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Electrospun fibers enhanced the paracrine ")
signaling of mesenchymal stem cells for
cartilage regeneration
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Abstract

Background: Secretome profiles of mesenchymal stem cells (MSCs) are reflective of their local microenvironments.
These biologically active factors exert an impact on the surrounding cells, eliciting regenerative responses that
create an opportunity for exploiting MSCs towards a cell-free therapy for cartilage regeneration. The conventional
method of culturing MSCs on a tissue culture plate (TCP) does not provide the physiological microenvironment for
optimum secretome production. In this study, we explored the potential of electrospun fiber sheets with specific
orientation in influencing the MSC secretome production and its therapeutic value in repairing cartilage.

Methods: Conditioned media (CM) were generated from MSCs cultured either on TCP or electrospun fiber sheets
of distinct aligned or random fiber orientation. The paracrine potential of CM in affecting chondrogenic
differentiation, migration, proliferation, inflammatory modulation, and survival of MSCs and chondrocytes was
assessed. The involvement of FAK and ERK mechanotransduction pathways in modulating MSC secretome were
also investigated.

Results: We showed that conditioned media of MSCs cultured on electrospun fiber sheets compared to that
generated from TCP have improved secretome vyield and profile, which enhanced the migration and proliferation of
MSCs and chondrocytes, promoted MSC chondrogenesis, mitigated inflammation in both MSCs and chondrocytes,
as well as protected chondrocytes from apoptosis. Amongst the fiber sheet-generated CM, aligned fiber-generated
CM (ACM) was better at promoting cell proliferation and augmenting MSC chondrogenesis, while randomly
oriented fiber-generated CM (RCM) was more efficient in mitigating the inflammation assault. FAK and ERK
signalings were shown to participate in the modulation of MSC morphology and its secretome production.

Conclusions: This study demonstrates topographical-dependent MSC paracrine activities and the potential of
employing electrospun fiber sheets to improve the MSC secretome for cartilage regeneration.

Keywords: Mesenchymal stem cells, Fiber orientation, Paracrine signaling, Mechanotransduction pathway, Cartilage
repair
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Background

Chondral lesions of the knee are a significant cause of
pain and disability in patients with traumatic injuries.
Cartilage defects can accelerate the wear of the knee
joint due to its poor self-regenerative capacity and, if not
addressed, will predispose the joint to the development
of osteoarthritis. Current clinical treatments have incon-
sistent therapeutic benefits as indicated by the formation
of neocartilage with inferior properties [1-3]. Given that
inflammation is a hallmark of injured cartilage, in which
pro-catabolic activities in chondrocytes lead to extracel-
lular matrix (ECM) homeostatic imbalance [4], an effect-
ive approach for cartilage regeneration should address
the regulation of the inflammatory environment in the
injured knee joint, while promoting recruitment, prolif-
eration, maturation, and survival of the endogenous
chondrocytes and progenitor stem cells.

Mesenchymal stem cells (MSCs) hold significant
promise for cell-based therapies in cartilage tissue engin-
eering due to their relative ease of availability, high pro-
liferative capacity, and chondrogenesis potency [5]. The
concept that MSCs become engrafted and subsequently
differentiate into chondrocytes at the defect site [6] has
been reconsidered with recent evidence showing that the
paracrine secretion of trophic factors, namely the MSC
secretome, plays an important role in the overall cartil-
age tissue regeneration [7]. MSC secretome contains a
plethora of biologically active factors, ranging from cyto-
kines, cytokine receptors, growth factors, enzymes, en-
zyme inhibitors, peptides, and miRNAs, as soluble
proteins, or packaged in the extracellular vesicles [8].
MSC secretome in the form of conditioned media (CM)
[9], or its isolated components, such as exosomes [10—13]
exhibit cartilage regenerative potential in osteochondral
defects and in an osteoarthritis model. The demonstrated
therapeutic benefit of MSC secretome in cartilage regen-
eration opens up the opportunity for a cell-free therapy.
However, secretome-induced cartilage regeneration often
derived MSC secretome from tissue culture plate (TCP)-
cultivated MSCs. The absence of a physiological micro-
environment in TCP culture would not have provided the
optimum conditions for MSC functionality and paracrine
secretion. Accordingly, high doses of secretome / exo-
somes have to be employed to exert their therapeutic effi-
cacy [10, 11, 14, 15]. Thus, exploration for alternative
MSC culturing platform is warranted to improve the effi-
cacy of MSC secretome for therapeutic application.

Local microenvironment plays a vital role in influen-
cing the MSC paracrine production and activities [16].
Presence of growth factors and cytokines activate MSC
inflammation modulatory response by altering MSC
paracrine production [17, 18]. Anti-inflammatory thera-
peutic effect of MSCs could also be influenced by cell-
cell interaction [19], in which the delivery of MSCs in
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spheroid reduced macrophage inflammatory phenotype.
Further, biomaterials that promote cell aggregation im-
proved MSC paracrine function on myoblasts [20].
Extracellular environment, such as biochemical, mech-
anical, and topographical cues affect cell-matrix inter-
action and the activation of mechanotransduction
signaling, influence not only MSC proliferation and dif-
ferentiation [21, 22], but also have an impact on MSC
secretome. This includes the enhancement of MSCs’
pro-angiogenic activities by glycine-histidine-lysine pep-
tides in alginate hydrogels [23]; the influence on MSC
secretome repertoire by scaffold stiffness [24] and sur-
face topography of substrate, which has been demon-
strated to have a paracrine therapeutic effect for
numerous disease conditions [20, 25, 26].

