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A B S T R A C T   

Outbreaks of COVID-19 (coronavirus disease 2019) have been reported in workers in fish farms and fish pro-
cessing plants arising from person-to-person transmission, raising concerns about aquatic animal food products’ 
safety. A better understanding of such incidents is important for the aquaculture industry’s sustainability, 
particularly with the global trade in fresh and frozen aquatic animal food products where contaminating virus 
could survive for some time. Despite a plethora of COVID-19-related scientific publications, there is a lack of 
reports on the risk of contact with aquatic food animal species or their products. This review aimed to examine 
the potential for Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) contamination and the po-
tential transmission via aquatic food animals or their products and wastewater effluents. The extracellular 
viability of SARS-CoV-2 and how the virus is spread are reviewed, supporting the understanding that contami-
nated cold-chain food sources may introduce SAR-CoV-2 via food imports although the virus is unlikely to infect 
humans through consumption of aquatic food animals or their products or drinking water; i.e., SARS-CoV-2 is not 
a foodborne virus and should not be managed as such but instead through strong, multifaceted public health 
interventions including physical distancing, rapid contact tracing, and testing, enhanced hand and respiratory 
hygiene, frequent disinfection of high-touch surfaces, isolation of infected workers and their contacts, as well as 
enhanced screening protocols for international seafood trade.   

1. Description of foodborne viruses 

The early reports suggested that the seafood market’s exceptionally 
wide contamination, such as seafood tanks, air contamination by live 
animals from various sources for sale, or rodent infestation, might 
explain the initiation of the SARS-CoV-2 outbreak (Jalava, 2020; Ceylan 
et al., 2020), but this virus is characteristically not foodborne (Li et al., 
2020a). Most recently, the transmission of SARS-CoV-2 via contami-
nated cold-chain food sources has been linked to two re-emergent out-
breaks of COVID-19 in Beijing, China (Han et al., 2020; Pang et al., 
2020), but the route of infection was not established. This nuance can be 
categorized as a “non-traditional” transmission mechanism (Fisher et al., 
2020). In this review, foodborne viruses refer to human and animal vi-
ruses infecting humans via food consumption and drinking water. These 
viruses normally infect humans upon ingestion of food contaminated in 

one of three main ways: (1) by infected food handlers, (2) by food that 
has been in contact with animal body fluids (zoonotic transmission), 
human feces or vomit, or aerosols from an infected person or contami-
nated materials, and (3) by food products (e.g., pork and liver) origi-
nating from infected animals (zoonotic transmission) (Meng et al., 1997; 
Acha and Szyfres, 2003; Tei et al., 2003; Koopmans and Duizer, 2004; 
FAO/WHO Food and Agriculture Organization of the United Nations/ 
World Health Organization, 2008; Vasickova et al., 2005; Lewis et al., 
2010; EFSA European Food Safety AuthorityHAZ, 2011; Velebit et al., 
2019; Desdouits et al., 2020; Carraturo et al., 2020). Infections with 
these viruses are common causes of human disease (Havelaar et al., 
2015; Petrović and D’Agostino, 2016; Desdouits et al., 2020). 

The viruses, sometimes referred to as enteric viruses (Fabiszewski de 
Aceituno et al., 2013; Miranda and Schaffner, 2019), are shed in feces 
(Koopmans and Duizer, 2004), resulting in fecal-oral transmission (Li 
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et al., 2020a; Miranda and Schaffner, 2019) or they are shed in vomitus 
and transmitted by the ingestion of aerosolized vomitus particles 
(Miranda and Schaffner, 2019). The list of viruses, which is summarized 
in Table 1, is very long (Fabiszewski de Aceituno et al., 2013) and in-
cludes viruses primarily transmitted via food or drinking water, such as 
enteroviruses, hepatitis A virus, hepatitis E virus, norovirus, and rota-
virus (Vasickova et al., 2005; Bosch et al., 2018; Velebit et al., 2019). 
Humans infected with these viruses often shed large amounts of virus 
particles in the diarrheal feces (~105 to >1012 infectious particles per ml 
or g) (Gerba, 2000; Bishop, 1996) while the infective dose is relatively 
low (~101 to 102 infectious particles) which easily leads to infection 
upon ingestion of the contaminated food (Anderson and Weber, 2004; 
Todd et al., 2008). The Table 1 list also includes some emerging zoonotic 
viruses capable of being transmitted via food (Koopmans and Duizer, 
2004), such as SARS-CoV, Nipah virus (Luby et al., 2006), and highly 
pathogenic avian influenza (HPAI) virus (FAO/WHO Food and Agri-
culture Organization of the United Nations/World Health Organization, 

2008) that can replicate in the human gastrointestinal tract and have 
animal reservoirs and are therefore a permanent threat for pandemics 
(Bosch et al., 2018). However, this transmission route is rare and is 
probably restricted to few situations, for example, HPAI virus in poultry 
or eggs and Nipah virus in date palm sap. The potential for various food 
products, including meat and meat products, dairy products, bread, 
fruits, vegetables, and ready-to-eat foods, to serve as carriers for trans-
mission of SARS-CoV-2 has been reviewed (Yekta et al., 2020); no direct 
link has been established between SARS-CoV-2 infection and food con-
sumption. To date, no zoonotic fish viruses have been reported (Boylan, 
2011; Woolhouse et al., 2012; Bondad-Reantaso et al., 2020), although 
fish is recognized as a reservoir host for the San Miguel sea lion virus (or 
Vesicular exanthema of swine virus) that has been associated with 
human infection and vesicular lesions (Smith et al., 1998). 

Coronaviruses that infect humans are mostly transmitted via the 
respiratory route. It is not established that they are also transmitted via 
the fecal-oral route like foodborne viruses to cause infection in the 

Table 1 
Viruses transmitted to humans through food consumption and drinking water.  

