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Structural basis for the inhibition of the SARS-CoV-2 main
protease by the anti-HCV drug narlaprevir

Signal Transduction and Targeted Therapy            (2021) 6:51 ; https://doi.org/10.1038/s41392-021-00468-9

Dear Editor,
The second wave of the coronavirus disease (COVID-19)

pandemic has recently appeared in Europe. Most European
countries, such as France, Germany, and Italy, have announced
the implementation of a new round of epidemic prevention and
control measures. However, no clinical drug or vaccine has been
approved for the treatment of COVID-19. The interim results of the
solidarity therapy trial coordinated by the World Health Organiza-
tion (WHO) indicated that remdesivir, hydroxychloroquine, lopina-
vir/ritonavir, and interferon appear to have little or no effect on the
28-day mortality of hospitalized patients or the hospitalization
process of new COVID-19 patients. Therefore, there is an urgent
need to develop new drugs against COVID-19.
Many viral protease inhibitors, such as telaprevir, asunaprevir,

grazoprevir, simeprevir, and darunavir, have been successfully
approved for the treatment of HCV and HIV. For coronavirus, the
main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are
responsible for the digestion of viral polyproteins 1a and 1ab to
produce 16 active viral nonstructural proteins. These nonstructural
proteins are critical for viral replication and transcription. In
particular, Mpro cleaves 11 substrate sites of viral polyprotein 1ab
and 7 substrate sites of viral polyprotein 1a. Therefore, Mpro is
recognized as an attractive drug target. The structures of the
covalent inhibitors 13b1 and N32 when complexed with Mpro have
been determined at first. Based on the complex structure,
structure-based design of the covalent inhibitors 11a and 11b
targeting Mpro has led to better antiviral activities.3 Compared with
these preclinical drugs, repurposing approved drugs is a feasible
method for emergent treatment of COVID-19 patients. The
antineoplastic drug carmofur was screened and it exhibited Mpro

inhibitory activity. The crystal structure, when complexed with
Mpro, revealed that the carbonyl reactive group of carmofur can
covalently bind to catalytic Cys145.4 We also found that the anti-
HCV drug boceprevir5 can effectively inhibit SARS-CoV-2 in Vero
cells by targeting Mpro with an EC50 of 15.57 μM. Further, structural
analysis revealed that boceprevir can occupy the substrate-
binding pocket of Mpro and form a covalent bond with the
catalytic Cys145. Narlaprevir is a potent second-generation
inhibitor of the HCV NS3 protease based on boceprevir and now
is in phase III clinical trials. Unlike boceprevir, narlaprevir is a single
isoform and shows an improved pharmacokinetic profile and
physicochemical characteristics.
Using an enzyme activity inhibition assay, we found that

narlaprevir (Fig. 1a) showed moderate inhibitory activity against
SARS-CoV-2 Mpro, with an IC50 value of 16.11 μM (Fig. 1a). To
validate the binding of narlaprevir with SARS-CoV-2 Mpro and
exclude any false-positive results of the enzyme activity inhibition
test, we performed isothermal titration calorimetry (ITC) to
measure the binding affinity between narlaprevir and SARS-CoV-
2 Mpro. The Kd value of narlaprevir binding with SARS-CoV-2 Mpro

is 82 μM. In contrast, boceprevir and GC376 have Kd values of

21 μM and 0.46 μM, respectively (Supplementary Fig. S1). These
results were consistent with the enzyme activity inhibition assay.
Narlaprevir showed an antiviral effect against SARS-CoV-2 with

an EC50 value of 7.23 μM (Fig. 1b). As a positive control, remdesivir
and boceprevir inhibited SARS-CoV-2 replication with EC50 values
of 0.58 μM and 14.13 μM, respectively. Additionally, narlaprevir
exhibited no cytotoxicity in Vero cells at different concentrations
up to 200 μM (Supplementary Fig. S2). Treatment with narlaprevir
infection demonstrated a dose-dependent inhibitory effect on
SARS-CoV-2 plaque formation (Fig. 1c). The plaques were
completely inhibited in the presence of 50 μM narlaprevir.
The crystal structure of the Mpro-narlaprevir complex was