In this study, we employed a poly-L-lactide-co-g-capro-
lactone (PLCL) electrospun fiber sheets with aligned and
randomly oriented fibers as the topographically defined
culture platform to generate MSC-CM. The fiber material
was chosen due to its biocompatibility, elastic properties
and its ability to promote MSC chondrogenesis [27]. In
particular, the fiber orientation mimics the natural extra-
cellular matrix environment and induces morphological
changes in MSCs. The distinct cell-to-fiber contact and
traction force has been found to provide cues to modulate
cell activities, which includes promoting MSC differenti-
ation [25], cell migration and proliferation [20], as well as
inflammatory modulation [25, 26]. In vitro functional
studies were performed on chondrocytes and MSCs to as-
sess the influence of fiber orientation in affecting cartilage
regeneration through the migratory, proliferative, chon-
drogenic, anti-inflammatory, and anti-apoptotic properties
of MSC secretome, in comparison to the conventional
TCP-generated secretome (Fig. 1). The underlying signal-
ing pathways involved in affecting the secretion of MSC
paracrine factors with respect to the distinct fiber orienta-
tion were also investigated.

Methods

Fabrication of electrospun fiber sheets

Ten percent (w/v) PLCL (Corbion, Netherlands) poly-
mer solution was prepared in 1,1,1,3,3,3-hexafluoro-2-
propanol (Sigma-Aldrich) for electrospinning. Briefly,
the polymer solution was loaded into a syringe and
ejected at 1.0ml/h with a voltage of 15kV. The
aligned and randomly oriented fibers were collected
on a rotating collector at the speed of 3000 and 300
rpm, respectively. The images of the fiber sheets were
captured using a scanning electron microscope (SEM)
(FEI Quanta 650 FEG) to assess the topographical
features, fiber diameter, scaffold thickness, and per-
centage of porosity via Image] software. The mean
diameter of fibers was determined by selecting 100 fi-
bers randomly in each sample (n=6), while the



Kadir et al. Stem Cell Research & Therapy (2021) 12:100

Page 3 of 17

TCP (control)

ACM

-
(2}
=

] |4|4| LUI

Aligned

Random

o Vi

mﬂ(n,«,

Q‘ 1 ‘h‘ ’

RCM

\4
Paracrine effect on:

Chondrogenic differentiation :

@ o
® ¥ OorR I
Expanded

Differentiation
e

Chondrocytes

chondrocytes MSCs
Migration :

MSCs / Chondrocytes Migrated cells

Cell proliferation :

—

MSCs / Chondrocytes - MTS assay

- DNA assay

Anti-inflammation :

N
o= Rogl as

MSCs / Chondrocytes ILB+CM

Anti-apoptosis :

Staurosporine

oS-

MSCs / Chondrocytes C;vl

dependent MSC secretome. Created with BioRender.com

Fig. 1 lllustration of CM generation, functional studies of the CM, and investigation of mechanotransduction pathways relative to topographical-

MSC secretome analysis:

Luminex
assay

+ FAK / ERK inhibition

1x

Aligned Random

+ FAK / ERK inhibition

Real-time
PCR

thickness of fiber sheets was measured from its cross-
sectional view under SEM. The percentage porosity
was quantified based on the percentage of area frac-
tion in each sample, while orientation of fibers was
determined via the Orientation ] plugin in the Image]
software.

MSC and chondrocyte cell culture

Human bone marrow-derived MSCs from three donors
were purchased from RoosterBio Inc. (Frederick, MD).
MSCs were expanded in MSC high-performance media
(RoosterBio Inc.) until 70-80% confluency at 37 °C in

5% CO, atmosphere and were used at passage 5 for all
the experiments.

Chondrocytes were isolated from the femoral con-
dyle of healthy pig articular cartilage (6—9 months
old). Briefly, cartilage tissues were digested with Try-
pLE (Life Technologies, USA) and 0.25% (w/v) type II
collagenase solution (Life Technologies) overnight be-
fore chondrocytes were isolated and expanded in low
glucose (LG)—DMEM (Life Technologies), 10% FBS
(HyClone), and 1% glutamax at 37°C in 5% CO, at-
mosphere. Chondrocytes were used at passage 1 for
all further experiments.
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Fluorescence cell imaging

To examine the cell morphology on the fiber sheets,
MSCs attached to fibers for 24 h were fixed in 10% for-
malin and then incubated with TRITC-conjugated phal-
loidin (1:1000; Life Technologies), before mounted with
slow-fade gold fluorescent mounting medium containing
DAPI (Life Technologies). Images of stained cells were
captured using an Olympus IX81 inverted fluorescence
microscope.

Preparation of MSC conditioned media

MSCs were cultured on three different substrates: tissue
culture plate (TCP), aligned fiber sheets, and randomly
oriented fiber sheets. MSC confluency was allowed to
reach 60-70% in standard culture media before replaced
with serum-free LG-DMEM. The CM was collected 24 h
later as TCP- (TCM), aligned fiber- (ACM), and randomly
oriented fiber-generated conditioned medium (RCM). The
collected CM was centrifuged at 200xg for 5 min, followed
by 500xg for 10 min to remove dead cells and cellular deb-
ris. All CM were concentrated 10x by high centrifugation
force at 4000xg in 4 °C, using a protein concentrator with
a molecular weight cut-off of 3 kDa (Thermo Fisher Scien-
tific, USA). To ensure that all concentrated CM in differ-
ent culture platforms were generated from the same
number of cells, the CM was normalized to the total num-
ber of cells laden on TCP and fiber sheets. In subsequent
functional studies, the 10x concentrated CM was diluted
to 1x concentration (non-concentrated CM) using the ap-
propriate assay media.

Inhibition studies of mechanotransduction pathways

The FAK and ERK pathways were targeted for inhibition
study. MSCs were pre-incubated with either 20 uM of
PF573228 (FAK inhibitor; Sigma-Aldrich) or 70 uM of
PD98059 (ERK inhibitor; Cell Signaling Technology) for
1 h before seeded on the TCP, aligned or randomly ori-
ented fiber sheets in expansion media. Western blot ana-
lysis of phosphorylated FAK (p-FAK) and ERK (p-ERK)
expression was performed on MSCs after 24 h of seed-
ing, while mRNA and its secretory protein were analyzed
after a further incubation of 24 h in serum-free media.

