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Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm 
animals opens new approaches not only for reproduction, genetic engineering, 
treatment and conservation of these species, but also for screening novel drugs for 
their efficacy and toxicity, and modelling of human diseases. Initial attempts to 
derive PSCs from the inner cell mass of blastocyst stages in farm animals were 
largely unsuccessful as either the cells survived for only a few passages, or lost 
their cellular potency; indicating that the protocols which allowed the derivation 
of murine or human embryonic stem (ES) cells were not sufficient to support the 
maintenance of ES cells from farm animals. This scenario changed by the 
innovation of induced pluripotency and by the development of the 3 inhibitor 
culture conditions to support naïve pluripotency in ES cells from livestock species. 
However, the long-term culture of livestock PSCs while maintaining the full 
pluripotency is still challenging, and requires further refinements. Here, we 
review the current achievements in the derivation of PSCs from farm animals, and 
discuss the potential application areas.
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Core Tip: The successful derivation of pluripotent stem cells (PSCs) from livestock 
represents an ideal model for the progress of veterinary, biomedical and regenerative 
medicine. The inherent properties of self-renewal and differentiation make PSCs an 
ideal raw biomaterial for innovative approaches in artificial reproductive techniques, 
cell-based therapy, disease modelling, drug testing, organ generation, breed 
conservation and in vitro meat production. In this review, we present the current status 
of PSCs application for the development of livestock farming and their potential 
applications for human welfare.
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INTRODUCTION
Pluripotent stem cells (PSCs) have the capability to self-renew and to develop into the 
three primary germ cell layers and therefore can form all cells and tissues of the adult 
body. There are two sources for obtaining PSCs, embryonic stem (ES) cells developed 
from an embryo, and induced pluripotent stem (iPS) cells derived via reprogramming 
of somatic cells (Figure 1). The process of fertilization, parthenogenetic activation, or 
nuclear transfer (NT), can lead to zygote formation followed by rapid cleavage 
divisions, which eventually results in the blastocyst stage with two different cell 
compartments, the outer trophectoderm and the inner cell mass (ICM). After zygote 
formation, the embryo undergoes several genetic and epigenetic changes, such as 
DNA de-methylation and re-methylation, replacement of protamines to histones, 
telomere extension, histone reprogramming, and first activation of the embryonic 
genome[1]. The resulting ICM cells in the blastocyst have a transient cellular 
pluripotency and will later form the embryo proper, and thus are able to develop into 
all somatic cells of an organism. The first successful derivation of cell cultures from the 
ICM, which maintain these pluripotent properties in vitro, was described in 1981 with 
murine cells, which were termed ES cells[2,3]. Under specific in vitro conditions, such as 
the culture on feeder cell layers, the pluripotent status of ES cells becomes locked in 
the Petri dish. The ES cells showed an unlimited proliferative capacity, were able to be 
maintained in an undifferentiated state of potency (naïve pluripotency), and could be 
triggered to differentiate into any cell type. Consequently, ES cells developed into an 
important arsenal for developmental biology, and new reproduction approaches, such 
as blastocyst complementation assays and generation of cell chimeric animals, or in 
vitro differentiation of desired cell types, including gametes[4,5].

However, translation of the protocols for the derivation of ES cells to livestock 
species is painfully slow. Almost a decade later in 1990, putative ES cells from the 
early stages of embryos were reported in domestic livestock species such as sheep, pig 
and cattle; however, these cells could be maintained only for a few passages[6,7]. Later, 
ES cell-like lines have been derived from many species of livestock such as pig[8,9], 
cattle[10-13], sheep[14,15], goat[16,17], horse[18], and buffalo[19,20]; however, detailed characteri-
zations suggested that these putative ES cell cultures seem to be in a primed status of 
cellular potency.

NT describes the transplantation of a somatic cell or nucleus in an enucleated 
oocyte, subsequently, the re-constructed zygote is activated and cultured up to the 
blastocyst stage. This requires successful reprogramming of the donor nucleus by 
factors accumulated in the cytoplasm of the recipient oocyte. The NT-derived 
blastocyst can then be used to derive ES cells from the ICM (‘therapeutic cloning’)[21]. 
NT-ES cell lines have been established in mice[22-24], cattle[21], buffalo[25] and non-human 
primates[26]. In livestock, NT-ES cells could be derived from genomically selected high 
value animals with potential use in reproductive cloning or for conservation using 
cryopreservation of these cell lines[27].

Alternatively, parthenogenetically derived embryos are equally valuable for the 
generation of ES cells. The first parthenogenetic embryos derived ES (pES) cell lines 
were established from mice[28]. Thereafter, it was established in other farm animals 
such as in pig[29], horse[18], sheep[14], cattle and buffalo[30-33]. Muzaffar et al[32] successfully 
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Figure 1 Derivation of pluripotent stem cells from livestock and their differentiation properties. IVF: In vitro fertilization; ES Cells: Embryonic stem 
cells; PA: Parthenogenetic activation; pES Cells: Parthenogenetically derived embryonic stem cells; SCNT: Somatic cell nuclear transfer; nES Cells: Nuclear transfer 
derived embryonic stem cells; IR: Induced reprogramming; iPS cells: Induced pluripotent stem cells.

established buffalo ES cell lines from blastocysts derived from in vitro fertilization, 
parthenogenesis, and NT. These results suggested that the cell line generated from 
parthenogenetically derived embryos maintained the ES cell properties and could be 
used as a model to study the effects of imprinting. However, isolation and 
characterization of ES cells from livestock species is technically still challenging, as the 
derived lines showed variable expression patterns of pluripotency markers[34] and may 
undergo spontaneous differentiation; limited or failed contribution of the transferred 
ES cells to a chimeric organism in blastocyst complementation assays suggested a 
limited cellular potency[11,35,36].

In 2008, the 3 inhibitor (3i) approach resulted in the first isolation of authentic rat ES 
cells[37]. Basically, the 3i approach is an ES culture medium supplemented with three 
inhibitors of metabolic pathways, which interact with cellular potency: CHIR99021 
(GSK3 kinase inhibitor), PD184352 (ERK 1-2 kinases inhibitor), and SU5402 [fibroblast 
growth factor (FGF) tyrosine kinase receptor inhibitor]. The application of this strategy 
may allow the generation of genuine PSCs from livestock.

A recent approach is the reprogramming of somatic cells to iPS cells by forced 
expression of a set of key reprogramming factors such as octamer-binding 
transcription factor 4 (Oct4), Nanog, MYC proto-oncogene (c-Myc), Kruppel-like factor 
4 (Klf4), etc[38-41]. Similar to ES cells, iPS cells are characterized by their self-renewal 
ability, morphological resemblance, expression of stemness gene, epigenetic state, and 
their differentiation potential toward all somatic cell types including the germ-line. 
This technique has been swiftly and widely adopted in farm animal species such as 
pig[42-47], sheep[48-50], goat[51,52], dog[53-56], cattle[57,58], and horse[59-64]. At present, bona fide ES 
cells from livestock are not yet available, but long-term stable iPS cells have been 
generated from many species and allow the further optimization of culture conditions.