Virus common name 
(abbreviation and/ 
serotype) 

Virus family Food commodity Clinical disease produced Reference 

Hepatitis A virus (HAV)*1 Picornaviridae Bivalve molluscan shellfish (including 
oysters, clams, cockles and mussels); fresh 
produce; prepared foods 

Hepatitis Lowry et al., 1989; Cliver, 1997; Bidawid et al., 
2000; Sattar et al., 2000; Vasickova et al., 2005;  
FAO & WHO, 2008; Velebit et al., 2015, 2019;  
Miranda and Schaffner, 2019 

Norovirus (NoV)*1 Caliciviridae Bivalve molluscan shellfish (including 
oysters, clams, cockles and mussels); fresh 
produce; prepared foods 

Gastroenteritis Cliver, 1997; Koopmans and Duizer, 2004;  
Vasickova et al., 2005; FAO & WHO, 2008; Baert 
et al., 2011; Rodriguez-Manzano et al., 2014;  
Velebit et al., 2015, 2019; Miranda and Schaffner, 
2019 

Sapovirus Caliciviridae Salad; river water; oysters Gastroenteritis Koopmans and Duizer, 2004; Vasickova et al., 2005; 
Miranda and Schaffner, 2019; Yekta et al., 2020 

Human rotavirus (HRV) 
(group A-C)* 

Reoviridae Water used for drinking, ice production, or 
for food preparation/processing 

Gastroenteritis Koopmans and Duizer, 2004; Vasickova et al., 2005; 
Velebit et al., 2015, 2019; Miranda and Schaffner, 
2019 

Enterovirus (e.g., 
poliovirus, Coxsackie 
A, B virus) 

Picornaviridae Oysters; contaminated water or food Associated with a range of 
symptoms including 
neurological symptoms 

Koopmans and Duizer, 2004; Vasickova et al., 2005; 
Bosch et al., 2018 

Hepatitis E virus (HEV)* Hepeviridae raw or undercooked meat of pig or wild 
boar or Sika deer; unpasteurized milk, 
shellfish and ethnic foods; contaminated 
water 

Hepatitis Meng et al., 1997; Tei et al., 2003; Vasickova et al., 
2005; FAO & WHO, 2008; Lewis et al., 2010;  
Velebit et al., 2015, 2019; Miranda and Schaffner, 
2019; Yekta et al., 2020 

Astrovirus Astroviridae transmission is fecal-oral via food or water 
(<1% of astrovirus infections are 
considered foodborne (Glass et al., 1996) 

Gastroenteritis Koopmans and Duizer, 2004; Vasickova et al., 2005 

Human parvovirus Parvoviridae Shellfish Erythema infectiosum Yekta et al., 2020 
Human adenovirus 

(HAdv) (types 40 and 
41) 

Adenoviridae Shellfish Gastroenteritis Koopmans and Duizer, 2004; Vasickova et al., 2005; 
Rodriguez-Manzano et al., 2014. 

Rodent arenaviruses    Vasickova et al., 2005 
Tick-borne encephalitis 

virus (TBE) 
Flaviviridae raw (unpasteurized) cow’s or goat’s or 

sheep’s milk and raw milk cheeses 
Encephalitis Dumpis et al., 1999; Acha and Szyfres, 2003; 

Vasickova et al., 2005 
Hantavirus  Contamination of food or water with saliva 

or urine, or through the dust of feces from 
infected wild rodents 

Hantavirus pulmonary 
syndrome (HPS) & 
Hemorrhagic fever with renal 
syndrome 

Acha and Szyfres, 2003; Vasickova et al., 2005 

FMDV Picornaviridae Raw cow milk malaise, fever, vomiting, oral 
ulcers & skin blisters 

Vasickova et al., 2005 

Aichi virus Picornaviridae Oysters and seafood Gastroenteritis Koopmans and Duizer, 2004; Vasickova et al., 2005 
Human coronavirus Coronaviridae  Gastroenteritis & common cold Koopmans and Duizer, 2004 
Bovine coronavirus Coronaviridae  Gastroenteritis MacLachlan and Dubovi, 2017 
Severe Acute Respiratory 

Syndrome-Coronavirus 
(SARS-CoV)* 

Coronaviridae   FAO & WHO, 2008; Petrović and D’Agostino, 2016 

Nipah virus*  Fruit  Luby et al., 2006; FAO & WHO, 2008; Petrović and 
D’Agostino, 2016; Velebit et al., 2015, 2019 

Highly pathogenic avian 
influenza (HPAI) virus*  

Poultry  FAO & WHO, 2008; Petrović and D’Agostino, 2016  

* denotes foodborne viruses of main concern (Koopmans and Duizer, 2004; FAO & WHO, 2008). 
1 the two most important foodborne viruses; primarily associated with food-handler transmission and sewage-contaminated foods (Velebit et al., 2019): “NoV is 

most significant by virtue of sheer number of cases”, and “HAV because it causes a more severe disease” (Fabiszewski de Aceituno et al., 2013). 
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human gastrointestinal tract (Li et al., 2020a). Table 2 compares the 
sources of transmission between enteric viruses, respiratory viruses, and 
SARS-CoV-2. While SARS-CoV-2 is shed in feces and the viral nucleic 
acids (RNA) can be detected in sewage-polluted water (Randazzo et al., 
2020; Ahmed et al., 2020; Orive et al., 2020; La Rosa et al., 2020; 
Wurtzer et al., 2020; Medema et al., 2020; Wu et al., 2020a, b, c; Rimoldi 
et al., 2020; Ampuero et al., 2020), there is no proof that it is transmitted 
through food consumption (Desai and Aronoff, 2020; EFSA, 2020). 
Nonetheless, concerns have been raised about the presence of SARS- 
CoV-2 on frozen aquatic food animal species or their products, 
including their packaging materials and storage environments (Bondad- 
Reantaso et al., 2020; Caiyu and Hui, 2020; Han et al., 2020), necessi-
tating better information on the associated risk of virus spread through 
the consumption of aquatic food products. 

2. Coronavirus taxonomy 

Coronaviruses are classified in the order Nidovirales, which derives 
its name from the Latin word “nidus”, meaning “nest”, in reference to 
the unique strategy of genome expression of nidoviruses during repli-
cation. The virus particles have an envelope and a large single-stranded 
RNA genome of positive sense (ranging from 26 to 32 kb) with a 5′ cap 
and 3′ poly-A tail and replicate in the cytoplasm of the host cell and bud 
into the Golgi apparatus, passing through the cytoplasm in smooth- 
walled vesicles and are then released through exocytosis (MacLachlan 
and Dubovi, 2017). These virions, which are pleomorphic but often 
spherical or rod-shaped, range from 120 to 220 nm in diameter, with 
distinctive and large (20 nm) club-shaped glycoprotein spikes protrud-
ing from the viral envelope. These viruses affect a wide range of verte-
brate hosts, frequently targeting respiratory or enteric epithelial cells 
(MacLachlan and Dubovi, 2017). In 2018, the International Committee 
for the Taxonomy of Viruses (ICTV, 2019) approved changes to the 
nidovirus taxonomy based on genomic analyses undertaken by Gulyaeva 
et al. (2017); the family Coronaviridae now has two subfamilies, Ortho-
coronavirinae and Letovirinae. 

The subfamily Letovirinae has one genus, Alphaletovirus, containing 
two species, Microhyla alphaletovirus 1 of the ornamented pygmy frog 
Microhyla fissipes (Bukhari et al., 2018), and Pacific salmon nidovirus 
(PsNV) discovered in diseased farmed Chinook salmon Oncorhynchus 
tshawytscha off the coast of Vancouver Island-Canada (Mordecai et al., 
2019). 

