lactic acidosis [61]. Metformin-associated lactic acidosis can be avoided by 

not administering to patients with a potential risk for impaired lactate elimination (such as 

occurs with renal or hepatic failure) or tissue hypoxia. Caution should be used when 

administering metformin to subacute burn patients.

Other agents are being trialed as antihyperglycemia agents in severely burned patients, 

including glucagon-like peptide 1 (GLP-1) and the peroxisome proliferator-activated 

receptor gamma agonists such as the thiazolidinedione pioglitazone. Cree et al. [62] 

demonstrated in a prospective, double-blind, placebo-controlled randomized trial that the 

peroxisome proliferator-activated receptor alpha agonist fenofibrate significantly improved 

mitochondrial glucose oxidation, increased insulin sensitivity, and reduced plasma glucose. 

Improved insulin receptor signaling was found in muscle with fenofibrate treatment via 

greater tyrosine phosphorylation of the insulin receptor 1 after hyperinsulinemic– 

euglycemic clamp compared with placebo patients [62]. Similarly, exogenous administration 

of GLP-1 decreases blood glucose by counteracting glucagon, stimulating insulin, and 

suppressing gastric emptying, which are not associated with hypoglycemia. In a recent 

study, Deane and colleagues investigated seven mechanically ventilated critically ill patients 

with no known history of diabetes, and showed that acute exogenous GLP-1 infusion 

significantly attenuated the glycemic response to enteral nutrition. These results suggest that 

GLP-1 and/or its analogues may have potential in the management of hyperglycemia in 

critically ill patients [63,64].
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CONCLUSION

Critical illness induces profound metabolic derangements, which are associated with 

persistent changes that underlie adverse outcome in this patient population. Oxandrolone 

and propranolol have been shown to have great promise in improving long-term outcomes 

and reducing catabolism individually. Additionally, other pharmacological treatments have 

proven successful in attenuating the hypermetabolic response, including IGF and growth 

hormone (Table 1, Fig. 1). Although maintaining blood glucose levels at 130 mg/dl with 

intensive insulin therapy reduces mortality and morbidity in critically ill patients, associated 

hypoglycemic events have led to the investigation of alternative strategies such as metformin 

and fenofibrate. Nevertheless, additional investigations are warranted in critically ill patients 

to determine ideal glucose ranges, the safety and efficacy of new therapies, and whether the 

coadministration of these therapies could yield greater improvements.
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KEY POINTS

• A complex network of hormones and other effectors characterize the 

hypermetabolic response in critical illness, resulting in myriad 

pathophysiological alterations.

• Presently, propranolol and oxandrolone represent the most efficacious 

anticatabolic therapies.

• Novel pharmacological approaches have emerged to counteract 

hypermetabolism and catabolism in burn and critically ill patients, including 

metformin, GLP-1, and fenofibrate.
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FIGURE 1. 
Pathophysiological alterations in multiple organs after burn trauma.

Stanojcic et al. Page 12

Curr Opin Crit Care. Author manuscript; available in PMC 2021 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Stanojcic et al. Page 13

Ta
b

le
 1

.