The majority of generated livestock iPS cells showed classical features of 
pluripotency, such as in vivo differentiation and teratoma formation. It has been 
claimed that porcine iPS cells can contribute to chimera formation[45]. Similarly, ovine 
iPS cells also formed chimeric lambs after aggregation with early embryonic 
stages[65-67]; however, the efficiency of chimera contribution warrants further studies. 
Nevertheless, the results represent advancements in iPS cell technology and promoted 
the molecular understanding of livestock pluripotency.

PSCs can also be derived from germline stem cells, a class of unipotent stem cells 
which reside in testis tissue. Observations made by several researchers that neonatal 
and adult mouse testis contains spermatogonial stem cells (SSCs) or male germline 
stem cells, which are phenotypically similar to ES cells, are capable of differentiating 
into three embryonic germ lineages in vitro, form teratomas, and showed germline 
contribution and transmission[68-71], suggested that the SSCs may retain the ability to 
generate PSCs. The PSCs derived from these approaches are a useful tool for 
examining the molecular mechanisms of pluripotency in the male germline. 
Potentially, the SSCs will be useful for cell-based therapies which benefit males. 
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Similar to SSCs, female germline stem cells (FGSCs) have been proposed to reside in 
the ovary. Wang et al[72] derived FGSCs from ovaries, which exhibited properties 
similar to those of ES cells in terms of stemness gene expression and differentiation 
potential. These novel approaches provide new opportunities to study germ cell 
biology and opens the possibility of using these cells for genetic diseases in various cell 
lineages and provides a foundation for personalized regenerative applications. Recent 
research directed at producing artificial germ cells from stem cells of non-germ line 
cells may offer the possibility of treating infertility in the future[73].

PSCs derived from ES cells, iPS cells or the germ cell lineage may have great 
potential in veterinary medicine, cell-based therapies, production of pharmaceutical 
molecules via transgenic animals, multiplication of elite animals, conservation of 
endangered animals and as model animals for effective biomedical applications[74-80]. 
Previously, several review articles on livestock iPS cells have been published which 
described methods of cellular reprograming and their potential applications[78-83]. Here, 
we provide the most current achievements in PSCs from livestock, and discuss the 
potential applications of PSCs for the development of livestock farming and their 
potential applications for human welfare.

CURRENT STATE OF ES CELLS FROM LIVESTOCK
In general, putative livestock ES cells have been derived from early embryonic stages 
applying either standard culture systems developed for the culture of murine or 
human ES cells. However, most livestock ES cells did not maintain robust self-renewal 
and typically failed to perform in teratoma and blastocyst complementation 
assays[84,85]. This may be due to differences in the ontogenesis of cell lineage formation 
between rodent and livestock species. In rodent embryonic development, the first 
cellular differentiation is initiated at the late morula stage where the outer cells 
develop into an epithelial structure, followed by blastocoel formation. This leads to the 
development of two cell lineages, the trophectoderm (TE) and ICM[86]. The ICM 
differentiates further into the epiblast and the primitive endoderm or hypoblast. The 
epiblast, hypoblast and TE are common in all mammalian blastocysts, but the timing 
since fertilization in livestock embryos is relatively delayed compared to the 
mouse[34,87-89].

In porcine and bovine embryos, the hypoblast cells form on 7/8 d post-fertilization, 
and the epiblast forms on day 12[90,91]. Therefore, the time points used to isolate ES cells 
are not equivalent between livestock and rodent counterparts[92]. Also differences in 
the molecular pathways that control pluripotency between murine and domestic 
animals have been elucidated[93-95].

The current concept of different pluripotency states, which are termed naïve and 
primed, is likely to provide new approaches for the derivation of livestock ES cells. A 
steady progress has been made toward optimizing culture conditions for the 
derivation of stable and highly potent porcine ES cells[8,96]. More recently, porcine ES 
cells have been claimed to give rise to the chimeric contribution using a modified 
medium supplemented with basic fibroblast growth factor and leukemia inhibitory 
factor; however, follow-up studies with respect to contribution to the germline and 
formation of functional gametes are warranted[97,98]. Similarly, canine ES cells were 
derived; these canine ES cells expressed all the pluripotent markers, showed long-term 
self-renewal, and formed teratomas[99]. Thus, these cell lines exhibited most hallmarks 
of genuine ES cells, which represent a step toward pre-clinical therapies in large 
animal models.

However, these efforts on establishing livestock ES cells have not been turned into 
bona fide ES cell lines that are competent in germ line transmission. Multifactorial 
reasons may contribute to the lack of success for this relevant aim. First, significant 
differences in the initial embryonic development in livestock from that in rodents, 
second, the established pluripotency markers may be less distinct for livestock ES cells, 
and third, the pluripotency states, naïve vs primed, are pretty poorly defined in 
livestock species[84,100]. Several reviews have been published on the topic of ES cells in 
livestock covering isolation stages, culture condition, differentiation, proliferation 
properties and characterization[85,89,92,101-103]. These reviews summarized our knowledge 
on livestock ES cells. Table 1 summarizes some of the most recent observations that 
have been reported for ES cells from livestock.
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Table 1 Most recent examples of embryonic stem cells successfully generated from livestock

Species Embryonic 
stage Culture medium and condition 

Expression of 
pluripotency 
markers

Long-term 
culture 
(passage) 

Karyotype 
In vitro 
differentiation to 
EBs

In vivo 
differentiation to 
teratoma 

Germ line 
transmission Ref. 

CDX2-KD 
blastocysts

KO-DMEM, 2 mM glutamine, 1% MEM-NEAAs, 20 ng/mL 
hrFGF, 20 ng/mL hrLIF, 0.1 mM β–mercaptoethanol, 15% 
FBS + MEF under 37℃, 5% CO2 

Yes 37 Normal Yes Yes No [272]Cattle 

Blastocysts CTFR medium contains low fatty acid BSA, 20 ng/mL 
hFGF2, 2.5 μM IWR1 + MEFs under 37℃, 5% CO2 

Yes > 70 Normal No Yes No [145]

Blastocysts KO-DMEM, 15% KSR, 2 mM L-glutamine, 50 μg/mL 
gentamicin sulfate, 1% MEM-NEAAs, 0.1 mM β-
mercaptoethanol, 1000 IU/mL mLIF, 5 ng/mL FGF2 + BFF 
under 37℃, 5% CO2

Yes 135 Normal Yes No No [20]Buffalo 

Blastocysts DMEM, 20% FBS, 2 mM L-glutamine, 0.1 mM β-
mercaptoethanol, 2% NEAA, 1% ITS, 50 μg/mL gentamycin 
sulfate, 30 ng/mL LIF, 40 ng/mL bFGF + BFF under 38.5℃, 
5% CO2

Yes 15 Normal No Yes No [273]