Cell migration

Cell migration was assessed using a transwell culture
system (8 um pore size; Millipore, Germany). Low-serum
culture media (DMEM with 0.5% FBS) and standard cul-
ture media (DMEM with 10% FBS) were used as nega-
tive and positive control, respectively. In brief, 5x 10*
chondrocytes or 3 x 10* MSCs in low-serum culture
medium were seeded in the upper chamber, while the
differential CM, low-serum or standard culture medium
were placed in the lower chamber. Following 16 h of in-
cubation, migrated cells on the underside of the filters
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were fixed with 10% formalin and stained with
hematoxylin and eosin (Sigma-Aldrich, USA). For each
filter samples, cells at x 100 magnification from 5 ran-
domly selected fields were counted to determine the
number of migrated cells.

Cell proliferation

Cell proliferation was determined by measuring the meta-
bolic activity and total DNA content of the treated cells.
MSCs and chondrocytes were cultured in 96-well plates at a
seeding density of 2 x 10% and 5 x 10? cells/well, respectively.
Cells were then treated with low-serum media in the pres-
ence or absence of differential CM. Low-serum media were
used to limit the basal cell proliferation capacity as serum
contains growth factors that can stimulate proliferation of
cells. Metabolic activity was measured by MTS (3-(4,5-di-
methylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-
phenyl)-2H-tetrazolium) assay kit (Promega, USA). The
percentage of cell proliferation was determined by normaliz-
ing the absorbance of MTS in each sample against the con-
trol group at their respective time point, which was set at
100%. Total cellular DNA quantification was determined
using the Quant-iT PicoGreen dsDNA assay kit (Life
Technologies).

Chondrogenic culture

The chondrogenic 3D-pellet culture of MSCs or chondro-
cytes was induced in a standard chondrogenic media sup-
plemented with differential CM, in the presence or
absence of TGF-B3 (R & D Systems, Canada). Briefly,
2.5 x 10> MSCs or chondrocytes were centrifuged to form
pellets and cultured in chondrogenic differentiation
media, which composed of high-glucose DMEM supple-
mented with 10”7 M dexamethasone (Sigma-Aldrich), 1%
ITS-Premix (Becton-Dickinson, San Jose, CA), 50 pg/mL
ascorbic acid, 1 mM MEM sodium pyruvate, 4 mM pro-
line, 100 unit/mL of penicillin, 100 pg/ml of streptomycin,
and 1% (v/v) glutamax. TGF-3 at 10 ng/ml and 2 ng/ml
was used to induce chondrogenic differentiation of MSCs
and re-differentiation of chondrocytes, respectively.

Inflammatory induction of chondrocytes and MSCs

The IL-1PB concentration used for inflammatory induc-
tion in chondrocytes (5ng/ml) and MSCs (0.5 ng/ml)
were based on the IL-1 titration study (Additional file 1:
Figure S1). Samples without IL-1( treatment served as
the non-inflammation (Negative) control, while samples
treated with only IL-1p served as the inflammation
(Positive) control.

In the chondrocyte inflammation study, cartilage tissue
was generated from re-differentiation of chondrocyte
pellets in the standard chondrogenic media with TGF-33
(10 ng/ml) for a week. Inflammation was then induced
with IL-1p (5ng/ml) in the absence of TGF-B3 for



Kadir et al. Stem Cell Research & Therapy (2021) 12:100

subsequent 7 days, in the presence or absence of CM.
Pellets were harvested 14 days post-chondrogenic treat-
ments to evaluate the conservation of cartilage ECM at
both mRNA and protein levels.

For the MSC inflammation study, TGF-$3 (10 ng/ml)-
induced chondrogenic differentiation of MSC pellets
were treated with IL-1p at 0.5 ng/ml in the presence or
absence of CM. Pellets were harvested at day 7 and day
21 to evaluate the MSC chondrogenic efficiency at both
mRNA and protein levels.

Apoptosis analysis

The anti-apoptotic potential of CM on MSCs and chon-
drocytes was assessed using a staurosporine-induced
apoptosis model. MSCs and chondrocytes were cultured
in 96-well plates at a seeding density of 2 x 10 and 5 x
10° cells/well, respectively. To induce apoptosis, cells
were treated with 1 uM staurosporine (Sigma-Aldrich) in
a standard culture media for 3 h, before replaced with a
low-serum medium in the presence of differential CM.
Cells without exposure to staurosporine served as the
negative control, while cells exposed to staurosporine
with no further treatment with CM served as the apop-
totic (Positive) control. After 24h of treatment, the
apoptotic activity of cells was measured using the
Caspase-Glo® 3/7 luminescent assay (Promega) on
TECAN Infinite M200 plate reader.

Characterization of MSC secretory factors

MSC secretory factors were quantitated using a custom-
ized Luminex assay (Merck Millipore). Luminex MAGP
IX fluorescent imager was used to determine the fluores-
cent intensities of targets, and the protein concentrations
were then extrapolated from the standard curve gener-
ated via Luminex xPONENT software.

