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Abstract

Outcomes of patients with burns have improved substantially over the past two decades. Findings 

from a 2012 study in The Lancet showed that a burn size of more than 60% total body surface area 

burned (an increase from 40% a decade ago) is associated with risks and mortality. Similar data 

have been obtained in adults and elderly people who have been severely burned. We discuss recent 

and future developments in burn care to improve outcomes of children.

Introduction

Major burn injury is the biggest trauma and can be classified according to cause and depth of 

the burns. Every year, more than half a million burn injuries happen in the USA.1 These 

injuries are typically not severe, although about 50 000 patients with burns still need 

admission and treatment at a burn centre or burn hospital. Because the effects of burns are 

debilitating, substantial resources have been devoted to the specialty, which has greatly 

improved outcomes of patients with burns.2–4 Improved outcomes can be attributed to 

specialised burn centres, advances in resuscitation, protocolised and specialised critical care, 

improved coverage of wounds and treatment of infections, better treatments for inhalation 

injury, and the burn-induced hypermetabolic response.4,5 Another major advance is the 

recent initiatives by burn care providers to hold consensus conferences and implement 

specific definitions of disease processes in patients who have been severely burned, which 

will allow appropriate multicentre trials6 and comparative studies to be done. All these 

changes have substantially improved morbidity and mortality after burn injury. In a recent 

study in The Lancet,5 we showed that the burn size associated with increased risk of 

mortality at a specialised centre increased from 40% total body surface area (TBSA) burned 

to more than 60% TBSA burned in the past decade or so.5 We would like to emphasise that 
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the pathophysiological response to burn injury and the mortality of patients with burns are 

proportional to the extent of burn in a sigmoid dose-response way, and that these responses 

are not an all or none phenomenon beginning at 60%. The cutoff for these 

pathophysiological responses is around 30% TBSA burned in children (aged 0–18 years), 

20% in adults (aged 18–65 years), and about 15% in elderly people (older than 65 years).

Despite advances in burn care, severe burns still damage almost every organ in the body, 

resulting in profound debilitating complications or even death.2–5,7 Every year, nearly 4000 

cases of burns result in death from complications related to thermal injury.2,8,9 Deaths 

caused by burns generally happen either immediately after the injury or weeks later as a 

result of infection or sepsis, multisystem organ failure, or hypermetabolic catabolic 

responses.5,10 In the past decade, the cause of death has changed profoundly.10 10 years ago, 

the major cause of death in patients who had been severely burned and admitted to a burn 

centre was anoxic brain injury, followed by sepsis and multiple organ failure. Nowadays, the 

major cause of death in burned paediatric patients is sepsis followed by multiple organ 

failure and anoxic brain injury.10 This shift in the cause of death requires a review of the 

basic understanding and treatment approaches to further improve post-burn morbidity and 

mortality. Patient outcome and survival are directly related to the quality of the complex care 

that burn patients receive. Three key aspects of care exist. First, initial care at the scene, pre-

hospital care, and the early hospital phase: adequate and timely response, assessment of the 

burns, resuscitation, and admission to a burn centre, escharotomies or fasciotomies, 

resuscitation, and treatment of inhalation injury. Second, after hospital phase: wound care 

including burn surgeries, infection control, maintenance of organ function, and attenuation 

of hyper metabolism. Third, long-term phase: persistent hypermetabolism, reconstruction, 

and rehabilitation.

Four interrelated aspects seem to be crucial for survival: burn shock and resuscitation, 

inhalation injury, wound closure, and burn hypermetabolism. Therefore, we discuss standard 

and novel treatments in these specialties. Pain control is an important aspect of burn care 

that affects burn outcomes and quality of life at all stages, but will not be discussed in depth. 

Modern pain management has substantially evolved and includes multimodal treatments 

such as shortacting and long acting opioids, methadone, ketamine, central-acting agents 

(gabapentin), non-steroidal anti-inflammatory drugs, anxiolytics, and antidepressants. 