Blastocysts DMEM high glucose, 2 mM L-glutamine, 1 mM Na-Pyruvate, 
0.1 mM β-mercaptoethanol, 0.1 mM NEAAs, 10 ng/mL LIF, 
20 mg/mL insulin, 1000 IU/mL penicillin, 10 mg/mL 
streptomycin + STO under 38.5℃, 5% CO2

Yes No Normal Yes No No [274]Ovine 

Blastocysts DMEM/F12 supplemented with N2, B27, GSK3 inhibitor 
(CHIR99021), rhbFGF + OEF or MEF under 38.5℃, 5% CO2

Yes 30 No Yes Yes No [275]

Blastocysts DMEM, 20% FCS, 1000 IU/mL mLIF, 1% NEAAs 0.1 mM β-
mercaptoethanol, 2 mM l-glutamine + GFF under 38.5℃, 5% 
CO2

Yes 15 Normal Yes No No [17]Caprine

Blastocysts DMEM, 0.1 mM 2-mercaptoethanol, 0.1 mM MEM-NEAAs, 2 
mM L-glutamine, 10% FBS, 1000 U/mL hLIF + GFF under 37
℃, 5% CO2

Yes 120 Normal Yes Yes No [16]

Blastocysts 1:1 ratio of 1. α-MEM medium supplemented with 10% KSR, 
0.05 mM β-mercaptoethanol, 1% NEAAs, 1% antibiotic-
antimycotic, 4 ng/mL EGF, 10 μL/mL 100 × ITS, 1000 U/mL 
mLIF, 2 ng/mL bFGF and, 2. DMEM/F-10-based medium 
supplemented with 15% heat-inactivated FBS, 0.2 mM β-
mercaptoethanol, 1% NEAA, 1% antibiotic–antimycotic and 2 
ng/mL bFGF + MEFs under 37℃, 5% CO2

Yes 19 Normal Yes No No [276]

Blastocysts α-MEM, 20% KSR, 20 ng/mL bFGF, 20 ng/mL EGF, 10 
ng/mL Activin-a, 1% ITS, 1 mM MEM-NEAAs, 55 μM β2-
mercaptoethanol + STO at 38.5℃, 5% CO2

Yes 21 Normal Yes Yes No [277]

DMEM, 20% KSR and N2B27 medium, 1% NEAAs, 2 mM L-
glutamine, 1% PS, 0.1 mM b-mercaptoethanol, 3 mM 

Porcine 

Blastocysts Yes 139 Normal Yes Yes No [278]
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CHIR99021, 1 mM PD0325901, 2 mM SB, and 50 ng/mL 
vitamin C + MEFs under 38.5℃, 5% CO2 

Blastocysts DMEM/F12, 15% FCS, 1000 U/mL hLIF, 15% FBS + MEF 
under 38.5℃, 5% CO2

Yes 28 Normal Yes No No [279]Equine 

Blastocysts KO-DMEM, 15% FBS, 0.1 mM NEAAs, 2 mM L-glutamine, 
1% ITS, 100 μg/mL streptomycin, 100 IU/mL penicillin, 0.1 
mM β-mercaptoethanol, hLIF, hbFGF + MEF under 38.5℃, 
5% CO2

Yes 15 No No No No [280]

Canine Blastocysts KO-DMEM/Ham’s F12, 15% KSR, 1 × GlutaMAX, 1 × 
NEAAs, R3IGF1, 0.1 mM 2-mercaptoethanol, 10 ng/mL 
hrLIF, 4 ng/mL rhFGF2, 0.5 μM, MEK inhibitor PD0325901, 3 
μM GSK3β inhibitor CHIR99021 + MEFs under 37℃, 5% CO2

Yes -- Normal Yes Yes No [281]

Blastocysts KO-DMEM or DMEM/-12, 0.1 mM β-mercaptoethanol, 5 μM 
thymidine, 15 μM cytidine, 15 μM guanosine, 15 μM 
adenosine and 15 μM uridine nucleosides, 0.2 mM GlutaMax, 
0.1 mM NEAAs, penicillin (100 IU/mL), streptomycin (50 
μg/mL), 10 ng/mL hLIF, 4 ng/mL hbFGF, 15% FBS or KSR + 
MEFs under 37.5℃, 5% CO2

Yes 30 Normal Yes Yes No [99]

CDX2-KD: CDX2 gene knockdown; KO-DMEM: knockout Dulbecco's modified Eagle's medium; DMEM: Dulbecco's modified Eagle's medium; MEM-NEAA: Minimum Essential Medium-non-essential amino acids; hrFGF: Human 
recombinant broblast growth factor; hrLIF: Human recombinant leukemia inhibitory factor; hFGF: Human broblast growth factor; DMEM/F12: Dulbecco's modified Eagle's medium/nutrient mixture F-12; FBS: Fetal bovine serum; MEF: 
Mouse embryonic fibroblast; mLIF: Mouse leukemia inhibitory factor; FGF2: Fibroblast growth factor 2; ITS: Insulin–transferrin–selenium; LIF: Leukemia inhibitory factor; bFGF: Basic growth factor; rhbFGF: Recombinant human basic 
broblast growth factor; OEF: Ovine embryonic fibroblast; GFF: Goat fetal fibroblast; hLIF: Human leukemia inhibitory factor; PS: Penicillin-streptomycin; BSA: Bovine serum albumin; FCS: Fetal calf serum; KSR: Knockout serum replacer; 
EGF: Epidermal growth factor; BFF: Buffalo fetal fibroblast; STO: Sandos inbred mouse-derived 6-thioguanine-and ouabain-resistant; SB: SB431542 inhibitor.

CURRENT STATE OF iPS CELLS FROM LIVESTOCK
A ray of hope was the development of reprogramming techniques to obtain iPS cells 
from somatic cells[38]. Recent advances in iPS cells technology may overcome the 
bottleneck of establishing pluripotent cells from livestock species, and demonstrate 
that iPS cells showed advanced level of pluripotency, such as the ability to 
differentiate in vitro into multi lineages and in vivo into teratomas and chimeras[79,104]. 
The production of chimeric livestock from iPS cells would open the possibility to 
genetically engineer farm animals to improve traits of agricultural importance, and the 
generation of biomedical models[45,67,105].

The current knowledge on stemness gene regulation in ES cells helps to execute iPS 
cells in a better way, and could allow the development of approaches closer to clinical 
application. Transcriptional profiling of ES cells revealed that factors such as Oct4, 
Nanog, sex determining region Y-box 2 (Sox2), Klf4, c-Myc and Lin28 are essential to 
maintain pluripotency[106,107]. Among these factors, Oct4, Nanog and Sox2 have been 
identified as core transcription factors, showing both spatial and temporal expression 
in cultured PSCs and pluripotent cells of the ICM[108-110]. These core transcription factors 
also play pivotal roles in regulation of the pluripotent gene expression and 
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simultaneous suppression of many genes related to differentiation[111,112]. They exert 
their functions by co-occupying their target genes, and can bind at their own and each 
other’s promoters to form an interconnected auto-regulatory loop[111,113]. These three 
factors function collaboratively in an auto-regulatory circuitry fashion to maintain 
their own expression and maintain the pluripotency of ES cells[106,114]. Additionally, 
Nanog was identified as the key factor, which regulates the establishment of the 
pluripotent epigenome[115,116]. The role and mechanism of these transcription factors in 
the reprogramming of livestock somatic cells to iPS cells have been reviewed[78,81,104,117].