Real-time PCR analysis

Total RNA was extracted using the RNeasy® Mini Kit
(Qiagen, Germany). The quality and concentration of
RNAs were determined by NanoDrop (NanoDrop Tech-
nologies, Wilmington, DE). Reverse transcription was
performed with 100ng total RNA using iScriptTM
c¢DNA synthesis kit (Bio-Rad, USA). Real-time PCR was
performed using the Power SYBR® green PCR master
mix on ABI Step One Plus Real-time PCR System (Ap-
plied Biosystems, Life Technologies) at 95 °C for 10 min,
followed by 40 cycles of amplifications, consisting of 15 s
denaturation at 95 °C and 1 min extension at 60 °C. Pri-
mer sequences of targeted genes were listed in Add-
itional file 2: Table S1. The expression levels of targeted
genes were normalized to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as the reference gene. Fold
changes were then calculated using the 272" formula
with reference to the undifferentiated MSCs.
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Histology staining

Paraffin-embedded tissue sections were stained for pro-
teoglycan with 0.1% Safranin O solution (Acros Or-
ganics, USA) and counterstained with 0.1% fast green
and hematoxylin (Sigma-Aldrich). For identification of
type II collagen and ADAMTS-5, tissue sections were
incubated with type II collagen monoclonal antibodies
(0.2 mg/ml Clone 6B3; Chemicon, Inc., USA) or ADAM
TS-5 polyclonal antibodies (0.25 mg/ml, Abcam, UK),
followed by incubation of biotinylated goat anti-mouse
secondary antibody (Lab Vision Corporation, USA) or
horseradish peroxidase (HRP)-conjugated anti-rabbit
secondary antibody (Abcam), respectively.

ECM and DNA quantification

Samples were first digested with 10 mg/ml of pepsin
(Sigma-Aldrich) in 0.05 M acetic acid, followed by diges-
tion with 1mg/ml of elastase (Sigma-Aldrich). sGAG
was quantified using the Blyscan sGAG assay kit (Bioco-
lor, UK). The absorbance of sGAG in the samples was
measured at 656 nm, and its concentration was extrapo-
lated from the sGAG standard curve. Type II collagen
(COL2) was measured via a captured enzyme-linked im-
munosorbent assay (ELISA; Chondrex, USA). Absorb-
ance was measured at 490 nm, and the concentration of
COL2 in samples was extrapolated from the COL2
standard curve. The total abundance of sGAG and
COL2 were normalized to the total DNA content of re-
spective samples, quantified by PicoGreen DNA assay.

Western blot analysis

Samples were trypsinized and lysed using M-PER™
Mammalian protein extraction reagent (Thermo Fisher
Scientific), supplemented with 1x Pierce™ Protease and
Phosphatase Inhibitor (Thermo Fisher Scientific). The
concentration of protein was quantified via Pierce™ BCA
protein assay kit (Thermo Fisher Scientific). An equal
amount of protein was electrophoresed on 12% 10-well
Mini-PROTEAN® TGX™ Precast gel (Bio-Rad) and trans-
ferred onto a nitrocellulose membrane. The membranes
were then incubated with the following antibodies:
rabbit anti-ERK1 (phospho T202)+ ERK2 (phospho
T185) antibody (1 pg/ml; Abcam, UK; ab201015), rabbit
anti-FAK (phospho Y576 + Y577) antibody (0.182 pg/ml;
Abcam; ab76244), mouse anti-ERK1 + ERK2 antibody
(1 pg/ml; Abcam; ab54230), mouse anti-FAK antibody
(1 pg/ml; Abcam; ab72140), and mouse anti-B-actin anti-
body (1 pg/ml; Abcam; ab8226). Blots were subsequently
incubated with respective HRP-conjugated secondary
antibodies (1:5000 dilution), and immune complexes
were then detected with SuperSignal® West Dura Ex-
tended Duration Substrate (Thermo Scientific) and
viewed by ChemiDoc™ MP Imaging system (Bio-Rad).
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Densitometric analysis of the Western blot bands was
then conducted using Image] software.

Statistical analysis

Statistical significance was calculated after the data were
tested for normality. One-way ANOVA followed by
Fisher’s LSD post hoc analysis was performed for com-
parison of multiple groups, while Student’s ¢ test was
performed for comparison of two groups. All quantita-
tive data obtained in this study were averaged from rep-
licates of three independent experiments and presented
in mean t standard deviation (SD), with statistical sig-
nificance of p < 0.05.

Results
Characterization of electrospun fiber sheets and MSC
culture
SEM images revealed that PLCL electrospun fiber sheets
were successfully fabricated with the desired topography
(Fig. 2a) as indicated by the distinct fiber orientation be-
tween aligned and randomly oriented fiber sheets
(Fig. 2b). Both aligned and randomly oriented PLCL fi-
bers showed consistent fiber diameters and similar scaf-
fold thickness and porosity (Table 1).

MSCs cultured on different topographical fiber sheets
formed distinct morphology in comparison to those on
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TCP (Fig. 2c). MSCs adopted spindle-like shape ar-
ranged along the direction of aligned fibers, compared to
the fibroblastic morphology in a random arrangement
on TCP. In contrast, the majority of MSCs on random
fiber sheets formed aggregated clusters. MSCs condi-
tioned on the fiber sheets have enhanced metabolic ac-
tivity compared to TCP, with random fibers supporting
the highest metabolically active MSCs (Fig. 2d). A higher
yield of total protein content (> 5-fold) was detected in
the CM derived from MSCs cultured on fiber sheets
compared to TCP (Fig. 2e).

Homing and reparative effect of ACM and RCM on
chondrocytes and MSCs

The chondrogenic, migratory, and proliferative potential
of MSC-CM generated from electrospun fiber sheets
(ACM and RCM) was compared to TCP-generated CM
(TCM) on both chondrocytes and MSCs. ACM induced
a consistent upregulation of COL2 and aggrecan in
MSCs at both mRNA (Fig. 3a) and protein (Fig. 3b)
levels with respect to TCM-treated MSCs. Compara-
tively, the enhancing effect of RCM was less consistent,
in which increase of COL2, aggrecan, and SOX-9 mRNA
expressions was only detected in the presence of TGF-
B3 (Fig. 3a), while upregulation of sSGAG deposition was
only detected in the absence of TGF-f33 (Fig. 3b). Unlike
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Table 1 Characteristic of 10% PLCL electrospun fibrous scaffolds
of aligned and randomly oriented fibers
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By contrast, TCM induced limited (chondrocyte) or no
(MSC) increase in migration relative to the negative
control.