Tremendous improvements have been made over the past decades, but detailed discussion of 

these modalities is beyond the scope of this Review.

Burn shock and resuscitation

According to guidelines from the American Burn Association, the management of a patient 

with burns starts after emergency medical response teams are called and the patient is 

assessed and transported to a burn centre. A crucial part of this phase is establishing whether 

a patient’s injury is survivable or futile. Futility in adults or elderly patients with burns is 

usually determined by the sum of age (years), burn size (%), and the presence or absence of 

inhalation injury (±17), with values of greater or equal to 140–150 being indicative of 

futility.11 However, we focus on paediatric care, and the philosophy of many paediatric burn 

centres is that there is no futility in children except in very rare instances—eg, a 100% 
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TBSA full-thickness burn. Once the decision to treat is made, the initial management and 

therapeutic goal is preservation of limbs and prevention of organ failure, which begins with 

well established recognition of injury severity, first-care protocols,2,4 and surgical 

interventions. An essential part of this response is adequate resuscitation.12–14 Many 

formulas have been studied, and all have the same goal of maintenance of organ perfusion 

during burn shock with restoration of intravascular volume. The most commonly used 

formula is the Parkland Formula,13 which provides the total volume of crystalloid to be 

given over the first 24 h (4 mL/kg bodyweight/% TBSA burned).12,15 However, recent data 

suggest that the Parkland Formula provides incorrect estimates of fluid requirements in 

patients with large and deeper burns, inhalation injury, delays in resuscitation, alcohol or 

drug use, and electrical injury, resulting in inadequate and inappropriate resuscitation.12,15 

The catastrophic events associated with under-resuscitation include multiple organ failure 

and death. Over-resuscitation induces so-called fluid creep12,13,16,17 with its inherent 

complications such as pulmonary oedema, pleural effusions, pericardial effusions, 

abdominal compartment syndrome, extremity compartment syndrome, and con version of 

burns to deeper wounds. Additionally, provision of more fluid than is needed in patients with 

burns substantially increases the risk of acute respiratory distress syndrome, pneumonia, 

blood stream infections, multiple organ failure, and death.18

One of the greatest challenges in resuscitation is monitoring whether the procedure is 

adequate and effective. The traditional endpoints of urine output (0·5–1 mL/kg 

bodyweight/h), mean arterial pressure (>65 mm Hg), normal base excess, and lactate 

concentrations are not always accurate and can be misleading.13,15,18 However, no better 

physiological markers exist that enable adequate resuscitation, and therefore, these 

parameters remain the gold standard. New attempts to improve and individualise 

resuscitation include use of thermal dilution catheters (PiCCO, Philips, UK)14,19 and 

computer-assessed closed loop resuscitation.20,21 These technologies hold promise but have 

not been fully established in the clinic.

Scientific literature addresses not only the amount of fluid used in resuscitation, but also the 

type of fluid. Crystalloids have been compared with colloids or other means of resuscitation. 

So far, no large prospective randomised trial has been done to establish whether crystalloids 

are better than colloids in resuscitation. However, most burn surgeons use crystalloids (eg, 

Ringer’s lactate) and add colloids (eg, albumin) as a rescue modality.13,22 Fresh frozen 

plasma, which is used in patients with trauma, is not given to patients with burns because 

experimental and clinical trials assessing the efficacy of the fluid have not been done in this 

patient population. Hypertonic saline showed some promise in small studies of patients with 

burns,23 but failed to improve outcome in patients with traumatic brain injury.24 

Resuscitation has profoundly evolved over the past two decades and will continue to do so, 

because the procedure has a central role in survival soon after burn.