Several strategies have been applied to deliver core reprogramming factors such as 
genes, mRNAs and proteins into somatic cells for the derivation of iPS cells. 
Alternatively, the replacement of reprogramming factors by small chemical agents has 
also been assessed. Commonly, retro- and lenti-viral approaches were employed for 
cellular reprogramming of different types of somatic cells from livestock such as 
pig[105], cattle[57,118-120], sheep[67], goat[51,121], dog[54,56], horse[63] and buffalo[65]. Recently, for the 
first time, cat iPS cells were created using disarmed retroviruses with the coding 
sequences for human Oct4, Sox2, Klf4, cMyc, and Nanog[122]. The expression of ectopic 
factors can be temporally confined by employing inducible promoters or viral 
promoters, which are epigenetically silenced. Shortcomings of the viral approach 
include the limited cargo capacity of approximately 7 kb for the transduced genes, the 
induction of innate immune responses, potential genotoxic effects, which limit the 
translation into clinical trials[123], and increased safety methods.

To evade these safety concerns, remarkable technological progress has resulted in 
the establishment of non-integrating viral and non-viral approaches, but limited 
attempts have been made to apply these to cells from livestock species. For example, 
the non-integrating adeno- and Sendai-viruses demonstrated efficient production of 
human, murine and canine iPS cells[124-127]. Apart from viral-mediated derivation of 
livestock iPS cells, non-viral approaches such as plasmid vectors, recombinant 
proteins, transposons, minicircle DNAs, small molecules, and mRNAs are in use to 
eliminate the risk of genomic alteration and enhance the prospects of iPS cells. In this 
regard, bovine iPS cells were successfully derived by plasmid[128], and transposon 
systems[58,129,130]. Similarly, porcine iPS cells were also established using episomal[131,132], 
and transposon systems[47], the transposon systems have been attempted to derive 
equine[59] and buffalo[66] iPS cells. Detailed information on approaches to generate 
transgene-free iPS cells has recently been reviewed by Haridhasapavalan et al[82]. Most 
recent studies of iPS cells derived from livestock are shown in Table 2. In addition, 
extensive overviews of iPS cells produced from a wide range of animal species 
including livestock with their prospective applications and limitations have been 
recently reviewed[85,103,133]. Most recently, our group presented the potential applications 
of transposon-mediated derivation of iPS cells for cell-based therapies[83].

POTENTIAL APPLICATIONS OF PSCs FROM LIVESTOCK
Reproduction
A long-standing goal of PSCs research is the differentiation into functional germ cells, 
and their application for in vitro fertilization to obtain sexually recombined genotypes. 
In combination with the readout of genomic trait values from few cells via single 
nucleotide polymorphism chips and whole genome sequencing techniques this will 
dramatically improve the breeding process[134]. In mammals, germ cells originate from 
PGCs, the PGCs are initially specified outside the post-implantation embryo through 
gradients of Wnt family member 3 (WNT3) and bone morphogenetic proteins 
(BMPs)[135-137]. After that PGCs migrate to the genital ridges, where they settle and 
ultimately make gametes. The PSCs are principally immortal, with a high proliferative 
rate, and the ability to differentiate into gametes that could enable in vitro breeding 
schemes for accelerated genetic improvement in livestock. Under the conventional 
breeding scheme of dairy animals, the generation interval for sire(s) or dam(s) of bulls 
is approximately ± 5 years. This time period could be considerably reduced to about 
2.5 years using genomic selection approaches[134,138]. Recently, a proposed parental 
embryos to offspring embryos breeding system will require approximately 2 mo to 
finish one round of selection, and annual genetic gain will increase approximately 10-
fold as compared to the standard genomic selection in dairy animals[134,139]. However, 
the feasibility of applying this approach to farm animals needs to be proven in field 
studies.

So far the proof of principle has been provided in rodents, where sperm and oocytes 
were generated by the differentiation of male or female PSCs[140,141]. These works 
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Table 2 Most recent examples of induced pluripotent stem cells successfully generated from livestock

Species Cell type Culture medium and condition 
Expression of 
pluripotency 
markers

Long-term 
culture 
(passage) 

Karyotype 
In vitro 
differentiation to 
EBs

In vivo 
differentiation to 
teratomas 

Germline 
transmission Ref.

Fetal fibroblasts DMEM/F-12, 20% KSR, 1 mM l-glutamine, 0.1 mM 
NEAAs, 0.1 mM mercaptoethanol, 100 U/mL penicillin, 
100 μg/mL streptomycin, 8 ng/mL bFGF, 1000 U/mL hLIF 
on MEF at 37℃ and 5% CO2

Yes 40 Normal Yes Yes No [58]Cattle 

Fetal fibroblasts KO-DMEM, 15% FBS, 2 mM L-glutamine, 1% NEAAs, 0.1 
mM β-mercaptoethanol, 106 U/mL hLIF, 10 ng/mL bFGF 
on STO at 37℃ and 5% CO2

Yes 50 Normal Yes Yes No [130]

Fetal fibroblasts DMEM high glucose, 20% ESC-FBS, 2 mM l-glutamine, 1% 
NEAAs, 0.1 mM β-mercaptoethanol, 10 ng/mL bFGF, 10 
ng/mL LIF on MEF at 37℃ and 5% CO2

Yes 10 Normal Yes Yes No [65]Buffalo 

Fetal fibroblasts DMEM/F-12, 20% KSR, 0.1 mM NEAAs, 1 mM L-
glutamine, 0.1 mM mercaptoethanol, 100 U/mL penicillin, 
100 μg/mL streptomycin, 10 ng/mL bFGF, 1000 U/mL 
hLIF on gelatine at 37℃ and 5% CO2

Yes 15 Normal Yes No No [66]

Embryonic fibroblasts DMEM, 20% FBS, 1% ITS, 0.1 mM 2-β mercaptoethanol, 1 
mM NEAAs, 2 mM glutamine, 4 ng/mL bFGF, 1000 U/mL 
mLIF on MEFs at 37℃ and 5% CO2

Yes 17 Normal Yes Yes Yes (formation of ICM 
in tetraploid)

[50]Ovine 

Embryonic fibroblasts KO-DMEM, KSR, 0.1 mM NEAAs, 2 mM L-glutamine, 0.1 
mM 2-mercaptoethanol, 8 ng/mL hFGF2, 1000 U/mL 
mLIF on SNL at 37℃ and 5% CO2 

Yes 23 Normal Yes Yes Yes (live-born chimeric 
lambs)

[67]