The subfamily Orthocoronavirinae has four genera, Alphacoronavirus 

(αCoV), Betacoronavirus (βCoV), Gammacoronavirus (γCoV), and Delta-
coronavirus (δCoV) (Cui et al., 2019; Walker et al., 2019). The genus 
Betacoronavirus consists of four species of coronaviruses whose spike (S) 
glycoprotein is cleaved into subunits S1 and S2 and have a 
hemagglutinin-esterase (HE) glycoprotein: Betacoronavirus 1 (human 
coronavirus OC43, bovine coronavirus, porcine HEV, canine respiratory 
coronavirus, and equine coronavirus); SARS-related coronavirus; Middle 
East Respiratory Syndrome coronavirus (MERS-CoV)-related coronavirus; 
and Rousettus bat coronavirus HKU9. SARS-CoV and MERS-CoV cause 
severe respiratory diseases in humans, whereas human coronavirus 
(HCoV) OC43 and HKU1, together with HCoV 229E and NL63 of genus 
Alphacoronavirus, cause the common cold in humans. 

2.1. Human coronaviruses 

The seven HCoV infections are zoonotic. These viruses can infect 
different mammalian hosts and establish zoonotic-reverse zoonotic cy-
cles generating novel mutant viruses with viral genes derived from 
human and animal CoVs, which are then trafficked back into human 
populations at a later date (Huynh et al., 2012). HCoVs 229E, NL63, 
SARS-CoV, and MERS-CoV originated from bats where they are non- 
pathogenic (Pyrc et al., 2006; Pfefferle et al., 2009; van Boheemen 
et al., 2012; Huynh et al., 2012; Hu et al., 2015; Cui et al., 2019; Rav-
elomanantsoa et al., 2020; Ye et al., 2020). The intermediate host of 
229E is suspected to be camelids - alpaca (Corman et al., 2016); for 
SARS-CoV, it is palm civets (Tu et al., 2004); and for MERS-CoV, it is 
dromedary camels (Raj et al., 2014). The parental viruses of OC43 and 
HKU1 have been found in rodents (Cui et al., 2019). The intermediate 
host of OC43 is suspected to be bovines (Vijgen et al., 2005; Cui et al., 
2019). Antigenically related bovine coronavirus variants have been 
isolated from humans with diarrhea (MacLachlan and Dubovi, 2017). It 
is now believed that OC43 and 229E are undergoing antigenic evolution 
or antigenic drift in the S protein that enables them to escape recognition 
by the immune system, similarly to the antigenic drift that occurs in the 
haemagglutinin protein of seasonal influenza viruses (Kister and Bed-
ford, 2021; Smith et al., 2004). 

Acute pneumonia associated with the 2019 novel coronavirus that 
began in Wuhan city, Hubei province, China, was named COVID-19 
(coronavirus disease 2019) by the World Health Organization (WHO), 
who characterized it as a pandemic (i.e., a global disease outbreak for 
which the human population has no prior exposure) (Joseph, 2020); the 
first pandemic caused by a coronavirus (Piret and Boivin, 2021). 
Sequence analysis of the earliest full-length genomes of the 2019 novel 
coronavirus showed it to be closest to SARS-CoV (Zhou et al., 2020), 
which is carried by Chinese horseshoe bats (Rhinolophus sinicus) (Hu 
et al., 2017). The ICTV named it SARS-CoV-2, and it belongs to the genus 
Betacoronavirus, subgenus Sarbecovirus within the species SARS-related 
coronavirus (Gorbalenya et al., 2020). 

2.2. Aquatic animal nidoviruses 

Fish nidoviruses were previously all placed in the family Coronavir-
idae, subfamily Torovirinae, and genus Bafinivirus (de Groot et al., 2012a, 
2012b; Schütze, 2016). Following the 2018 ICTV approved changes to 
nidovirus taxonomy (ICTV, 2019), the subfamily Torovirinae, was moved 
to a new family Tobaniviridae. Thus, fish nidoviruses now belong to two 
families, Coronaviridae and Tobaniviridae. The fish nidovirus Pacific 
salmon nidovirus (PsNV) is in the family Coronaviridae, subfamily 
Letovirinae, and genus Alphaletovirus (Mordecai et al., 2019). Coronavi-
ruses found in marine aquatic habitats were reviewed by Mordecai and 
Hewson (2020). None of these coronaviruses found in aquatic animals 
are considered zoonotic and are not closely related to those in humans 
and therefore would not cross the species barrier. 

The original bafiniviruses are now classified in the family Tobani-
viridae, subfamily Piscanivirinae, comprising two genera: genus Bafini-
virus containing White bream virus (WBV) and Fathead minnow 

Table 2 
Virus sources of transmission for enteric viruses, respiratory viruses, and SARS- 
CoV-2.  

Source Enteric viruses1 Respiratory viruses2 SARS-CoV-2 

Drinking water +4 − ? 
Foods3 + ? ?* 
Person-to-person + + +

Fomites + + +** 
Wastewater + ? ?  

1 The enteric viruses are listed in Table 1. 
2 Respiratory viruses include Influenza A and B viruses, respiratory syncytial 

virus (RSV), rhinovirus, parainfluenza viruses, adenovirus, human bocavirus 
and coronaviruses, and emerging zoonotic viruses including avian influenza 
viruses, Middle East Respiratory Syndrome (MERS) and Severe Acute Respira-
tory Syndrome (SARS) coronaviruses). 

3 The term foods is used to include fresh, frozen, prepared or processed food in 
general. 

4 + denotes confirmed (**although several studies have shown that SARS- 
CoV-2 can survive on fomites, transmission through contaminated surfaces is 
“not thought to be a significant risk” (Lewis, 2021); ? denotes not yet known 
(*although long-range transport of SARS-CoV-2 has been linked to contaminated 
cold-chain food sources, “no direct link has been established between COVID-19 
infection and foodborne transmission” (Han et al., 2020); − denotes not known 
to occur. 
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nidovirus (FHMNV) (Batts et al., 2012), and genus Oncotshavirus con-
taining Chinook salmon bafinivirus (CSBV), Atlantic salmon bafinivirus 
(ASBV), Yellow catfish bacilliform virus (YCBV), and Crucian carp 
nidovirus (CCNV) (Gulyaeva et al., 2017; Kibenge et al., 2016; Zhang 
et al., 2019; Xiao-Yu et al., 2019). These viruses exhibit ultrastructural 
features of bacilliform morphology (Schütze, 2016). Virions similar in 
morphology have been described for genus Okavirus, family Roniviridae 
(Yellow head virus (YHV) and Gill-associated virus, GAV) (Schütze, 
2016), the nidoviruses of most importance to aquaculture where they 
cause disease in Penaeid shrimp (Penaeus monodon; Litopenaeus vanna-
mei) farmed throughout the Eastern Hemisphere (Cowley, 2016). None 
of these aquatic animal nidoviruses are considered to be zoonotic. 