Inhalation injury

Another key component of early burn care is maintenance of adequate oxygenation and 

treatment of inhalation injury. A marked proportion of fire-related deaths are not attributable 

to burn injury, but to the toxic effects of airborne combustion byproducts.15,25–27 Many of 
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these compounds can act together to increase mortality. Recent studies suggest that between 

20% and 30% of all severe burns are associated with inhalation injury and that between 25% 

and 50% of patients die if they need ventilator support for more than 1 week after burn.2,4,26 

Inhalation injury substantially increases mortality15,26,28 and usually needs endotracheal 

intubation, which increases the incidence of pneumonia. Early detection of 

bronchopulmonary injury is crucial to improve survival. Clinical signs of inhalation injury 

vary,15,26 but inhalation injury can be suspected when the patient has been exposed to smoke 

in an enclosed area and has physical findings of burns on the face, singed nasal vibrissae, 

bronchorrhoea, sooty sputum, and wheezing or rales. The best practice to diagnose 

inhalation injury is bronchoscopy with the inhalation injury scale of Endorf and colleagues.
25 Once inhalation injury is diagnosed, treatment of the injury should start immediately. 

Patients with inhalation injury should not be prophylactically intubated, nor should they 

receive prophylactic antibiotics. Standard care protocols for inhalation injury include 

bronchodilators (salbutamol), nebulised heparin, nebulised acetylcysteine, and for extreme 

mucosal oedema, racemic adrenaline.15,26 The theoretical benefits of corticosteroid 

treatment include decreased mucosal oedema, reduced bronchospasm, and maintenance of 

surfactant function. However, in several animal and clinical studies, mortality increased with 

corticosteroid treatment, and bronchopneumonia was associated with more extensive abscess 

formation.2 Thus, the use of corticosteroids is contraindicated.

Why patients with an inhalation injury have increased mortality is not entirely clear. A 

recent large, multicentre trial (n=420) that had very well developed standard operating 

procedures at each site was undertaken to compare outcomes in patients with and without 

inhalation injury and to establish the effect of inhalation injury on tissue-specific changes in 

genomic expression (unpublished data). Clinical outcomes in this trial confirmed findings 

from previous trials, showing that patients with inhalation injury have increased mortality 

and need longer intensive-care unit stays, hospitalisations, and time on ventilation. This trial 

was unique in that the investigators identified the effect of inhalation injury on genomic 

expression in peripheral blood leucocytes. The results showed that inhalation injury was 

associated with only subtle alterations in 169 probe sets corresponding to 115 genes, which 

encode proteins known to participate in cell cycle and transcriptional control. This 

multicentre trial showed that inhalation injury is associated, not only with poor outcomes 

after burn, but also with genomic changes that are not as dramatic as one would expect. That 

is, inhalation injury causes only distinct changes and not larger scale changes in the genome. 

This finding was confirmed in a study in 2007,29 which showed that inhalation injury was 

not associated with major inflammatory changes, but with minimum distinct changes 

indicative of a slight immunosuppressive effect. However, more research needs to be focused 

on this injury to better understand the underlying mechanisms and to develop new 

treatments.

Wound closure

Closure of the burn wounds establishes length of hospital stay, risk of infection, and 

ultimately survival, whereas failure to get the wounds closed results in death. Treatment 

strategies for superficial wounds must be differentiated from treatment plans for deeper 

wounds. The most important factor in the improvement of patient outcome has been the 
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implementation of early excision and grafting of burn wounds, which was first described by 

Janzekovic30 in the 1970s. Findings from subsequent studies clearly showed that if the 

source of stress and inflammation is removed early, surgical blood loss is reduced31 and 

survival is markedly improved.32,33 The challenge that came along with this approach was 

how to best cover the excised burn wounds. The gold standard is to cover these wounds with 

autografts, either as a sheet or meshed skin with or without coverage of allograft (cadaver 

skin), or synthetic materials. Several new strategies that might change how we surgically 

care for patients with burns are on the horizon.

Partial-thickness burns

Partial-thickness burns can be categorised as either superficial or deep burns. Superficial 

wounds usually heal between 7 and 14 days, whereas complete reepithelialisation of deep 

dermal burns can take up to 4–6 weeks, with scarring often resulting from the loss of dermis. 