Fetal fibroblasts DMEM/F12, 20% KSR, 1 mM L-glutamine, 0.1 mM 2-
mercaptoethanol, 1% NEAAs, 2% sodium bicarbonate 
solution, 1000 IU/mL 2i/LIF, 4 ng/mL bFGF on STO at 37
℃ and 5% CO2 

Yes 30 Normal Yes Yes No [282]Caprine 

Embryonic fibroblasts KO-DMEM, 20% KSR, 1% NEAA, 1% L-glutamine, 0.1 mM 
EAA, 1% penicillin /streptomycin, 10 ng/mL FGF2 on GEF 
at 37℃ and 5% CO2

Yes 22 Normal Yes No No [283]

Embryonic fibroblasts 
and microvascular 
pericyte cells

LCDMV medium contains 50% neurobasal medium, 50% 
DMEM/F12, 1 × N2, 0.5 × B27, 5% KSR, 10 ng/mL LIF, 1 
μM CHIR99021, 2 μM (S)-(+)-dimethindene maleate, 2 μM 
minocycline hydrochloride, 40 μg/mL vitamin C on MEF 
at 37℃ and 5% CO2

Yes 28 Normal Yes Yes Yes (chimeric formation 
in post-implantation 
pig conceptuses)

[284]Porcine 

Sertoli cells DMEM/F12, 10% KSR, 10% FBS, 1 mM l-glutamine, 1 mM 
antibiotic, 1% NEAAs, 0.1 mM β-mercaptoethanol, 10 
ng/mL bFGF, 10 ng/mL hLIF on MEF at 37℃ and 5% CO2 

Yes 50 Normal Yes Yes No [285]

DMEM/F12, 20% KSR, 10 ng/mL bFGF, 1% 
penicillin/streptomycin, 10 ng/mL hLIF on MEF at 37℃ 

Equine Fetal fibroblasts Yes 25 -- Yes No No [286]
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and 5% CO2

Fetal fibroblasts DMEM, 20% FBS or KO-DMEM, 20% KSR, 2 mM l-
glutamine, 0.1 mM β-mercaptoethanol, 0.1 mM MEM- 
NEAAs, 1% penicillin–streptomycin, 8 ng/mL hbFGF, 1000 
U/mL hLIF on SNL at 37℃ and 5% CO2

Yes 30 Normal Yes Yes No [61]

Embryonic fibroblasts Serum-free N2B27-based medium, 4 ng/mL hbFGF on 
MEF at 37℃ and 5% CO2

Yes 50 Normal Yes No No [287]Canine 

Fetal fibroblasts KO-DMEM/F12, 20% KSR, 2 mM L-glutamine, 0.1 mM 
NEAAs, 0.1 mM β-mercaptoethanol, 0.1 mM bFGF on MEF 
at 37℃ and 5% CO2

Yes 15 Normal Yes Yes No [288]

DMEM: Dulbecco's modified Eagle's medium; KO-DMEM: Knockout Dulbecco's modified Eagle's medium; DMEM/F12: Dulbecco's modified Eagle's medium/nutrient mixture F-12; NEAAs: Non-essential amino acids; bFGF: Basic 
fibroblast growth factor; hLIF: Human leukemia inhibitory factor; MEF: Mouse embryonic fibroblast; KSR: Knock-out serum replacement; FBS: Fetal bovine serum; LIF: Leukemia inhibitory factor; ESC-FBS: Embryonic stem cells-fetal 
bovine serum; ITS: Insulin–transferrin–selenium; mLIF: Mouse leukemia inhibitory factor; hFGF2: Human fibroblast growth factor 2; EAAs: Essential amino acids; hbFGF: Human basic fibroblast growth factor; STO: Sandos inbred mouse-
derived 6-thioguanine-and ouabain-resistant.

support the notion that this approach might be translatable to farm animals. However, 
before the proposed breeding system can be applied in farm animals a series of 
obstacles need to be overcome. Earlier, it was observed that monkey ES cells could 
differentiate into primordial germ cell-like cells (PGCLCs) and their differentiation 
ability was further improved by supplementing a conditioned medium from testicular 
or ovarian cells with recombinant BMP4, retinoic acid (RA), or stem cell factor[142,143]. 
Another study showed the possibility of spermatogonial stem cell transplantation in a 
non-human primate infertility model[144]. The findings laid the basis for the 
development of future germ cell regeneration in livestock. Recently, the derivation of 
stable bovine ES cells was reported, which could offer a technical basis for the 
auxiliary establishment of in vitro germ cell induction in farm animals[145]. Porcine iPS 
cells have been successfully differentiated into PGCLCs, and xenotransplantation of 
these cells into the testes of infertile immune-deficient mice resulted in 
immunohistochemically identifiable germ cells[146,147]. Another study revealed that 
porcine PGCs could be derived from the posterior pre-primitive-streak epiblast by 
upregulation of SOX17 and B-lymphocyte-induced maturation protein 1 through 
activation of WNT and BMP signaling pathways[148]. A number of comprehensive 
studies dedicated to bovine germ cell differentiation suggested that RA and/or BMPs 
are important for induction of PSCs[149]. The significance of RA in gametogenesis and 
meiosis induction has also been reported in buffalo[150,151].

Apart from reduction of the generational interval using in vitro breeding in 
livestock, the idea of generating gametes in vitro may translate to treatments of 
infertility, understanding the complexity of gametogenesis, and it could also be a 
source for regenerative medicine[78,152]. Improvements in germ cells differentiation of 
PSCs from livestock will further fuel the enthusiasm of researchers working on farm 
animals (Figure 2). If robust and field-applicable protocols for in vitro germ cell 
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Figure 2 Involvement of pluripotent stem cells in the reproductive cell cycle through reprogramming, differentiation and development.

differentiation of livestock PSCs could be developed, an in vitro breeding program will 
rapidly be implemented.

More recently, haploid stem cells (hSC), having a single set of chromosomes, are 
considered excellent tools to study gene function (due to having a single copy) and 
obviate the mutation effect[153]. To date, hSCs have been derived from mouse, rat, 
monkey and humans[153,154]. In nature, ova and sperm are haploid cells. Experimentally 
it has been shown that it is possible to generate murine hSCs containing only the 
maternal genome or the paternal genome through either parthenogenetic or 
androgenetic embryos. Recently, it was demonstrated that fertile adult mice can be 
produced after fertilization of a sperm with an ovum derived from haploid ES cells[155], 
supporting the significance of haploid stem cells as a new tool to quickly generate 
genetic models for the direct transmission of genomic modifications at the organism 
level.

Genetic engineering
The genetic engineering of animals refers to adding, changing or removing certain 
DNA sequences, and the inheritance of these modifications to the next generation. The 
self-renewal and differentiation ability of PSCs make these cells an attractive tool for 
genetic engineering for various downstream applications. The self-renewal property of 
PSCs means they are theoretically immortal in vitro through symmetric cell divisions, 
which could provide a possibility for genetic modification and screening of cells, 
carrying the intended gene modifications.

