Skip to main content
. 2021 Feb 3;14:93. doi: 10.1186/s13071-020-04522-3

Table 1.

Results of multiple regression on distance matrices and additional parameters derived from commonality analysis

ka r β U C
FCA
 Cattle density [C]b 1000 0.1733 0.1551 0.0221 0.0079
 Grassland [R]c 1000 0.1080 0.0637 0.0037 0.0079
aR
 Elevation [R]c 100 0.0254 − 0.9945 0.00044 0.0002
 Elevation [R]c 1000 0.0291 0.9860 0.00048 0.0004
 Grassland [R]c 100 0.0448 0.2279 0.00005 0.0020
 Grassland [R]c 1000 0.0539 − 0.1483 0.00002 0.0029
 Urban areas [R]c 100 0.0725 − 0.1279 0.00014 0.0051
 Urban areas [R]c 1000 0.0879 0.2156 0.00049 0.0072

Pearson’s correlation coefficient (r), significant regression coefficient (β), as well as unique (U) and common (C) contributions of environmental distances to the variance in the dependent variable are shown; FCA factorial correspondence analysis, aR Rousset’s distance

aRe-scaling parameter used to transform the initial raster file

bThe considered environmental raster was treated as a conductance [C] factor

cThe considered environmental raster was treated as a resistance [R] factor