A large variety of topical creams and agents are available for treatment, and many are silver-

based for anti-infective effects. Recent studies support the use of synthetic and biosynthetic 

membranes—eg, Biobrane (Smith and Nephew, MA, USA), established in 1982, and 

Suprathel (Polymedics Innovations GmbH, Germany).34,35 These membranes decrease the 

number of dressing changes and the amount of pain drugs associated with these dressing 

changes. Several studies of Biobrane show that this membrane is efficacious for superficial 

burns.36–38 Suprathel is a synthetic copolymer containing more than 70% DL-lactide. 

Findings from prospective randomised clinical studies of partial-thickness burns and split-

thickness donor sites have shown that Suprathel is associated with less pain than other 

commercially available membranes, although wound healing times and long-term scar 

qualities are similar between this synthetic membrane and other membranes.34

A novel approach to burn wound coverage is the use of biological membranes. Human 

amniotic membrane has a long history of use as a wound dressing. However, amnion can 

only be used as a temporary wound covering, not as a skin transplant. In the past 20 years, 

data for the use of amnion in burn wound coverage have accumulated. Some of the benefits 

of amnion are that it is thin, pliable, adhesive, but not prone to sticking, and easily removed. 

In a recent prospective study of burns in children by Branski and colleagues,39 amnion 

showed outstanding wound healing properties and produced excellent long-term cosmetic 

results. The most fascinating aspect of amniotic membrane is that it contains stem cells, 

which can be applied in various ways to create new treatment approaches. These approaches 

will be further investigated in prospective clinical trials.

Bioengineered approaches have also been tested for use in patients with partial-thickness 

burns. Examples include keratinocyte-fibrin sealant sprays, fibrin sealant-containing growth 

factors, and cell suspensions.

Full-thickness burns

Full-thickness burns are deep wounds that will either not heal or heal with a debilitating scar. 

These burns are treated by excision and coverage with autograft. As already mentioned, if 

complete autografting is not possible because the burn is large, allograft or other dermal or 

epidermal substitutions are needed. The scientific and commercial community agrees that 
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harvesting autograft is the standard, although this is an ancient approach. Therefore, several 

new approaches have surfaced over the past two decades. The oldest and best studied dermal 

substitute is Integra (Integra LifeSciences Corporation, Plainsboro, NJ, USA), which was 

developed by a team led by surgeon John Burke from the Massachusetts General Hospital 

(Boston, MA, USA) and by scientist Ionnas Yannas from the Massachusetts Institute of 

Technology (Cambridge, MA, USA).40,41 Integra is composed of bovine collagen and 

glucosaminoglycans, which allow fibrovascular ingrowth. Findings from various clinical 

trials have shown that Integra is an effective method for burn surgeons and results in 

excellent cosmetic and functional outcomes.39,42 Another dermal analogue available for the 

treatment of full-thickness burns is Alloderm (LifeCell Corporation, Branchburg, NJ, USA). 

Alloderm consists of cadaveric dermis devoid of cells and epithelial element. Dermal 

analogue is used in a similar way to other dermal analogues, and it has produced favourable 

results.43

After the potential of dermal substitutes was recognised, the trend became to produce 

epithelial skin substitutes with or without a dermis. Cultured epithelial autografts became a 

surgical option in the management of patients with massive injuries involving more than 

90% TBSA burned. Cultured epithelial autografts are created in vitro from autologous 

keratinocytes and as the name suggests, consist of keratinocytes. The promise of this 

technique has not been fully realised because of costs and the low quality of the neo-skin;44 

however, it is regarded as a rescue modality for massive burns. A possible improvement over 

cultured epithelial auto grafts is ReCell (Avita Medical, Royston, UK). This spray contains 

autologous keratinocytes, melanocytes, fibroblasts, and Langerhans cells that are harvested 

from a split-thickness biopsy. ReCell is sprayed onto the wound, which is usually grafted 

with widely meshed autograft. Positive findings from small animal studies and clinical trials 

need to be confirmed in larger randomised multicentre trials.45,46 This ReCell trial is in 

progress and results are expected by 2014.