Usually, genetic modification requires several generations and a large number of 
animals that could be overcome using PSCs especially in livestock via contribution to 
the germline[156]. The PSCs can be genetically modified in vitro and then injected into an 
embryo where they contribute to the germline, resulting in transgenic offspring 
(Figure 3) and thus reducing the required number of animals to produce the line 
founders[157].

In murine ES cell-based targeted mutagenesis, homologous recombination (HR) 
approaches allow the loss-of-function, gain-of-function experiments of desired loci, but 
also more complex genetic modifications, such as large genetic recombinations, as well 
as spatial and temporal expression patterns[158-160]. Using this technology, mouse ES 
cells can be screened and single colony-derived cells produced to employ for 
blastocyst complementation. However, in livestock due to the lack of bona fide ES 
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Figure 3 Outline of the production of transgenic livestock using pluripotent stem cells. IR: Induced reprogramming; SCNT: Somatic cell nuclear 
transfer; IVF: In vitro fertilization; PA: Parthenogenetic activation; PSCs: Pluripotent stem cells; CRISPR: Clustered regularly interspaced short palindromic repeats; 
TALEN: Transcription activator-like effector nucleases; ZFN: Zinc finger nucleases.

cells, the efficiency of HR events is very low. Richt et al[161] produced cattle with knock-
out of the prion gene using somatic cell nuclear transfer (SCNT) combined with HR in 
somatic cells. Details of several genetic engineering methods used for successful 
creation of modified PSCs including ES and iPS were reviewed[162].

Previously, many workers reported that the use of ES cells as donor nuclei in SCNT 
resulted in higher birth rates as compared to differentiated somatic cells[25,163], which 
may be due to the un-differentiated state of PSCs. An advantage of this approach is 
that homozygous transgenic founders are produced in one generation. The use of iPS 
cells derived from livestock to produce offspring by SCNT has so far resulted in low 
success rates. Attempts to clone pigs and sheep using iPS cells resulted in very low 
efficiencies[121,164,165], whereas in murine experiments cloned animals were produced 
with similar efficiency using iPS or ES cells[163,166].

It was assumed that the forced expression of exogenous factors in iPS cells may 
hamper the nuclear reprogramming of donor cells during SCNT[121]. For this reason the 
possible applications of PSCs for generating genetically modified livestock have been 
limited. The recent discovery of site-specific nucleases such as zinc finger nucleases, 
transcription activator-like effector nucleases and CRISPR-Cas9 has allowed us to 
overcome the bottlenecks of genetic engineering in livestock[167-171]. The detailed 
description of site-specific nucleases is beyond the scope of the current manuscript, 
and interested readers can find excellent reviews elsewhere[156,172].

Models for cell therapy
Blood stem cell transplantation is a well-established clinical treatment of leukemias[173]. 
Nowadays, the feasibility and translation of innovative cell therapies, based on PSCs, 
is actively studied. In general, cell therapy is the transfer of cells into a patient to heal 
lesions or cure a disease, which cannot be addressed adequately by existing 
pharmaceutical interventions. For this purpose, cells may originate either from the 
patient (autologous cells) or a donor (allogeneic or heterogenic cells). The cells used in 
cell therapy should have the capability to proliferate in vitro, and to differentiate into 
specific cell types in a patient. In the last few years, PSCs have received considerable 



Kumar D et al. Pluripotent stem cells in livestock

WJSC https://www.wjgnet.com 12 January 26, 2021 Volume 13 Issue 1

attention for innovative cell therapies, and has resulted in significant progress in the 
understanding of their characteristics and therapeutic potential in different lineages. 
PSCs are considered ideal candidates for cell therapy to achieve tissue repair, or to 
restore and replace diseased cells.

Using PSCs a large number of animal models has already been treated for numerous 
diseases to assess the effectiveness of innovative cell-therapies[174-176]. The use of ES cells 
in cell-therapies is limited due to difficulties in patient-specific derivation, immune-
rejection and ethical considerations, whereas derivation of iPS cells has overcome these 
concerns. Before the clinical application of iPS cell-based therapies is approved, they 
should be properly assessed using appropriate simulated animal models. 
Traditionally, laboratory animals (rodents) are used as models due to available knock-
out or knock-in gene mutants which demonstrate disease phenotypes. Rodent models 
for cell-therapies do not always accurately mimic the genetically heterogeneous 
human situation[177,178]. The use of large animal models seems to be more suitable to 
analyze efficacies and risks in longitudinal pre-clinical tests and regenerative studies 
using cell-based-therapy[78,179,180]. Large animal models more closely match human 
patients in terms of life-span, metabolism, physiology, pathophysiology and 
biomechanics[181-184]. Large animal models will also permit determination of the 
effective cell dose, to track the fate of transplanted cells, and to assess their functional 
integration in the host organ[185]. In addition, large animal models also offer 
comparative models for research due to naturally occurring diseases, such as 
cancer[186,187].

Among livestock, the pig is considered a suitable animal model for pre-clinical 
evaluation of the efficacy and safety of novel cell therapies[179,188,189]. For example, 
porcine iPS cells can be differentiated in vitro into cells of the rod photoreceptor 
lineage, which were capable of integration into the retina, and generated outer 
segment-like projections[186,190]. Similarly, improvement of cardiac functions was 
documented in pig, but also in sheep, dog and rabbit models by assessing the efficacy 
of cell transplantations. The transplanted cells include skeletal myoblasts, bone 
marrow cells, cardiac stem cells, and endothelial stem cells[191-193]. Porcine models have 
also been used for the transplantation of human iPS cell-derived cardiovascular cells 
for the treatment of acute myocardial infarction, in which improvements were 
observed in myocardial wall stress, and contractile performance[194]. In addition, 
porcine iPS cell–derived endothelial cells were transplanted into a murine myocardial 
infarction model; the results showed an improved myocardial function by paracrine 
activation[195]. van der Spoel et al[196] analyzed the published reports of pre-clinical 
studies involving large animals for ischemic heart disease cell therapies and they 
concluded that large animal models allow prediction of the outcome of clinical trials 
for efficacy and safety. Hence, large animal models are useful targets for assessing the 
potential of iPS cell therapies to treat diseases, which are caused by the degeneration 
of specific cell populations, such as Alzheimer’s disease, Huntington´s disease (HD), 
spinal muscular atrophy, retinitis pigmentosa, and diabetes[80,186].

It is well established that PSCs (including ES cells and iPS cells) are able to 
differentiate into any cell type in vivo or in vitro under suitable conditions, whereas the 
differentiation and reprogramming potentials of some adult stem cells are still under 
investigation[197]. This indicates that cells have the potential to switch from one cell type 
to another under the expression of some pluripotent related genes. Recently, progress 
made in cellular reprogramming and transdifferentiation suggests that it will be 
possible to generate cells from autologous sources without immunologic rejection and 
ethical consideration for therapeutic and regeneration purposes[197].