3. Routes of transmission of SAR-CoV-2 

Despite the importance of SARS-CoV-2, our current knowledge of its 
transmission remains incomplete. The SARS-CoV-2 was proposed to 
originate from bats (Paraskevis et al., 2020; Ji et al., 2020; Lau et al., 
2020; Zhou et al., 2020). It was suspected of infecting humans following 
direct contact with intermediate host animals (Day et al., 2020). The 
initial acute pneumonia outbreak caused by SARS-CoV-2 was epidemi-
ologically linked to the Huanan Seafood Wholesale Market in Wuhan 
City, China, where poultry, bats, snakes, frogs, hedgehogs, marmots, and 
other exotic wildlife live animals were also sold (Ma et al., 2020; Chen 
et al., 2020a; Lu et al., 2020; Ji et al., 2020; Jalava, 2020). As the 
outbreak progressed to a pandemic, spread via direct contact between 
humans became the main route of exposure (Shereen et al., 2020). With 
the subsequent detection of SARS-CoV-2 on imported frozen foods and 
their packaging materials that was linked to two re-emergent outbreaks 
of COVID-19 in Beijing, China (Pang et al., 2020), it has been hypoth-
esized that contaminated cold-chain food sources may present a risk for 
SARS-CoV-2 transmission between countries and regions (Han et al., 
2020). However, no direct link has been established between SARS-CoV- 
2 infection and food consumption (Desai and Aronoff, 2020; EFSA, 
2020). 

3.1. Zoonotic transmission of SARS-CoV-2 

The exact intermediate animal host that transmitted SARS-CoV-2 to 
humans remains uncertain even though it has been reported that SARS- 
CoV-2 uses the same cell entry receptor angiotensin 1 converting 
enzyme 2 (ACE2), as SARS-CoV (Zhou et al., 2020; Letko et al., 2020; 
Wan et al., 2020), which suggests that SARS-CoV-2 may have the same 
host range as SARS-CoV. The highly trafficked Malayan pangolins 
(Manis javanica) (Liu et al., 2019) that were sampled in Guangdong 
province, China, were suggested as a possible intermediate animal host 
because of (a) the strong similarity of pangolin-associated coronaviruses 
with SARS-CoV-2 in the receptor-binding domain (RBD) of the S 
glycoprotein (Lam et al., 2020; Andersen et al., 2020) that interacts with 
ACE2, (b) the isolation of SARS-CoV-2 related coronavirus from Ma-
layan pangolins (Xiao et al., 2020b), and (c) the high sequence similarity 
(>80%) with SARS-CoV-2 homologous sequences in metaviromes of 
lungs of dead pangolins (Liu et al., 2019; Wahba et al., 2020; Wong et al., 
2020). However, there is no evidence that Malayan pangolins facilitate 
SARS-CoV-2 adaptation to humans (Boni et al., 2020; Tang et al., 2020; 
Liu et al., 2020; Li et al., 2020b). 

Presence of virus receptors on host cells at the virus entry sites and in 
target tissues and organs determine the host range, tissue tropism, and 
pathogenesis of the virus infection. SARS-CoV-2 enters host cells via 
binding of the virus S glycoprotein to the cell receptor ACE2 (Hoffmann 
et al., 2020), followed by the cleavage of S protein by transmembrane 
serine protease 2 (TMPRSS2) (Matsuyama et al., 2010), releasing the 
fusion peptide and allowing for host-cell entry (Millet and Whittaker, 
2015). This viral entry mediated by the interaction of ACE2 with the S 
protein is the major constraint to the interspecies transmission of SARS- 
CoV-2 (Zhao et al., 2020). Damas et al. (2020), using in-silico analysis, 

studied ACE2 sequences from 410 vertebrate species, including mam-
mals, birds, fishes, reptiles, and amphibians, for their propensity to bind 
to the SARS-CoV-2 S protein and found only mammals to have binding 
scores that fell into the medium to very high categories. That analysis 
predicted that the ACE2 proteins of birds, fishes, reptiles, and amphib-
ians are not likely to bind SARS-CoV-2 S protein, indicating that verte-
brate classes other than mammals are not likely to be an intermediate 
host or reservoir for SARS-CoV-2 (Damas et al., 2020). Chen et al. 
(2020b) screened 11 representative animal species among pet animals, 
livestock, poultry, and wildlife for SARS-CoV-2 target cells (i.e., cells 
coexpressing ACE2 and TMPRSS2). The study found the cat to have the 
highest number of target cells among the animal species investigated; 
these cells were widely distributed in gastrointestinal, respiratory, and 
urinary systems, suggesting that cats can be infected via multiple routes 
and maybe intermediate hosts in the current pandemic (Chen et al., 
2020b). Target cells for SARS-CoV-2 were also found in pig kidney and 
lung, suggesting pigs could become intermediate hosts in future coro-
navirus outbreaks (Chen et al., 2020b). However, current evidence 
shows that pigs are not susceptible (Schlottau et al., 2020). Chen et al. 
(2020c) analyzed the structure of the ACE2 receptor in different ani-
mals, and while ACE2 was found to be widely expressed and the struc-
ture highly conserved in the animal kingdom, those of snake, frog, and 
fish had only 61%, 60%, and 59% sequence identity, respectively, to that 
of the human ACE2 receptor (Chen et al., 2020c). Such low sequence 
similarity in these animals suggests that SARS-CoV-2 is unlikely to 
successfully infect them (Bondad-Reantaso et al., 2020). Ji et al. (2020) 
compared the relative synonymous codon usage bias between SARS- 
CoV-2 and different animal species. They found that SARS-CoV-2 and 
snakes from China have similar synonymous codon usage bias (Ji et al., 
2020), suggesting snakes as a possible intermediate host. However, this 
is unlikely as animal reservoirs for human viruses are mainly mammals 
and birds (de Jesus, 2020). Guo et al. (2020), using a deep learning al-
gorithm to predict potential virus hosts, indicated that mink might be an 
intermediate host of SARS-CoV-2. The recent human-to-mink-to-mink- 
to-human cycles of SARS-CoV-2 transmission (Zhou and Shi, 2021) 
further implicate mink as a potential intermediate host. Interestingly, 
the binding score for the mink ACE2 to the SARS-CoV-2 S protein was 
ranked very low in the study by Damas et al. (2020). Moreover, the 
analysis by Boni et al. (2020) showed that SARS-CoV-2-related viruses 
have been circulating in Rhinolophus spp. bats for a long time, with 
abundant recombination events (Banerjee et al., 2019). 