Another very promising bioengineered approach is the combination of autologous 

keratinocytes and Integra, known as cultured skin substitute. Boyce and col leagues47,48 first 

described this method in the 1990s. The healing and take was very good, but cultured skin 

substitute had several issues: no or spotty pigmentation, a long production time, and high 

overall costs. Since then, the investigators have added melanocytes, shortened the time of 

production, and with novel manipulation, introduced hair follicle and sweat glands.49,50 The 

addition of skin appendages might make this a highly promising method for the future care 

of patients with burns. Researchers are also investigating the possibility of using porcine 

dermis as a dermal substitute. Porcine dermal matrices are very similar to human dermal 

matrices. Although the porcine matrices have the dis advantages of xenografts, they 

represent the first choice among natural biological dermal substitutes that are not derived 

from human beings. Many researchers consider these matrices to be the best substitute for 

acellular human dermal matrices in the future.51,52 Three acellular porcine dermal matrices 

are on the market: Permacol (Covidien, Ireland), Strattice (Kinetic Concepts, Kidlington, 

UK), and Xenoderm (Healthpoint Biotherapeutics, Fort Worth, TX, USA). The efficacy of 

these dermal matrices needs to be proven in clinical trials.
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Stem cells represent a new hope in the management of burns. These cells play an important 

part in wound healing, both locally and systemically, and several of the mechanisms 

underlying their actions in wound healing have been described. In human beings, stem cells 

can be found in adipose tissue, bone marrow, umbilical blood, and the blastocystic mass of 

embryos.53,54 Stem cells have many promising features. In view of their clonicity and 

pluripotency, these cells can be used to regenerate dermis and expedite re-epithelialisation. 

Another important characteristic of stem cells is their lack of immunogenicity, which would 

allow them to be transplanted with relative ease.55,56 Stem cells present in the bone marrow 

migrate to tissues affected by injury and help the healing and regeneration process.54 

Embryonic human stem cells can be differentiated into keratinocytes in vitro and stratified 

into an epithelium that resembles human epidermis.57 This graft can then be applied to open 

wounds on patients with burns as a temporary skin substitute while autograft or other 

permanent coverage means become available.

Facial transplantation

Serious facial burns leave victims with substantial deformities that are difficult to treat. No 

evidence exists to suggest that standard treatment modalities for severe facial burns offer 

substantial improvements in function or scar outcome. These patients frequently become 

socially and personally isolated, and many suffer from psychological disorders and phobias.
58,59 These patients also tend to need multiple reconstructive procedures under conditions in 

which minimal normal tissue (secondary to burns in other areas) is available. Facial 

transplantation in such patients can offer the possibility of improved quality of life. 

Following the lead of a surgical team in Amiens, France, in 2005,60,61 several groups in 

Europe, China, and the USA have successfully done composite tissue allotransplantation. 

This transplantation of donor facial tissue allows for the best possible functional and 

aesthetic outcome. Antirejection drug regimens for solid organ transplantation are well 

established.58,59 However, this new treatment poses unique psychological and ethical 

challenges that need to be addressed by a dedicated team.62 Once the large challenges posed 

by facial transplantation are overcome, this will become a promising treatment for patients 

with serious facial burns.63

Hypermetabolism

A key cause of poor outcomes after burn injury is the hypermetabolic response, which is 

associated with severe alterations in glucose, lipid, and aminoacid metabolism.3,7,64,65 

Hypermetabolism leads to severe catabolism, which is associated with protein breakdown in 

muscle and in organs, leading to multiple organ dysfunction. Therefore, hypermetabolism, 

organ function, and consequently survival, seem to be closely linked. The burn-induced 

hypermetabolic response that occurs in the ebb phase (48 h after burn) and flow phase (>96–