Su
m

m
ar

y 
of

 th
e 

m
ai

n 
ef

fe
ct

s 
of

 v
ar

io
us

 p
ha

rm
ac

ol
og

ic
 in

te
rv

en
tio

ns
 to

 a
lte

r 
th

e 
hy

pe
rm

et
ab

ol
ic

 r
es

po
ns

e 
to

 b
ur

n 
in

ju
ry

D
ru

g
In

fl
am

m
at

or
y

re
sp

on
se

St
re

ss
ho

rm
on

es
B

od
y

co
m

po
si

ti
on

N
et

 p
ro

te
in

 b
al

an
ce

In
su

lin
 r

es
is

ta
nc

e/
gl

uc
os

e 
m

et
ab

ol
is

m
C

ar
di

ac
 w

or
k

rh
G

H
Im

pr
ov

ed
N

o 
di

ff
er

en
ce

Im
pr

ov
ed

N
o 

di
ff

er
en

ce
H

yp
er

gl
yc

em
ia

N
o 

di
ff

er
en

ce

IG
F-

1
Im

pr
ov

ed
N

o 
di

ff
er

en
ce

Im
pr

ov
ed

Im
pr

ov
ed

Im
pr

ov
ed

N
o 

di
ff

er
en

ce

O
xa

nd
ro

lo
ne

Im
pr

ov
ed

N
o 

di
ff

er
en

ce
Im

pr
ov

ed
Im

pr
ov

ed
N

o 
di

ff
er

en
ce

N
o 

di
ff

er
en

ce

In
su

lin
Im

pr
ov

ed
N

o 
di

ff
er

en
ce

Im
pr

ov
ed

Im
pr

ov
ed

Im
pr

ov
ed

N
o 

di
ff

er
en

ce

Fe
no

fi
br

at
e

N
o 

di
ff

er
en

ce
N

o 
di

ff
er

en
ce

N
o 

di
ff

er
en

ce
N

o 
di

ff
er

en
ce

Im
pr

ov
ed

N
o 

di
ff

er
en

ce

G
L

P-
1

U
nk

no
w

n
U

nk
no

w
n

U
nk

no
w

n
U

nk
no

w
n

Im
pr

ov
ed

 (
in

di
re

ct
)

U
nk

no
w

n

M
et

fo
rm

in
Im

pr
ov

ed
U

nk
no

w
n

U
nk

no
w

n
Im

pr
ov

ed
Im

pr
ov

ed
U

nk
no

w
n

Pr
op

ra
no

lo
l

Im
pr

ov
ed

Im
pr

ov
ed

Im
pr

ov
ed

Im
pr

ov
ed

Im
pr

ov
ed

Im
pr

ov
ed

K
et

oc
on

az
ol

e
U

nk
no

w
n

Im
pr

ov
ed

U
nk

no
w

n
U

nk
no

w
n

U
nk

no
w

n
U

nk
no

w
n

rh
G

H
 +

 p
ro

pr
an

ol
ol

Im
pr

ov
ed

Im
pr

ov
ed

Im
pr

ov
ed

Im
pr

ov
ed

Im
pr

ov
ed

Im
pr

ov
ed

O
xa

nd
ro

lo
ne

 +
 p

ro
pr

an
ol

ol
Im

pr
ov

ed
 (

pr
el

im
in

ar
y)

Im
pr

ov
ed

 (
pr

el
im

in
ar

y)
Im

pr
ov

ed
 (

pr
el

im
in

ar
y)

Im
pr

ov
ed

 (
pr

el
im

in
ar

y)
Im

pr
ov

ed
 (

pr
el

im
in

ar
y)

Im
pr

ov
ed

 (
pr

el
im

in
ar

y)

G
L

P-
1,

 g
lu

ca
go

n-
lik

e 
pe

pt
id

e 
1;

 I
G

F-
1,

 in
su

lin
-l

ik
e 

gr
ow

th
 f

ac
to

r 
1;

 r
hG

H
, r

ec
om

bi
na

nt
 h

um
an

 g
ro

w
th

 h
or

m
on

e.
 A

da
pt

ed
 f

ro
m

[2
0,

24
–2

6,
42

,4
5,

51
,5

3,
54

,6
1,

63
]a

nd
 p

re
vi

ou
sl

y 
pu

bl
is

he
d 

in
[2

1]
.

Curr Opin Crit Care. Author manuscript; available in PMC 2021 February 04.


	Abstract
	INTRODUCTION
	Anabolic and anticatabolic treatment options
	Recombinant human growth hormone and insulin-like growth factor 1
	Insulin
	Testosterone, ketoconazole, and oxandrolone
	Propranolol
	Novel agents

	CONCLUSION
	References
	FIGURE 1.
	Table 1.