MTS (Fig. 3d) and DNA quantification (Fig. 3e) assays
showed that chondrocytes and MSCs exposed to ACM
and RCM were more proliferative than cells exposed to
TCM and controls (0.5% FBS), with ACM exerting
higher impact. However, both ACM and RCM exerted a
greater proliferative effect on chondrocytes than MSCs,
with significant enhancement in the percentage of chon-
drocyte proliferation (Fig. 3d) and DNA content (Fig. 3e)
as early as 24 h. TCM did not induce enhanced prolifer-
ation in both cell types.

Overall, MSC secretome generated from distinct fiber
orientations enhanced MSC chondrogenesis, chondro-
cyte, and MSC migration, as well as the proliferation of
both cell types.

Protective effect of ACM and RCM on chondrocytes and
MSCs from inflammation assault and apoptosis

The cellular protective function of MSC secretome has
been attributed to its anti-inflammatory [11, 12, 28-30]
and anti-apoptotic properties [11, 14]. We assessed the
potential of CM to protect chondrocytes and MSCs from
inflammation assault in IL-1P-induced inflammation
models. The cellular protective effect of CM on
inflammation-induced ECM degradation was assessed in
re-differentiated chondrocyte tissues, while their effect
on inflammation-induced chondrogenic inhibition was
evaluated in MSCs undergoing chondrogenesis. The sig-
nificantly high level of COX-2 expression in IL-1pB-
treated cells compared to non-treated cells showed that
inflammation had been successfully induced in chondro-
cytes and MSCs (Fig. 4a).

In chondrocytes, a rescued effect by RCM on chondro-
cyte ECM production under inflammation relative to
TCM and ACM was observed at both mRNA (Fig. 4a)
and protein (Fig. 4b) levels. RCM-treated chondrocytes
resulted in a slight, albeit significant, upregulation of
COL2 and sGAG production, as well as downregulation
of the aggrecanase, ADAMTS-5 (Fig. 4b) and MMP-13
(Fig. 4a), coinciding with a significant downregulation of
COX-2 expression as observed only by RCM treatment
(Fig. 4a).

For MSCs, both ACM and RCM rescued the differen-
tiating MSCs under inflammation, with an increase
ECM deposition of COL2 and aggrecan at both mRNA
(Fig. 4a) and protein (Fig. 4c) levels, as well as a decrease
in ADAMTS-5 (Fig. 4c) and MMP-13 (Fig. 4a) expres-
sion, relative to the TCM-treated MSC pellets. Again,
the effect on the anabolic and catabolic activities of dif-
ferentiating MSCs coincided with downregulation of
COX-2 by both ACM and RCM treatment (Fig. 4a).
Notably, RCM exerted greater rescued effect than ACM,
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with a further increment of aggrecan mRNA expression
(Fig. 4a) and sGAG deposition (Fig. 4c), in parallel with
the greater suppression of COX-2 expression.

We next investigated the anti-apoptotic potential of
ACM and RCM on both chondrocytes and MSCs in
staurosporine-induced apoptosis model. Treatment with
ACM and RCM rescued the apoptotic chondrocytes
with a significant reduction of caspase 3/7 activities rela-
tive to TCM, which has no effect on staurosporine (Posi-
tive control)-induced upregulation of caspase 3/7 activity
(Fig. 4d). Unlike chondrocytes, apoptotic MSCs were not
rescued by all three CM treatments (Fig. 4d).

Overall, our results indicate that orientation of fibers in-
fluences MSC secretome, which ameliorate inflammation
in chondrocytes and MSCs by mitigating inflammation-
induced ECM degradation and chondrogenic inhibition.
Further, electrospun fiber-generated secretome reduced
the progression of chondrocyte apoptosis.

Expression and quantification of MSC secretome

The influence of fiber orientation associated with their
positive paracrine effects on chondrogenic differenti-
ation, migration, proliferation, and inflammatory modu-
lation was further investigated by analyzing the
expression of MSC secretory factors. We detected
upregulation of TGF-B1, BMP-2, GDF-15, FGF-2, IL-6,
IL-8, IL-1Ra, and HGF mRNA in MSCs cultured on
aligned and randomly oriented fibers, relative to TCP
(Fig. 5a). Amongst the upregulated factors, FGF-2 and
IL-8 levels were significantly higher in aligned fibers
than randomly oriented fibers. A Luminex assay was
performed on TCM, ACM, and RCM to characterize the
secretome profile. The enhanced expression of secretory
factors, TGF-P1 (6-fold relative to TCM), BMP-2 (> 12-
fold), GDF-15 (>100-fold), FGF-2 (> 7-fold), IL-6 (8-
fold), IL-8 (> 15-fold), IL-1Ra (1.7-fold), and HGF (> 2-
fold) in ACM and RCM (Fig. 5b) corroborated well with
the mRNA expression in MSCs preconditioned on the
fiber sheets (Fig. 5a). Similarly, ACM has significantly
higher levels of FGF-2 and IL-8 than RCM. The parallel
observation of enhanced secretory factors in the fiber
sheet-generated CM along with the increased mRNA
expressions in MSCs cultured on electrospun fiber
sheets suggests that changes in MSC morphology and
mechano-environment induced by fiber orientation have
altered the MSC secretome profile.