144 h after burn) is profound, extremely complex, and most likely induced by stress and 

inflammation.3,7,64,65 The reason for this response is not entirely clear, but persistent 

increases in catecholamines, glucocorticoids, glucagon, and dopa-mine secretion are thought 

to participate in activating cascades that trigger the hyper metabolic response and subsequent 

catabolism.66–73 Additionally, coagulation and complement cascades and cytokines, 

endotoxin, neutrophil-adherence complexes, reactive oxygen species, and nitric oxide can 
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modulate the hypermetabolic response.74 After activation, the pathways upstream of the 

hypermetabolic response seem to contribute to prolonged hypermetabolism with changes in 

glucose, lipid, and aminoacid metabolism.7,64 These metabolic changes were previously 

thought to resolve shortly after wound closure was complete. However, we have recently 

shown that burn-induced hypermetabolism seems to last a much longer time, as seen by a 3 

year increase in energy requirements, catecholamines, urine cortisol, and serum cytokines, 

and impairment in glucose metabolism and insulin sensitivity.7,64,75 These results 

underscore the importance of long-term follow-up and treatment of individuals with serious 

burns.

The hypermetabolic response involves many pathways. However, two in particular seem to 

most profoundly affect outcomes after burn injury: glucose metabolism with insulin 

resistance and hyperglycaemia76–79 and lipid metabolism with increased lipolysis.80–83 

Early after burn injury, concentrations of glucose increase and glucose removal is impaired, 

leading to an overall rise in glucose and lactate.84,85 Hyperglycaemia in patients with burns 

is associated with increased frequency of infections, sepsis, incidence of pneumonia, 

catabolism, hypermetabolism, and most importantly, mortality.76–79,86,87 The notion that 

hyperglycaemia is detrimental to patients with burns is further supported by findings from a 

prospective randomised trial79 showing that glucose control increases survival and improves 

organ function. Lipid metabolism is also markedly altered during hyper metabolism after 

burn injury, an outcome that might be linked to changes in insulin resistance. Lipolysis 

consists of the breakdown (hydrolysis) of triacylglycerol into free fatty acids and glycerol. 

Lipolysis and free fatty acids contribute to morbidity and mortality after burn injury through 

fatty infiltration of various organs.88 Fatty liver is very common after burn injury and is 

associated with an increase in clinical morbidities and metabolic alterations. Findings from 

pathology analyses89,90 and spectroscopy studies have shown that children with burns have a 

three times to five times increase in hepatic triglycerides.91,92 This increase is associated 

with infection, sepsis, and poor outcome.80 Although this relation is clear, the mechanism by 

which lipids induce insulin resistance is not well understood.

Treatment of the hypermetabolic response

Various data suggest that hypermetabolism is a major contributor to poor outcome after burn 

and that treatment or alleviation of the hypermetabolic response is beneficial for patient 

outcomes. Treatment options include pharmacological and non-pharmacological strategies.3

The main goal of nutritional support is to provide an adequate energy supply and the 

nutrients necessary to maintain organ function and survival. Early adequate enteral nutrition 

alleviates catabolism and improves outcomes;93 however, overfeeding in the form of excess 

calories or protein, or both, is associated with hyperglycaemia, carbon dioxide retention, 

fatty infiltration of organs, and azotaemia (figure).95 Therefore, accurate calculation of the 

caloric requirements is imperative. Resting energy requirements of patients with burns are 

commonly estimated with equations that incorporate body mass, age, and sex. Although 

these equations are based on patient-specific factors, caloric requirements can still be greatly 

overestimated, increasing the risk of overfeeding.96,97 The adapted Toronto equation seems 

to be the best formula to calculate resting energy expenditure, because the calculated results 
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very closely match the measured values.98 Generally, adequate nutrition is an essential 

component of burn care and should be initiated within 12 h after injury.99

No ideal nutrition or gold standard for patients with burns exists. We and others4 recommend 

nutrition that is high in glucose, high in protein and aminoacid, and low in fat with some 

unsaturated fatty acids. Carbohydrates and aminoacids should serve as the main energy 

source, sparing protein from oxidation for energy and allowing it to be effectively used by 

the skin and organs. Supplementation of single aminoacids, especially alanine and 