Coronaviruses circulate in mammals and birds (Cui et al., 2019; Li 
et al., 2020b) and aquatic animals (Mordecai and Hewson, 2020). SARS- 
CoV-2 is a zoonotic virus that likely has a wide mammalian host-range 
(Shi et al., 2020; Chen et al., 2020b; Tiwari et al., 2020; Mahdy et al., 
2020). The OIE considers SAV-CoV-2 an emerging pathogen, and 
therefore member countries must report confirmed infections in animals 
in their countries to the OIE (OIE, 2019, 2020a). As listed in Table 3, 
some of these animals may serve as reservoirs once the COVID-19 
pandemic is over (Santini and Edward, 2020), and therefore pause 
veterinary public health concerns (Mahdy et al., 2020). SARS-CoV-2 has 
been reported to cross the species barrier and exhibit reverse zoonosis in 
farmed minks, domestic cats, dogs, and captive tigers, puma, and lions 
(Sharun et al., 2020; Mahdy et al., 2020). Minks are of particular 
concern as they are farmed on a large scale in many countries (Wiki-
pedia, 2021). It is now well established that minks are highly susceptible 
to the SARS-CoV-2 virus and are readily infected through the trans-
mission of the virus from infected humans coming in contact with mink 
(ProMed, 2020a,c; Oreshkova et al., 2020; Santini and Edward, 2020; 
OIE, 2020b), and mink-to-mink transmission is very efficient (Sharun 
et al., 2020; Shuai et al., 2020). Moreover, a mink-unique variant of 
SARS-CoV-2 has been reported in Denmark and the Netherlands, 
providing evidence of mink-to-human transmission of SARS-CoV-2 
within mink farms (i.e., reverse anthroponosis) (Sharun et al., 2020; 
Oude Munnink et al., 2021), although the risk of spread from animals to 
humans is generally considered to be low (CanCovid, 2020). To date, 
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SARS-CoV-2 infection in farmed minks has been documented in the USA, 
the Netherlands, Sweden, Italy, Denmark, France, Canada, Greece, 
Lithuania, and Spain (Sharun et al., 2020), and Poland (OIE, 2021), with 
humans as the only source of introduction of the virus to minks. Fearing 
the possibility that minks may serve as a reservoir during and once the 
COVID-19 pandemic is over (Santini and Edward, 2020), the affected 
mink farms were depopulated (ProMed, 2020c; Oreshkova et al., 2020; 
Maestro and Spary, 2020; Enserink, 2020) to eliminate the risk of 

SARS-CoV-2 becoming enzootic in the mink population or worse 
changing the SARS-CoV-2 pandemic into a panzootic (Gollakner and 
Capua, 2020). Most recently, a wild mink who had contracted the virus, 
apparently from contact with farmed mink, was identified in Utah, USA - 
the first free-ranging, native wild animal confirmed with SARS-CoV-2 
(https://www.koin.com/news/wild-mink-in-utah-tests-positive-for-sars 
-cov-2/). This finding indicates the potential for wild mustelids to 
become a permanent reservoir of infection for other animal species 
(Manes et al., 2020), as occurred with rabies in raccoons and skunks 
(Rupprecht et al., 1995). Other animal species in the case of SARS-CoV-2 
would include cervids because white-tailed deer have been identified by 
experimental infection as a susceptible wild animal species to the virus 
(Palmer et al., 2021). The prospect of SARS-CoV-2 spilling into farmed 
and wild terrestrial animals like mustelids and cervids is a major 
concern. 

Aquatic animals are cold-blooded (poikilothermic) and are naturally 
resistant to mammalian and avian viruses, which replicate at ≥37 ◦C. 
Snakes, which are also cold-blooded, were shown to have a similar 
synonymous codon usage bias as SARS-CoV-2, which may allow ho-
mologous recombination to occur and contribute to the SARS-CoV-2 
cross-species transmission (Ji et al., 2020). However, an expert FAO 
report found “no evidence to suggest that SARS-CoV-2 can infect aquatic 
food animals (e.g., finfish, crustaceans, mollusks, amphibians)”. It 
concluded that “these animals do not play an epidemiological role in 
spreading COVID-19 to humans” (Bondad-Reantaso et al., 2020). 
V’kovski et al. (2020) investigated the replication kinetics of SARS-CoV- 
2 and SARS-CoV at 33 ◦C and 37 ◦C, mimicking the ambient tempera-
tures of the human upper and lower respiratory tract, respectively. 
While both viruses replicated to similar titers at 37 ◦C, SARS-CoV-2, in 
contrast to SARS-CoV, replicated more efficiently at 33 ◦C (had 10-fold 
higher titer than at 37 ◦C), and the fraction of SARS-CoV-2 infected cells 
increased significantly at 33 ◦C compared to 37 ◦C and SARS-CoV. The 
enhanced replication of SARS-CoV-2 at 33 ◦C supports its increased 
replication in the upper respiratory tract and transmissibility compared 
to SARS-CoV. Another coronavirus, Mouse hepatitis virus (MHV), was 
shown to replicate equally between 32 ◦C and 40 ◦C (Deng et al., 2019). 
However, there are no published data on the minimum temperature for 
in vitro replication of SARS-COV-2 or related viruses. Such data would 
be a very strong argument to exclude any chance for SARS-CoV-2 
replication in ectothermic aquatic animals, except perhaps in the hott-
est regions of the world. 

3.2. Person-to-person transmission of SAR-CoV-2 

The transmission routes for SARS-CoV-2 from human-to-human may 
be in one of three ways:  

• Direct person-to-person transmission through close contact.  
• Fomite transmission (contact transmission).  
• Transmission via fecal-oral route (Khan et al., 2020). 

3.2.1. Direct person-to-person transmission of SARS-CoV-2 through close 
contact 

SARS-CoV-2 primarily spreads person-to-person through close con-
tact with symptomatic and asymptomatic individuals (Chu et al., 2020; 
Wiersinga et al., 2020). COVID-19 cases had very high shedding of the 
virus in pharyngeal samples during the first week of symptoms (Wölfel 
et al., 2020), having peaked about two to three days before the onset of 
symptoms (He et al., 2020). The current criterion considers a patient 
completely recovered and not infectious after two consecutive negative 
RT-qPCR test results on respiratory samples (Mesoraca et al., 2020); 
several studies have shown negative virus isolation results for SARS- 
CoV-2 eight days after symptom onset (Wiersinga et al., 2020). Zou 
et al. (2020) analyzed both symptomatic and asymptomatic individuals. 
They observed that the SARS-CoV-2 RNA shedding pattern of infected 

Table 3 
Susceptibility of different animals to SARS-CoV-2 infection1.  