determined at 1.78 Å resolution (Supplementary Table S1). The
Mpro molecule contains three domains and narlaprevir binds to
the substrate-binding site located in the cavity between domains I
and II of Mpro in an extended conformation (Fig. 1d). The
unambiguous electron density map shows that narlaprevir binds
to the active site of Mpro through a C–S covalent bond interaction
with catalytic C145 (Fig. 1e and Supplementary Fig. S3). In the
Mpro- narlaprevir complex, residues H41, N142, G143, and H164
form four hydrogen-bonds with the amide backbone of narlapre-
vir on one side, and residue E166 forms three hydrogen-bonds
with narlaprevir on the other side (Fig. 1f). According to the Berger
and Schechter nomenclature, narlaprevir can be divided into five
moieties, P1–P4 and P1’, as shown in Figs. 1a and 1f. The
S1 subsite of Mpro was found to be a polarity pocket composed of
Phe140, Tyr161, His162, Glu166, and His172. The norleucine
moiety at P1 of narlaprevir can fit the S1 pocket shape well (Fig.
1g). The rigid P2 dimethyl-cyclopropyl proline (DMCP) residue lies
in the S2 hydrophobic pocket, which is composed of His41, Met49,
Met165, Phe181, and Asp187. The hydrophobic P3 tert-butyl (tBu)
residue is exposed to solvents in the S3 subsite. The cyclohexyl
moiety at P4 is buried deep in the S4 pocket. However, the
appended tBu sulfone group is exposed to solvents. In addition,
the cyclopropyl moiety at P1’ can also be tolerated by the S1’
pocket due to its small size (Fig. 1g).
Compared with the HCV NS3/4A-narlaprevir complex (Fig. 1h),

narlaprevir undergoes a large conformational change to fit the
Mpro substrate-binding pocket (Fig. 1g). This is similar to
boceprevir binding (Supplementary Fig. S4a and S4b). However,
narlaprevir has a weaker protease inhibitory activity than
boceprevir. The tBu sulfone tail of narlaprevir, which does not
appear to favor the S4 pocket of Mpro, may contribute to the
reduction in enzyme potency. In contrast, the tBu sulfone tail and
cyclopropyl moiety at P1’ of narlaprevir can increase its biological
activity across the cell membrane. This leads to the improved anti-
viral activity of narlaprevir over boceprevir against SARS-CoV-2. We
also compared the structures of the newly identified compounds
complexed with SARS-CoV-2 Mpro and found that all target the
active site of SARS-CoV-2 Mpro. These compounds were covalently
bound to the catalytic residue Cys145 (Supplementary Fig. S4c–f).
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Moreover, the Michael acceptor inhibitor N3 is an irreversible
covalent inhibitor that shows time-dependent inhibitory activity.
In general, the glutamine surrogate ring at the P1 position is
essential for the sub-micromolar inhibitory activity in Mpro

structures complexed with 11a (IC50= 0.053 μM, EC50= 0.53 μM),
13b (IC50= 0.67 μM, EC50= 4-5 μM), N3 (k3/Ki= 11,300 ± 880 M−1

s−1, EC50= 16.77 μM), and GC376 (IC50= 0.15 μM, EC50= 0.7 μM).
The NH residues of the glutamine surrogate ring can form
hydrogen-bonds with the carboxyl groups of Glu166 and Phe140.
In contrast, the carboxyl group of the surrogate rings can form
hydrogen-bonds with His172. Subsites S2, S3, and S4 of SARS-CoV-
2 Mpro prefer hydrophobic residues. Among them, subsite S2 has a
certain flexibility and can accommodate large hydrophobic
groups, such as DMCP. The DMCP residue can improve the
pharmacokinetic properties and specificity of the entire molecule.
Subsite S3 is exposed to solvents. The indole residue of 11a,
benzene residue of GC376, isopropyl residue of N3, and tBu
residue from both boceprevir and narlaprevir can fit subsite S3.

However, none of these groups interacted with the S3 subsite.
Whether there are more suitable groups for S3 requires further
investigation. For the S4 subsite, the cyclohexyl moiety fits very
well and has hydrophobic interactions. This should be considered
in future structural optimization. In summary, our work combined
with other studies, will provide the structural basis for the
optimization and design of more potent drugs to treat SARS-CoV-
2 infection.
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