glutamine, is controversial. After burn injury, glutamine is quickly depleted from serum and 

muscle.100,101 However, this depletion happens mainly intracellularly, and effective delivery 

of glutamine to the cells is very difficult. Findings from small studies in patients with burns 

show that glutamine supplementation decreases incidence of infection, length of hospital 

stay, and mortality.100,101 Therefore, glutamine supplementation might be beneficial. A 

multicentre trial (REDOX; NCT00133978) is addressing this question, and the results are 

expected in the next 4–5 years. However, preliminary data102 suggest that, in critically ill 

patients, glutamine has no benefit in terms of outcomes. Published work of alanine is even 

sparser, and no data are available for whether alanine should be given. Finally, dietary 

components that have gained more recent attention are vitamins, micro nutrients, and trace 

elements.103 Plasma concentrations of vitamins and trace elements are substantially 

decreased for prolonged periods after the acute burn injury because of increased urinary 

excretion and substantial cutaneous losses. Replacement of these micronutrients reduces 

morbidity in patients with severe burns.104–110 Therefore, a complete daily multi vitamin 

and mineral supplement should be given.

Other non-pharmacological strategies

Early wound excision and closure have been the biggest advances in burn care in the past 

few decades (figure). Early excision and grafting has substantially reduced basal energy 

expenditure, mortality, and costs.2,31–33,111 The early excision of burn wounds and coverage 

of the excised areas with temporary cover materials or autologous skin is imperative. This 

process diminishes burn-induced inflammatory and stress responses, and in turn decreases 

hypermetabolism.

The hypermetabolic response is believed to arise, at least partly, to compensate for 

dissipation of heat resulting from water loss. Accordingly, the skin and core body 

temperature are raised by 2°C. It is not often realised that increasing ambient room 

temperature is a simple approach to counter acting this response to burn injury.112 In fact, a 

change in temperature from 25°C to 33°C reduces resting energy expenditure from 2·0 times 

predicted resting energy expenditure to 1·4 times predicted resting energy expenditure in 

patients with serious burns (figure).2

Providing patients with burns with physical therapy is a crucial yet easy intervention that can 

ameliorate metabolic disruptions and prevent contractures of the burn wound. Progressive 

resistance exercises have been shown to promote muscle protein synthesis, increase body 

mass, strengthen muscles, and build endurance (figure).97,113 Resistance exercises are safe 

for burned children who do not have exercise-related hyperpyrexia.96,112
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Drugs

Drugs are used as an adjunct for the treatment of various aspects of the hypermetabolic 

response. In the past two decades, several agents have been tested; some are more effective 

and promising than others. Almost all drugs are associated with beneficial effects but also 

side-effects, some of them severe. The table shows drugs currently in use.

Outcome measures

The ultimate goal of intensive burn care is to keep the patient alive, an outcome that is 

dependent on coverage of burn wounds, maintenance of organ function, control of infection 

and sepsis, and alleviation of hyper metabolism. The ability to predict patient outcomes, 

identify patients at risk, or even individualise patient care is highly desirable. However, no 

predictors exist that would allow for any such identification. In a recent study145 of children 

with more than 30% TBSA burned, our group investigated whether trajectories differed 

between survivors and non-survivors. We noted that these groups showed profound 

differences in important markers of inflammation and metabolism at each timepoint. Serum 

concentrations of interleukin 6, interleukin 8, granulocyte colony-stimulating factor, 

monocyte chemoattractant protein-1, C-reactive protein, glucose, insulin, blood urea 

nitrogen, creatinine, and bilirubin were higher in patients who did not survive. The patients 

also had a heightened hypermetabolic response accompanied by a greater frequency of 

sepsis and organ dysfunction.145 These findings, which were the first of their kind, are 

important because they will enable the development of models that can predict patient 

outcome and treatments to improve patient outcomes. A similar study on predicting burns 

mortality was done at the time; however, it centred on spline modelling.146,147 Findings 

from this study showed that mortality could be reliably predicted by the combination of 

information about protein abundance with clinical covariates in a multi variate adaptive 

regression splines classifier. Finally, novel and exciting results are expected from the 