Activation of FAK signaling by electrospun fiber sheets

Morphological change of MSCs and the activation of
mechanotransduction pathways are associated with the
response of MSCs to topographical cues, in which FAK
is a key component recruited at the focal contact of cell-
matrix adhesion [31]. Activation of FAK triggers down-
stream mitogen-activated protein kinase (MAPK)
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pathway, with ERK as the key link that regulates the cel-
lular response to mechanotransduction stimuli [32]. We
thus further explored the expression of activated FAK
and ERK along with the cytoskeleton reorganization of
MSCs preconditioned on aligned and randomly oriented

fibers. MSCs cultured on aligned fibers possessed F-
actin stress fibers (Fig. 6a), with higher FAK activation
than MSCs on randomly oriented fibers (Fig. 6b). By
contrast, MSCs conditioned on randomly oriented fibers
expressed cortical actin (Fig. 6a), while having a higher
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level of ERK activation (Fig. 6b). Inhibition of FAK further
confirmed its involvement in cell-matrix adhesion as the
suppressed p-FAK expression (Fig. 6b) led to a change in
F-actin organization, with the transition from a more
prominently spindled to a rounder morphology for MSCs
cultured on aligned fibers (Fig. 6a). FAK inhibition also re-
sulted in suppression of p-ERK expression in MSCs cul-
tured on both fiber sheets, regardless of its orientation
(Fig. 6b). ERK inhibition, on the other hand, did not affect
p-FAK expression (Fig. 6b), indicating that FAK activation
is upstream of ERK pathway. These inhibition studies con-
firmed that the orientation of fibers could influence MSC
cytoskeletal structure and FAK-induced ERK activation.

Influence of FAK and ERK activation in modulating MSC
paracrine factors

To investigate the role of FAK and ERK activation in
MSCs’ secretome generation on electrospun fiber sheets,
we evaluated the expression of the upregulated paracrine
factors after inhibition of either FAK (PF573228) or ERK
(PD98059) signaling pathways (Fig. 7). The enhanced ex-
pression of BMP-2, FGF-2, GDF-15, IL-8, and HGF in
MSCs conditioned on aligned fibers were significantly re-
duced upon treatment with either FAK or ERK inhibitors
at both mRNA (Fig. 7a) and secreted protein levels
(Fig. 7b). However, MSCs cultured on randomly oriented
fibers only showed significant suppression of FGF-2 upon
FAK inhibition, while the expression of HGF and BMP-2
were only suppressed upon ERK inhibition (Fig. 7a, b). A

similar trend of dampened effect was also observed in IL-
1Ra secreted protein levels, in which MSCs conditioned
on aligned fibers showed a significant reduction of IL-1Ra
expression upon FAK or ERK inhibition, while MSCs con-
ditioned on random fibers showed suppression of IL-1Ra
only upon ERK inhibition (Fig. 7b). The lack of statistical
significance in the reduction of IL-8 and GDF-15 expres-
sion by both FAK and ERK inhibitors in MSCs condi-
tioned on randomly oriented fibers (Fig. 7a), suggested
that these factors were regulated by other signaling cas-
cades, in relation to the change of MSC morphology.
Lastly, the lack of statistical significance in the expression
of TGF-P1 and IL-6 after inhibition of FAK or ERK path-
ways on both aligned and random fibers (Fig. 7a, b), sug-
gested that these factors were not directly regulated by
FAK or ERK signaling cascades.

Discussion

Provision of native-mimicking microenvironment has
been recognized as a critical factor to improve the thera-
peutic efficacy of MSCs for cartilage formation [33-36]
and secretome production [16, 20, 23, 29]. Morphological
variation in MSCs acquired through cell-substratum and
cell-cell interaction can be manipulated to exert beneficial
paracrine effects, such as promoting cell migration and
proliferation [20], as well as modulating inflammation [25,
26]. Electrospun fibrous scaffolds have been particularly
attractive as they provide a fibrillar architecture that dis-
tinctively influences MSC-substratum interaction and
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activates mechanotransduction signaling cascade, leading to
a change in MSC secretome profile [26]. In this study, we in-
vestigated the ability of CM generated from MSCs cultured
on electrospun fiber sheets with a distinct fiber orientation,
relative to those generated from TCP, to promote homing,
proliferation, reparation, and protection of chondrocytes, as
well as MSCs, the resident stem cells in the vicinity of a
synovial joint that participate in cartilage regeneration [37].

Collectively, the enhanced paracrine functional outcomes
of electrospun fiber-generated CM (ACM and RCM) rela-
tive to TCM correlated with their enhanced level of se-
creted factors that have known migratory, proliferative,
chondrogenic, and immunomodulation functions. The
comparable upregulation of TGF-1 and BMP-2 [38, 39],
the two well reported chondro-inducing factors, in MSCs
and their secretion upon subjected to aligned and random
fiber sheets (Fig. 5) could account for the augmented MSC

chondrogenesis (Fig. 3a, b). The higher efficacy of ACM to
augment MSC chondrogenesis compared to RCM could be
attributed by the presence of other secreted factors, such as
the elevated level of IL-8, which has been shown to enhance
MSC chondrogenesis [40]. IL-8 has multiple functions that
include MSC migration [40, 41]; together with the elevated
levels of IL-6 [42] and HGF [43, 44] in fiber sheet-
generated secretome (Fig. 5), this could have contributed to
the increased migratory potential in ACM and RCM
(Fig. 3c). The heightened level of TGFp1, FGF-2, and GDF-
15 in ACM and RCM (Fig. 5b), on the other hand, could
have contributed to the increased proliferation in chondro-
cytes and MSCs (Fig. 3d, e). TGFP1 and FGFs are growth
factors that induced MSC proliferation [45, 46] and are
commonly used for chondrocyte expansion [47, 48]. GDE-
15, a MSC secretory product [49] belonging to the BMP
family, has also been associated with cell proliferation [50].
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Notably, the significant higher levels of FGF in ACM rela-
tive to RCM (Fig. 5) were correlated with the heightened
proliferative potential of ACM-treated cells (Fig. 3d, e). This
observation was in accordance with Su et al. (2017), in
which MSCs was reported to secrete greater amount of
FGF-2 on aligned than random fibers [29]. Notably, the
proliferative effect of MSC secretome appeared to be more
effective on chondrocytes than MSCs (Fig. 3d, e). This
prominent effect on chondrocytes could possibly be due to
the presence of HGF in the CM as this growth factor has
been shown to promote chondrocyte proliferation [43], but
was however inhibitive towards MSC proliferation [44].
Thus, a collective synergistic effect of elevated factors such
as TGF-p1, BMP-2, FGF-2, GDF-15, HGF, IL-6, and IL-8
in ACM and RCM could have potentiated the chondro-
genic, proliferation, and recruitment capacities towards
chondrocytes and MSCs. Nevertheless, it is also noteworthy
that other factor(s) not tested within the very limited num-
ber of screened proteins could also participate in augment-
ing the paracrine effects, such as the capability of MSC-
derived EVs in promoting the migration and proliferation
of chondrocytes [11, 51].