Animals susceptible2 Animals with 
discordant 
susceptibility3 

Animals not susceptible 

Chinese horseshoe bat 
(Rhinolophus sinicus) 

Dog Poultry (chicken, duck, 
turkey, goose, pigeon)4 

Himalayan palm civet 
(Paguma larvata) 

Pig Mouse4 

Egyptian fruit bat 
(Rousettus 
aegyptiacus)5  

Rat4 

Domestic cat5  Racoon dog 
Farmed mink5,6  Hedgehog 
Ferret5  Platypus 
Golden Syrian hamster5  Guinea pig 
Racoon  Elephant 
Squirrels  Kangaroo rat 
Rabbit  Meerkat 
Sheep  Aquatic food animals (finfish, 

crustaceans, mollusks, 
amphibians)4 

Cattle   
Horse   
Stoat   
Polecat   
Orangutan   
Common marmoset   
Pangolin   
Macaques (Macaca 

fascicularis and Macaca 
mulatta)   

Captive tigers and lions5   

Apes    

1 Compiled from Shi et al. (2020); Lakdawala and Menachery (2020); Chen 
et al., 2020b, 2020c; Xiao et al., 2020b; Zhang et al., 2020a; Halfmann et al., 
2020; Sit et al., 2020; Sia et al., 2020; Bosco-Lauth et al., 2020; Cohen, 2020; 
Andersen et al., 2020; Wan et al., 2020; Santini and Edward, 2020; Kim et al., 
2020; Luan et al., 2020; Zhai et al., 2020; Munster et al., 2020; Bondad-Reantaso 
et al., 2020; OIE, 2020b; USDA [United States Department of Agriculture], 2020; 
CVMA, 2020; Bao et al., 2020; Schlottau et al., 2020; Richard et al., 2020; and 
ProMED 2020a,b). Animal species not listed do not yet have any evidence 
available (CVMA, 2020). 

2 At-risk animals that may serve as reservoirs once the COVID-19 pandemic is 
over or as animal models for SARS-CoV-2 infections. 

3 Conflicting experimental studies have been reported for these animals: dogs 
(Chen et al., 2020b) and pigs (Santini and Edward, 2020) (e.g., Shi et al. (2020) 
did not detect SARS-CoV-2 in infected pigs and Schlottau et al. (2020) confirmed 
that pigs are not susceptible, but computational model predictions of infectivity 
in wild boar (Luan et al., 2020) and pigs (Chen et al., 2020b; Wan et al., 2020; 
Zhou et al., 2020; Zhai et al., 2020) indicated pigs to be susceptible to SARS-CoV- 
2. Chen et al. (2020b) reported dogs have very rare co-expression of ACE2 and 
TMPRSS2, but computational model predictions of infectivity indicated dogs to 
be susceptible to SARS-CoV-2. 

4 These animals have no co-expression of the entry receptor ACE2 and entry 
activator TMPRSS2 in lung cells (e.g., poultry, Chen et al., 2020b) or the ACE2 
receptor is not used by SARS-CoV-2 (e.g., mouse and rat, Wan et al., 2020), or 
the ACE2 receptor has very low sequence identity (≤61%) compared to the 
human ACE2 receptor (e.g., snake, frog, fish, Chen et al., 2020c). 

5 These animals show transmission between other animals of the same species 
under experimental infections (Shi et al., 2020; CVMA, 2020; OIE, 2020). 

6 These animals transmit to humans (i.e., reverse anthroponosis, Oreshkova 
et al., 2020; Santini and Edward, 2020; CVMA, 2020; OIE, 2020). 
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individuals resembles that for the influenza A virus (Tsang et al., 2015) 
and appears different from that of SARS-CoV (Peiris et al., 2003). The 
SARS-CoV-2 viral load in the nasal and throat swabs of symptomatic and 
asymptomatic individuals was similar, suggesting asymptomatic in-
dividuals’ transmission potential (Zou et al., 2020). Current estimates 
suggest that 15% of infected individuals do not develop symptoms at all 
(i.e., excluding pre-symptomatic individuals) (Day et al., 2020; Byam-
basuren et al., 2020), but <10% of new infections originate from 
asymptomatic individuals (Day et al., 2020; Buitrago-Garcia et al., 
2020). However, these reports may grossly underestimate the number of 
asymptomatic individuals; one report estimated the proportion of 
asymptomatic infections to range from 18% to 81% (Nikolai et al., 
2020). As many as 40% of cases were thought to be asymptomatic based 
on a seroprevalence study in 10 cities in the US (Havers et al., 2020). A 
decision analytical model by CDC showed that 59% of all transmission 
came from asymptomatic individuals - 35% from presymptomatic in-
dividuals and 24% from persons who never developed symptoms 
(Johansson et al., 2021). 

Direct person-to-person transmission occurs primarily through the 
air via respiratory droplets produced by coughing, sneezing, talking, 
yelling, laughing, singing, or normal breathing from an infected indi-
vidual (Phan et al., 2020; Fineberg, 2020). The droplet-mediated 
transmission consists of droplets measuring >5 μm, which generally 
travel a short distance (~ 2 m) from the infected individual as they drop 
out from the air (CanCOVID, 2020). Less common transmission through 
the air is the airborne transmission (also called aerosol transmission) 
that can occur following medical procedures such as airway intubation, 
ventilation, and some dental procedures that create aerosols - particles 
measuring ≤5 μm that rapidly evaporate in the air, leaving behind 
droplet nuclei (Klompas et al., 2020); these can remain suspended in the 
air for a longer time (Arslan et al., 2020) (similarly to pollen), spreading 
further than droplets (WHO, 2020a; CanCOVID, 2020). Airborne 
transmission can also occur in confined environments where aerosols 
may be moved farther when the air is mechanically moved (e.g., by fans 
or air conditioners) (CanCOVID, 2020). Current scientific understanding 
from studies and investigations of outbreaks suggests that most of the 
transmissions occur through direct inhalation by people in close contact 
by droplet-mediated and airborne transmissions (Lewis, 2021). Both 
droplet-mediated and airborne transmissions can be prevented by the 
physical distancing of 2 m or more, N95 respirators and face masks, eye 
protection, and other basic measures such as enhanced hygiene (Chu 
et al., 2020). 

SARS-CoV-2 has also been detected in non-respiratory bodily fluids, 
including feces (Wu et al., 2020a; Wang et al., 2020c; Xu et al., 2020a, 
Chen et al., 2020d), blood (Chen et al., 2020a), ocular secretions (Wu 
et al., 2020b), saliva (To et al., 2020), milk (WHO, 2020b), urine (Guan 
et al., 2020), and semen samples (Li et al., 2020c). However, the role of 
these biological materials in the transmission is uncertain. 