Inflammation and the Host Response to Injury Collaborative Research programme by Glue 

Grant. More than 500 patients with burns have been enrolled in this study, and the genomic 

and proteomic changes in patients with various outcomes and morbidities are being 

analysed. Preliminary data suggest that patients who die from burns have a distinct genomic 

profile compared with survivors. Similarly, patients with sepsis, pneumonia, multiple organ 

failure, and non-healing wounds all have a different genomic signature, suggesting that the 

genome plays a central part in the determination of outcome of an individual. The results of 

this huge trial will be published over the next 3–4 years and could lead to novel treatment 

avenues for patients with severe burns. A substantial effort is underway to identify genomic 

and proteomic predictors of good and poor outcome. Such predictors will be indispensable 

for the development of individualised medicine, and we believe that the future of burn care 

is closely linked to understanding of these patient trajectories. Nevertheless, survival after 

burn injury depends on implementation of fundamental aspects of burn care including 

wound coverage, infection control, and reduction of the hypermetabolic response.
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Conclusions

Burn injury triggers a plethora of pathophysiological responses associated with detrimental 

outcomes. Novel treatment strategies such as early excision and grafting, early and adequate 

nutrition, alleviation of the hypermetabolic response, treatment of hyperglycaemia, and the 

catecholamine surge with use of β blockers, improved ventilation strategies, and exercise 

improve survival and outcomes in patients with severe burns. Large multicentre trials with 

protocolised care will improve morbidity and mortality after burn injury, as shown by the 

Inflammation and the Host Response to Injury research programme. However, burn injury 

still causes many deaths, and hope fully, novel treatment modalities, individualised 

medicine, and genomic and proteomic profiles will further increase the lethal dose in terms 

of TBSA burn (LD 50) for patients with burns. Because of the shift in basic theory to the 

expectation that patients with severe burns will survive, burn care providers are faced with 

new challenges, especially with regard to quality of life and long-term outcomes in these 

patients. Recently, a system was developed by investigators from Shriners Hospital in 

Boston (MA, USA) to assess and quantify various aspects of functional recovery in 

convalescent patients with burns.148,149 This system allows departures from the anticipated 

trajectory of recovery for various functional indices to be identified, which ultimately 

enables researchers to identify changes needed to the rehabilitation programme.148,149 This 

Review provides insights into existing and novel therapeutic approaches to further improve 

burn outcomes. We further discuss existing and novel challenges, not only for burn care 

providers, but also for medical professionals looking after patients with burns. In summary, 

it is becoming more apparent that a burn is not over once burn wounds are healed, and that 

profound pathophysiological responses persist for a substantially longer time than previously 

thought.7,64 In view of this understanding, a change in direction and philosophy for how we 

treat burns is needed.
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Search strategy and selection criteria

We searched PubMed for papers published in any language between Jan 1, 2008, and Dec 

18, 2012, with the following search terms: “large clinical trials in burns”, “resuscitation, 

inhalation injury”, “wound care”, “burn wounds”, “infection”, “organ function”, 

“hypermetabolism”, and “predictors of mortality”.
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Figure: Alleviation of hypermetabolic response to improve outcomes after burn injury with early 
excision and grafting, high ambient temperatures, exercise, and diet
(A) Muscle protein net balance in paediatric patients with severe burns. Early excision 

alleviates muscle protein loss compared with late excision. Error bars show standard error of 

the mean. (B) A high carbohydrate diet is beneficial for muscle protein synthesis compared 

with a high fat diet. (C) High room temperatures can reduce the metabolic needs of patients 

with burns (ie, hypermetabolism). The higher the room temperature the lower the metabolic 

demand. (D) Long-term exercise can substantially increase strength and decrease 

hypermetabolism. Reproduced from Williams and colleagues,94 by permission of Elsevier.
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