Conservation of valuable and endangered breeds
The objective of animal conservation is to maintain biodiversity because elimination of 
even a single species can interfere with the functioning of an ecosystem[198,199]. The 
protection of viable populations in their natural habitat (in situ) is one of the best 
methods for biodiversity conservation. In situ conservation allows the propagation of a 
small population using multidisciplinary approaches including genetic and ecological 
characterizations, but is sometimes insufficient for maintaining adequate genetic 
diversity[200]. Ex situ conservation approaches have been adopted with the aim of 
establishing viable populations through cryopreservation of animal genetic resources 
such as sperm, oocytes, somatic cells, and tissues of valuable domestic breeds and for 
conservation of endangered wild species. Earlier efforts in wildlife cryo-conservation 
were generally focused on spermatozoa and embryos[201,202]. More recently, somatic cell 
bio-banking has emerged as an attractive option for cryo-conservation of endangered 
and valuable farm animal breeds aiming to revive those in the future using assisted 
reproduction technologies[203-205]. Advancements made in nuclear transfer and stem cell 
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technologies, and the ability to reprogram differentiated somatic cells into embryonic 
or germ cell lineages prompted the interest in storing somatic cells for offspring 
production in future[206-208]. Further advancements in cryobiology may make it possible 
to cryopreserve different types of cells including somatic cells. Among somatic cells, 
fibroblast cells are preferable due to abundant availability in skin-tissue and easy 
establishment in cell culture[203,205]. Primary fibroblast cells derived from livestock such 
as cattle, buffalo, sheep, goat, and pig have been successfully cryopreserved and are 
being used for various purposes, including SCNT[205,209-212].

However, the efficiency rates of SCNT in many domestic and wild animals are low, 
and cloning experiments present a bottleneck in this approach. In mouse cloning, the 
use of pluripotent blastomeres as donor cells has significantly improved cloning 
efficiency and decreased the incidence of developmental abnormalities[213]. For 
endangered species, the availability of oocytes and embryos is often restricted, 
whereas the generation of iPS cells from somatic cells offers a more practical source of 
stem cells with less moral and ethical restrictions[214]. The morphology of iPS cells from 
wild and valuable domestic animals resemble those of ES cells[74,215]. The derivation of 
iPS cells from skin fibroblasts of endangered primate, silver-maned drill and white 
rhinoceros[74], snow leopard[215], orangutan[216] and endangered felids such as Bengal 
tiger, serval and jaguar[217], indicate the feasibility of derivation of iPS cells from 
threatened species. The generated iPS cells could be expanded for banking as a genetic 
resource, or used in the animal cloning process to produce viable offspring. 
Alternatively, iPS cells could be differentiated to derive mature and functional oocytes 
and spermatozoa, which might be used for in vitro fertilization to produce offspring. 
Furthermore, the availability of iPS cells from diverse species would help to accelerate 
research progress on evaluating phylogeographic structure, paternity determination, 
delineating subspecies, assessing gene flow and genetic variation related information, 
which could be critical for decision-making in managing both ex situ and in situ 
wildlife populations[218]. More recently, Hildebrandt et al[219] successfully generated ES 
cells and embryos from the critically endangered northern white rhinoceros. These 
achievements strengthen the beliefs that modern biotechnologies or iPS cell techniques 
in collaboration with cloning technology will allow the generation of more offspring 
from selected parents to ensure genetic diversity and may reduce the interval between 
generations. In future, the advancements of reproductive techniques and the new 
knowledge can only be employed when cryopreserved raw biomaterials (germ 
cells/somatic cells) are maintained, otherwise these would be lost forever[214].

PSCs FROM LIVESTOCK FOR HUMAN HEALTH
Drug testing and disease modelling 
Human medicine requires animal models to test any new drug, as in vitro systems are 
still not able to model the pathophysiology of a whole organism. However, many 
preclinical studies of new therapies conducted on rodents and non-human primates 
failed due to the fact that they do not allow the prediction of safety and effectiveness in 
human patients[178,186]. For example, rodent models fail to simulate the basic 
physiological functions of heart diseases due to their faster heart rate. In contrast, large 
animals are more similar to humans with regard to their life span, physiology, 
metabolism, and pathophysiology[179,181,183,220]. The generation of  PSCs from 
livestock[45,58,98] is economically valuable and critically important for the establishment 
of disease models, testing of new drugs and for the production of medically useful 
substances such as enzymes and growth hormones[221]. Additionally, animal disease 
models and animal iPS cells allow the establishment of informative assays to test the 
efficacy of new compounds, their toxicity, and dosing[222].

Previously, it was demonstrated that iPS cells can be differentiated into lineages of 
cardiomyocytes and hepatocytes, which were used for disease modelling and drug 
screening[223-225]. Presently, several biotechnological tools are available to generate 
disease models using either ES cells or iPS cells, creating new possibilities for their use 
in drug testing[226,227]. In many cases, somatic cells are also exploited for drug testing 
and validation, thus promoting new drug discoveries. In addition, the validation of 
existing drugs in new iPS cell models is performed. The availability of patient-specific 
iPS cells is crucial to discover new personalized therapeutics.

Large animals such as the domesticated pig have been recognized to be important 
models for studying colorectal cancer, cardiovascular diseases, cystic fibrosis, diabetes, 
osteosarcoma, Duchenne muscular dystrophy and Alzheimer’s disease[228]. Similarly, 
cattle have become a relevant model for studying human female fertility vis-a-vis the 
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effects of ageing on fertility[229], uterine infection[230], and ovarian function[231]. In 
addition, dogs have natural occurring genetic diseases such as hemophilia B[232]. For 
other diseases that do not occur spontaneously in animals, transgenic animals have 
been generated such as monkeys with HD and cystic fibrosis-diseased pigs[233]. Induced 
PS cells generated from HD monkeys were differentiated into neuronal cells in vitro, 
and showed typical HD-like features; thus, representing an attractive model for 
investigating HD pathogenesis and therapy[234,235]. Recently, CRISPR-Cas9 was used to 
generate large animal models of neurodegenerative diseases that can more realistically 
mimic human disease progression[236]. The derivation of iPS cells from patients with 
congenital heart disease, and differentiation of these cells into cardiomyocytes has 
been anticipated to serve as a model system to study disease pathogenesis and for 
drug discovery[225,237].

Chimera formation and growth of human organs in livestock
A chimera is a composite organism that is composed of at least two genetically 
different cell populations[238,239]. It can be produced by combining blastomeres from a 
minimum of two individual embryos, by aggregating two or more sectioned embryos, 
or by injecting PSC cells into a blastocyst[240]. Tarkowski et al[241] were the first to 
demonstrate that the aggregation of two sectioned mouse embryos after transfer into 
the uterus of a surrogate could result in the development of healthy and fertile 
chimeric animals. If the cells used for chimera generation have differentiation potency 
they can contribute to form chimera and chimerism rates depend on the potency of the 
cells. Presently, ES and iPS cells are preferred for aggregation or injection into early 
embryos due to their pluripotency and ability to contribute to multiple organs of the 
resulting chimera[5,242-244].