3.2.1.1. Transmission in crowded and confined indoor spaces. There are 
several reports of efficient transmission of SARS-CoV-2 in crowded, 
confined indoor spaces such as long-term care facilities (McMichael 
et al., 2020), workplaces including factories, churches, restaurants, ski 
resorts, shopping centers, worker dormitories, cruise ships, and vehicles, 
or social events occurring indoor (Chan et al., 2020; Leclerc et al., 2020). 
In long-term care facilities, COVID-19 outbreaks were, in part, ascribed 
to the health care personnel being able to move between facilities in the 
region (McMichael et al., 2020). In a negative pressure isolation ward in 
a non-intensive care unit, fomite transmission was the primary route of 
virus exposure (Wei et al., 2020). In other congregated areas, the 
transmission could be linked with activities characterized by increased 
production of respiratory droplets and aerosols (Hamner et al., 2020). 
Clusters have been seen in several places where crowding occurs, 
including meat-processing factories in England and Wales (Leclerc et al., 
2020; Thompson, 2020; ProMed, 2020b) and Germany (Tidey, 2020), 

meat and poultry processing facilities in the USA (Dyal et al., 2020; 
Waltenburg et al., 2020), and abattoirs in Australia (Anonymous, 2020; 
Davis and Burns, 2020). In Chile, there was anecdotal evidence of an 
increasing number of SARS-CoV-2 positive workers in fish processing 
plants and salmon farm sites in the XI region (El Magallánico, 2020). 
However, most of the workers were infected or had traveled from 
another region (M. Godoy, personal communication). According to the 
Centres for Disease Control and Prevention (CDC), workers in seafood 
processing are not exposed to SARS-CoV-2 through the fish and other 
seafood products they handle but rather from having close, and often, 
extended contact with coworkers and supervisors (CDC, 2020). 

3.2.2. Fomite transmission (contact transmission) of SARS-CoV-2 
Fomite transmission, such as infection via fomite to hand contami-

nation (e.g., if a person touches a contaminated inanimate material and 
then transfers the infectious virus to mucous membranes in the eyes, 
nose, or mouth) (Kabir et al., 2020; Kitajima et al., 2020), occurs 
through indirect contact with surfaces that have been contaminated by 
an infected person (Ong et al., 2020; WHO, 2020a; ECDC, 2020). There 
are several scenarios of contaminated surfaces, but this transmission 
route appears to be less common (CanCOVID, 2020). The amount of 
infectious virus transferred in this case may not be sufficient to infect 
(Dowell et al., 2004; CanCOVID, 2020; Goldman, 2020). Other scenarios 
are only considered a theoretical risk; for example, an infected person 
touches/pets a domestic animal. The virus remains on the animal’s hair 
coat, fur, or feathers long enough to transmit to another person (CVMA, 
2020). However, a real risk has become evident with the transmission of 
SARS-CoV-2 via contaminated cold-chain food sources. The survival 
period and transmission distance of the virus could be prolonged (Han 
et al., 2020; Pang et al., 2020; Fisher et al., 2020). This “non-traditional” 
transmission mechanism (Fisher et al., 2020) has been linked to the 
COVID-19 resurgence in Beijing, China (Han et al., 2020; Pang et al., 
2020). 

3.2.2.1. SARS-CoV-2 survival in the environment. Factors such as tem-
perature, pH, relative humidity, and the virus (i.e., naked or enveloped 
particle) influence the stability of a virus in the environment (Otter 
et al., 2016). Kampf et al. (2020) reviewed the literature on the persis-
tence of coronaviruses (enveloped viruses) on inanimate surfaces and 
their inactivation by chemical disinfection. Human coronaviruses such 
as SARS-CoV and MERS-CoV, and HCoV persisted on the surfaces for up 
to 9 days. They were still effectively inactivated with 62–71% ethanol, 
0.5% hydrogen peroxide, or 0.1% sodium hypochlorite within 1 min 
(Kampf et al., 2020). Taylor et al. (2020) studied the stability of cultured 
SARS-CoV-2 and SARS-CoV in aerosols and on various surfaces (stainless 
steel, copper, and cardboard) at 21–23 ◦C and 40% relative humidity 
over seven days. Both viruses were viable in aerosols for at least 3 h. For 
both viruses, the infectious virus survived 72 h after application on the 
plastic and stainless steel surfaces (Taylor et al., 2020). No viable SARS- 
CoV-2 was detected on cardboard after 24 h, and no viable SARS-CoV 
was detected after 8 h (van Doremalen et al., 2020; Taylor et al., 
2020). On copper, no viable SARS-CoV-2 was found after 4 h, and no 
viable SARS-CoV was found after 8 h (Taylor et al., 2020). Pastorino 
et al. (2020) noted the presence of proteins to prolong infectivity. 
Overall, these studies demonstrated the potential for aerosol and fomite 
transmission of SARS-CoV-2 since it remained viable and infectious in 
aerosols for hours and on surfaces up to days (van Doremalen et al., 
2020; Pastorino et al., 2020). Infectious SARS-CoV-2 was not detectable 
in nasal mucus and sputum after 48 h, although viral RNA could be 
detected for seven days (Matson et al., 2020). 

3.2.2.2. SARS-CoV-2 survival in cold storage or transport. Dai et al. 
(2020) investigated the survival of SARS-CoV-2 (~104.5 log10 TCID50/ 
ml) attached to pieces of salmon stored at 4 ◦C or 25 ◦C. The salmon- 
attached SARS-CoV-2 remained viable at 4 ◦C and 25 ◦C for 8 and 2 days, 
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respectively, demonstrating that SARS-CoV-2 can survive for more than 
a week at 4 ◦C - the temperature in refrigerators or cold rooms for the 
temporary storage of fish (Dai et al., 2020). Independently, Fisher et al. 
(2020) studied the stability of cultured SARS-CoV-2 (~106 log10 
TCID50/ml) spiked in pieces of salmon, chicken, and pork stored at three 
different temperatures (4 ◦C, -20 ◦C, and -80 ◦C) over 21 days. The viral 
titers remained unchanged (i.e., there was neither viral replication nor 
viral inactivation) for the duration of the study in both the refrigerated 
(4 ◦C) and frozen (-20 ◦C and -80 ◦C) samples (Fisher et al., 2020). These 
two studies demonstrated that SARS-CoV-2 could survive the time and 
temperatures associated with transportation and storage conditions 
associated with international seafood trade (Dai et al., 2020; Fisher 
et al., 2020), further supporting the speculation that contaminated cold- 
chain food sources initiated the COVID-19 resurgence in Beijing (Pang 
et al., 2020). 