Following cartilage injury or in osteoarthritis, degen-
erative, and apoptotic joint environment are perpetuated

as the heightened level of pro-inflammatory cytokines and
catabolic factors suppressed the chondrocyte anabolic ac-
tivities [52]. MSC secretome has been reported to alleviate
the inflammatory environment of cartilage and impede
inflammation-induced ECM cartilage degradation [11-13,
28, 30]. Here, we showed that CM from fiber sheets sig-
nificantly downregulated the inflammation status of chon-
drocytes and MSCs, dampened the catabolic activities and
reverted, to some extent, the anabolic activities (Fig. 4a—
¢), as well as rescued the staurosporine-induced chondro-
cytes apoptosis (Fig. 4d). The protective effect of the fiber-
generated CM was correlated to the elevated secretion of
IL-1Ra, HGF, and GDEF-15 (Fig. 5). Intra-articular injec-
tion of IL-1Ra, an IL1-P antagonist, has been shown to
delay cartilage degradation in arthritic joint [53], while
HGF ameliorated inflammation through inhibition of NF-
kB pathway [54], and GDF-15 modulated inflammation
with extended cellular protection against apoptosis [55].
Despite having similar levels of IL-1Ra, HGF, and GDF-
15, RCM holds heightened protective capability from in-
flammation assault in chondrocytes and MSCs, evidenced
by the greater COX-2, MMP-13 (Fig. 4a), and ADAMTS-
5 suppression, with concomitant improvement of ECM
deposition (Fig. 4b, c) and cellular protection against
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staurosporine-induced chondrocytes apoptosis (Fig. 4d),
relative to ACM. It is thus likely that other factor(s), such
as exosomal microRNAs, could have participated in regu-
lating chondrocyte anabolic activity and cartilage degrad-
ation [56, 57].

Contrary to several previous reports [11, 14, 28, 30],
secretome derived from MSCs cultured on TCP in our
study did not induce enhanced migration and prolifera-
tion, nor provide protection against inflammation to
chondrocytes. The discrepancy in the efficacy of TCP-
derived secretome could stem from the use of different
cell sources [11, 58, 59]. However, closer examination of
the protocols employed by others revealed that their
secretome (CM, EVs, or exosomes) were generated from a
higher quantity of MSCs [11, 30, 60] compared to the CM
used in this study. Strikingly, the secretome from our low
number of MSCs on fibrous culture platform was able to
exert significant paracrine effects. ACM or RCM treat-
ments induced > 2-fold increase in chondrocyte migration
relative to the negative control or TCM (Fig. 3c), an effect
comparable in magnitude with 10 pg/ml of exosome treat-
ment [11]. In addition, the degree of enhanced chondro-
cyte proliferation at 72 h time point (~ 1.6-fold increase)
in ACM-treated chondrocytes (Fig. 3d, e) was also com-
parable to the chondrocytes treated with 5 pg/ml exo-
somes at 72h (~ 1.6-fold increase) [11]. It is also worth
mentioning that the secretome from our low number of
MSCs on fibrous culture platform could provide protec-
tion against an adverse inflammatory condition, exerting
significant, albeit slight, rescued effect (Fig. 4a—c). We
speculated that the rescued effect would likely be more ef-
fective with CM dosage generated from higher quantity of
MSC:s in the similar range as other studies [11, 30]. The
enhanced paracrine effects of fiber-generated CM that
corroborated with the increase in total secretory proteins
(= 5-fold relative to TCM; Fig. 2e) and specific secretory
factors (Fig. 5b) could also stem from the heightened sta-
tus of MSC metabolic activity on fibrous culture platforms
(Fig. 2d). Metabolically active stromal cells were shown to
secrete higher levels of cytokines with an enhanced immu-
nomodulatory capacity [61]. Thus, conditioning of MSCs
on fibrous culture platform holds great potential over the
current conventional TCP for improving the yield and
repertoire of MSC secretome for cartilage repair.

The variation in the degree of paracrine effects be-
tween ACM and RCM however suggests the presence of
potentially topographical-dependent MSC secretome.
Substrate stiffness and topographical cues induced a
change in cell morphology via the cells’ ability to sense
the magnitude of traction force [62] that activates intra-
cellular mechanotransduction pathways [63, 64]. FAK is
one of the early signaling proteins recruited at the focal
contact of cell-matrix adhesion through the activation of
integrin receptors [65], which in turn activated ERK1/2,
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a MAPK associated with substrate stiffness or
topography-induced mechanotransduction signaling [26,
66]. Similar to Wan et al. [26], we observed that the
heightened FAK activation in MSCs subjected to the
aligned fiber sheets (Fig. 6b) corresponded to the eleva-
tion of cellular tension, as indicated by the presence of
F-actin stress fibers (Fig. 2¢). In contrast, the heightened
level of p-FAK activation in MSCs on aligned fibers did
not correspond to the higher levels of downstream
ERK1/2 activation relative to MSCs cultured on ran-
domly oriented fibers (Fig. 6b). The discrepancy in rela-
tive ERK1/2 activation could be attributed to the distinct
traction force experienced by MSCs when subjected to
different scaffolding materials. A stiff and inflexible poly-
L-lactic acid (PLLA) scaffolds were employed in Wan
et al. study, in which MSCs formed polygonal morph-
ology with F-actin stress fibers on the random scaffold
[26]. Unlike PLLA scaffolds, the more compliant elasto-
meric PLCL fiber sheets and the relatively high cell seed-
ing density used in current study has allowed MSCs to
experience less traction force and enhanced cell-cell
interaction that promote cell agglomeration on ran-
dom fibers (Fig. 2c). By analogy, the metabolically
more active MSCs on random fibers relative to the
aligned fibers (Fig. 2d) could be attributed to the for-
mation of agglomerated MSCs as actin-mediated cel-
lular compaction reprogramed and induced MSC
energy metabolism [67, 68].