Concurrently, scarcity and demand for human organ donors have motivated 
scientists to examine options other than donation from deceased patients, such as the 
possibility of growing human organs in animals. The availability of human PSCs 
suggested the possibility of producing human organs in animals via the chimera route 
(Figure 4). As proof of principle it was demonstrated that the combination of 
mouse/rat cells resulted in viable chimeras, with the possibility to direct the one cell 
type into an organ-specific lineage. To achieve this one species carries a defective gene 
(Pdx1) necessary for pancreas development. By complementing the cells with the 
defective Pdx1 gene, with fully competent PSCs from the other rodent species, a 
chimera with a functional pancreas may develop. A pancreas formed from rat PSCs 
has been observed in a mouse host, and a pancreas formed from mouse PSCs in a rat 
host[242,244]. Interestingly, a rat-sized pancreas formed from mouse PSCs, suggested that 
it could be possible to produce human organs (xenogeneic in nature) in various animal 
species[244].

Earlier,  rat-mouse[242], human-mouse[245], and sheep-goat[246] chimeras were 
documented. However, blastocyst injection has failed to introduce stem cells into 
primate embryos[247]. Aggregation of rat-mouse[248], sheep-goat[249], and cattle-buffalo[250] 
embryos were able to form interspecies chimeras. In spite of the lower survival rate of 
chimeric embryos produced by the aggregation method compared with blastocyst 
injection, the chimerism rates have been observed to be higher[251]. Considering the 
higher rates of chimerism, the human-animal chimeras could be an organ resource, 
aggregation is also a desirable choice when the embryo and stem cells are in a good 
growth condition.

The generation of human organs in animal models would have a significant impact 
in the field of regenerative medicine, since the shortage of donor organs is a major 
bottleneck. For the generation of human organs, human PSCs would be injected into 
blastocysts acquired from carrier animals that should be genetically modified to block 
the development of a particular organ (Figure 4). Thus, only human cells might 
predominantly contribute to the development of that organ[76]. Previously, human iPS 
cells were employed to created chimeras upon integration in porcine and bovine 
blastocysts[5,244]; however, with very limited colonization of early fetuses by the human 
cells. Yang created human-mouse chimeras overexpressing functional human 
coagulation factor IX that could be a suitable candidate for hemophilia B treatment[252]. 
The feasibility of growing complete human organs using a chimeric approach and the 
proposed immune tolerance (if autologous donor cells are used) still needs to be 
substantiated.

More recently, the advent of precision genome editing tools like CRISPR/Cas9, 
efficiently generating the mutation that leads to organ deficiencies in larger animal 
models further widening the possibility to create human-animal chimeras[253]. The 
CRISPR/Cas9 mediated zygote genome editing, already successfully documented for 
mouse and larger livestock species[254], will likely be an effective tool for chimera 
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Figure 4 Outline of the production of humanized organs in livestock by chimera formation. OCT4: Octamer-binding transcription factor 4; SOX2: 
Sex determining region Y-box 2; KLF4: Kruppel-like factor 4; c-MYC: MYC Proto-Oncogene; hiPSC: Human induced pluripotent stem cells; piPSC: Porcine induced 
pluripotent stem cells; IR: Induced reprogramming; KO cells: Knock-out cells; SCNT: Somatic cell nuclear transfer.

production[5]. These results open up horizons in the field of regenerative and 
personalized medicine, but also impose big challenges of ethical concern with low 
efficiency of human-animal chimeras. Debate on existing frameworks for the ethical 
assessment of chimeric animal research involving human tissue and their risk 
minimization has been documented[255,256]. In general, human-animal chimeras might be 
developed into a strategy to overcome organ shortage, but also a model for studies on 
organ development; pathogenesis, immunologic defenses, drug screening and toxicity 
testing. However, this requires us to overcome species-specific incompatibilities, such 
as differences in placental structures, cell cycle, and growth factor dependencies.

PSCs FROM LIVESTOCK FOR IN VITRO MEAT PRODUCTION
The production of meat in vitro using livestock PSCs is proposed as a clean and 
prominent alternative to slaughtering animals[257]. Bovine stem cells were used to make 
the world’s first burger from in vitro meat, which was served during a London press 
conference held in 2013[258]. This event was proclaimed as beneficial to reduce the 
global burden of the livestock industry, and was associated with environmental, 
ethical, and human health impacts[221,259]. The production of high-quality meat depends 
on the types of stem cells; source of ingredients and its composition. Among these, 
myoblast or satellite cells, and recently iPS cells are most important[260]. More recently, 
cattle umbilical cord blood cells have been reprogrammed to generated iPS cells, 
subsequently differentiated into muscle and fat cells[214,261]. Recent advancements have 
been made in the generation of stable bovine[145,262] and porcine PSCs[98], which could 
potentially be differentiated into skeletal muscle[263,264]. These PSCs form a cell bank 
with an unaltered and stable karyotype, and may eliminate further dependence on 
animals for cell isolation. However, this technology is in its infancy, and facing a 
number of challenges, such as whether in vitro meat will have the same taste as real 
meat, and whether this technology will be able to produce sufficient quantities in a 
cost-effective and clean way[265-267].

CONCLUSION
Challenges and perspectives 
The PSCs comprise of ES cells derived from embryos and iPS cells obtained from 
reprogramming of somatic cells. The derivation of ES cells from embryos of livestock 
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such as cattle, buffalo, sheep, goat, pig, horse, cat and dog had a relatively long and 
until recently unfruitful history. By contrast, the successful generation of iPS cells from 
livestock species is more promising and a straightforward technology. Commonly, the 
use of reprogramming vectors that integrate into the host cell genome, and are 
continuously expressed is a major bottleneck in the utility of iPS cells. To evade this 
hurdle, the use of non-integrating viral- and non-viral approaches for iPS cells 
generation resulted into safe and clinical grade cells for further downstream 
applications[82,268]. Various technical hurdles remain to be overcome for iPS cell 
technology to fully expand its potential, but remarkable achievements in recent years 
have led to clinical applications, provided new ways for the development of disease 
models, and improved patients’ treatments in a more adequate and personalized 
manner[269]. Looking ahead, the results of on-going clinical trials of iPS cells will deliver 
valuable information for preparing future strategies for cell-based therapy, drug 
testing, organ generation and disease modelling[237,270]. Pre-clinical testing of these 
approaches with livestock PSCs and large animal models are crucial for achieving 
these aims and successful translation into clinical therapies.

In future, PSCs along with novel upcoming technologies will synergically transform 
cellular reprogramming, differentiation and banking, which is necessarily connected to 
the industrialization of processes. More recently, massive progress has been achieved 
by the latest technologies in which ex-vivo and in vivo gene editing allowed efficient 
removal of the gene(s) responsible for the development of particular organs and the 
creation of new chimeric organs[271]. These approaches have the potential to innovate 
the field, but issues of safety and ethics need to be addressed in bringing the 
application of PSCs from bench to bedside.
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