Inhibition of FAK or ERK pathways revealed that fiber
orientation could modulate the repertoire of MSC secre-
tome through the extensiveness of FAK/ERK activation
(Fig. 7). In general, the enhanced paracrine effects of
MSCs induced by aligned fiber sheets required FAK-
induced ERK pathways. This was supported by the signifi-
cant reduction of BMP-2, GDF-15, FGF-2, IL-8, IL-1Ra,
and HGF expression and secretion upon either FAK or
ERK inhibition. Indeed, the association of FAK activation
and the enhanced secretion of these proteins in morpho-
logically stretched MSCs on the aligned fibers are in ac-
cordance to the reported mechanotransduction regulation
of BMP-2 [69], HGF [70], IL-1Ra [71], GDF-15 [72], IL-8
[73], and FGF-2 [25]. Although these secretory factors
were similarly augmented on the random fiber sheets, its
regulation in agglomerated MSCs was more complex and
differed from the stretched MSCs on aligned fiber sheets.
FGF-2 expressed in MSCs on random fibers was affected
by inhibition of FAK, but not ERK, while IL-8 and GDF-
15 expression was neither affected by FAK nor ERK inhib-
itors, while expressions of BMP-2, HGF, and IL-1Ra in
MSCs were regulated by ERK-dependent pathway. Aggre-
gated or spheroid MSCs have been shown to enhance the
secretion of several cytokines and growth factors [74], via
cadherin-dependent cell-cell interaction [20, 75, 76] that
triggered downstream ERK1/2 activation [75, 76]. MSC
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mechano-conditioned on aligned and randomly oriented
fibers could thus activate distinct mechanotransduction
pathway, through FAK and / or ERK signaling (Fig. 8).
The secretory factors derived from stretched MSCs on
aligned fibers were predominantly regulated via the FAK-
ERK pathway, while agglomerated MSCs on random fibers
could have triggered the ERK signaling pathway via cad-
herin induction, accounting for comparable expression of
MSC paracrine factors induced by the two distinctive fiber
orientation. However, given the partial effect of either
FAK or ERK inhibition on the abovementioned factors,
and the lack of effect on increased expression of TGF-1
and IL-6, additional signaling pathways were likely in-
volved in the regulation of topographical-dependent MSC
secretome. A broader analysis of altered genes and signal-
ing pathways using technology such as RNA-Seq could
further shed light in the understanding of the paracrine
factors and mechanotransduction mechanism triggered by
the fiber orientation on MSCs and the future strategies
utilizing MSC secretome for in vivo application.

Conclusions

In this study, we have provided evidence that precondi-
tioning of MSCs on both aligned and random fiber sheets
can enhance their ability to secrete paracrine factors with
the capability to promote MSC chondrogenesis, migration,
and proliferation of MSCs and chondrocytes, as well as
provide protection against an adverse inflammatory condi-
tion. Mechano-conditioning on distinct fiber orientations
triggered different FAK-ERK signaling pathways and
exerted variable paracrine effects, suggestive of the poten-
tial presence of topographical-dependent MSC secretome.
Application of RCM could prevent worsening of the pre-

existing articular cartilage as it was more efficient in miti-
gating the inflammation assault. In contrast, ACM could
aid in repairing and restoring the function of the damaged
cartilage as it was better at promoting cell proliferation
and augmenting MSC chondrogenesis. This research has
made a significant contribution to the development of
MSC secretome engineering strategies for cartilage regen-
eration, as well as the understanding of cell-material inter-
actions in improving MSC secretome for future cell-free
therapy in cartilage regeneration.
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Additional file 1: Figure S1. Dosage effect of IL-1B to induce inflam-
mation in (A) chondrocytes and (B) MSC chondrogenic pellets. (A) Inflam-
mation was induced in chondrocytes either with 0, 1, 5 or 10 ng/ml of IL-
18. Real-time PCR analysis after 24 h induction of IL-13 was normalized to
GAPDH and presented as fold change relative to the level in non-treated
(Day 0) chondrocytes. (B) Inflammation was induced in MSC chondro-
genic pellet either with 0, 0.5, 1 or 2 ng/ml of IL-1f. Real-time PCR ana-
lysis after 7 days of chondrogenesis under the continuous presence of IL-
1B-induced inflammation, was normalized to GAPDH and presented as
fold change relative to the level in undifferentiated MSCs. All data repre-
sent the mean =+ standard deviation (STD), n =6, from 3 independent ex-
periments. A denotes p < 0.05 compared to untreated cells (0 ng/ml of IL-
1B); * denotes p < 0.05 compared to cells treated with 1 ng/ml of IL-1( in
chondrocytes or 0.5 ng/ml of IL-13 in MSC pellets; # denotes p < 0.05 be-
tween chondrocytes treated with 10 ng/ml and 5 ng/ml of IL-1(.

Additional file 2: Table S1. Primer sequences of genes.
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