3.2.2.3. Risk of transmission of SARS-CoV-2 via aquatic food animals or 
their products. Fig. 1 illustrates the typical layout of a fish processing 
plant to demonstrate potential points of possible contamination with 
SARS-CoV-2, and Fig. 2 illustrates the potential risk of transmission of 
the virus via contaminated aquatic food products, particularly when 
handled by infected workers (Bondad-Reantaso et al., 2020; Taylor 
et al., 2020). The global trade in fresh and frozen aquatic animal food 
products is favorable for the contaminating virus to survive and be 
transported over long distances (Han et al., 2020). Temperature and 
relative humidity further influence the virus’ survival in the environ-
ment (Lee et al., 2015; van Doremalen et al., 2013, 2020; Fisher et al., 
2020). The Global Aquaculture Alliance (GAA) provided a guidance 
document for seafood processing facilities seeking best practices to keep 
their employees and community healthy and limit the spread of COVID- 
19 (GAA, 2020). 

Although the initial COVID-19 cases were in people who had visited 
the Huanan seafood wholesale market in Wuhan city, Hubei province, 
China (Jiang et al., 2020; Chen et al., 2020a; Zhou et al., 2020), there is 
no evidence that the seafood and fish from the animal market were 
associated with the outbreak (Lu et al., 2020). Low temperatures fa-
voring viral survival and high humidity have been suggested to explain 
why seafood markets in China could be sources of COVID-19 outbreaks 
(Caiyu and Hui, 2020; Jalava, 2020). A recent resurgence of COVID-19 

cases in Beijing, China, has been linked to the massive Xinfadi Market 
(Pang et al., 2020). Of the earliest 53 people testing positive for SARS- 
CoV-2, 48 had worked, and three had shopped at the seafood market 
(Wang and Yu, 2020). Among the environmental samples tested at the 
same seafood market, 40 samples were positive for SARS-CoV-2, 
including samples taken from chopping boards used to process im-
ported salmon (Caiyu, 2020; Caiyu and Hui, 2020; Wang and Yu, 2020). 
Further investigation of the 14 booths in the Xinfadi Market trading hall 
identified booth #S14 as the virus’ source; salmon was the only im-
ported commodity sold at this booth (Pang et al., 2020). Upon exami-
nation of all salmon (3582 in total) in the original sealed package in the 
cold storage at the Xinfadi Market, six were positive for SARS-CoV-2 
RNA, and five of these fish were from the company that supplied the 
salmon to booth #14 on May 30, 2020 (Pang et al., 2020). Genome 
sequencing of the virus identified it as a European SARS-CoV-2 virus 
strain (Pang et al., 2020). The authors suggest this case to be the origin 
of the COVID-19 resurgence in Beijing linked to a contaminated cold- 
chain food source (Pang et al., 2020), although they did not establish 
the route of infection. The more virus consumed in a food, the more 
likely an illness will result (Todd et al., 2008). Foodborne virus in-
fections often result in shedding large amounts of virus particles in the 
diarrheal feces or vomitus (~105 to >1012 infectious particles per ml or 
g) (Gerba, 2000; Bishop, 1996) that easily lead to infection upon 
ingestion of the contaminated food (Anderson and Weber, 2004; Todd 
et al., 2008). Since viruses do not replicate in non-living cells, the 
amount of infectious SARS-CoV-2 transferred this way would have to be 
massive to be sufficient to infect. 

Approximately 80,000 tons of chilled and frozen salmon is imported 
by China each year from the major salmon producing countries (Chile, 
Norway, Faroe Islands-Denmark, Australia, and Canada) (Campbell, 
2020). The Government aquaculture authority in Chile, Sernapesca, 
reiterated that salmon processing plants in Chile are HACCP (Hazard 
Analysis Critical Control Points) compliant, and also, because of the 
COVID-19 pandemic, companies have implemented additional biosafety 
protocols to reduce or avoid contagion among operators and in turn 
ensure that there is no contamination of the products made, following 
the recommendations of the WHO and the Ministry of Health of Chile 
(Sernapesca, 2020), thereby guaranteeing the safety of the aquatic 
products exported. Sernapesca will also implement regular supervision 

Fig. 1. Typical layout of a fish processing plant to demonstrate potential points of possible contamination with SARS-CoV-2.  
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of salmon processing plants using online checks (Sernapesca, 2020). 
While screening for viruses in food is not mandatory, it is recom-

mended; Regulation (EC) No 178/2002 of the European Parliament 
regarding food law, Article 14, states that “Food shall not be placed on 
the market if it is unsafe” (Food Safety Authority of Ireland, 2019). After 
detecting SAR-CoV-2 on chopping boards used to process imported 
salmon (Caiyu, 2020; Caiyu and Hui, 2020; Wang and Yu, 2020), China 
began testing all frozen food imports for SARS-CoV-2 RNA and sus-
pended shrimp imports from three producers from Ecuador after traces 
of the virus were found on the outer packaging of six samples taken from 
the shipment (Korban and Welling, 2020). An additional case of SARS- 
CoV-2 RNA on Ecuadorian shrimp packaging was reported a week 
later (Korban and Sapin, 2020). Additional incidents have been reported 
across the country where SARS-CoV-2 was detected on imported foods, 
mostly on their packaging materials (Han et al., 2020). In one case, the 
virus was also detected on the interior of a shipping container (Han 
et al., 2020). 

The FAO has published a qualitative assessment of the likelihood of 
exposure to SARS-CoV-2 from wild, livestock, companion, and aquatic 
animals in COVID-19 affected areas (El Masry et al., 2020). The likeli-
hood of humans or animals getting exposed to SARS-CoV-2 in COVID-19 
affected areas through contact with aquatic animals (namely fish, am-
phibians, mollusks, and crustaceans) is considered negligible (i.e., 
extremely unlikely to occur/result in exposure) (El Masry et al., 2020). 
The fact is that SARS-CoV-2 does not replicate in aquatic animals as they 
are “cold-blooded” and have a different ACE2 cell receptor, and there-
fore, would not cross the species barrier. The in-silico analysis conducted 
by Damas et al. (2020) predicted that the ACE2 proteins of birds, fishes, 
reptiles, and amphibians are not likely to bind the SARS-CoV-2 S protein, 
indicating that vertebrate classes other than mammals are not likely to 
be an intermediate host or reservoir for SARS-CoV-2. The likelihood of 
exposure is low (i.e., unlikely to occur/result in exposure) through 
handling or consumption of raw products originating from aquatic an-
imal species processed and sold in markets or retail shops in conditions 
not meeting the Codex Alimentarius food hygiene standards (CAC, 
2009) where cross-contamination occurred; the likelihood drops to 
negligible for sufficiently heat-treated products (El Masry et al., 2020). 
The likelihood of infection, post-exposure, was not assessed (El Masry 
et al., 2020). 

3.2.3. Transmission via fecal-oral route and presence of SARS-CoV-2 in 
wastewater 

Several papers report the detection of SARS-CoV-2 RNA in waste-
water (Ahmed et al., 2020; Holshue et al., 2020; Lodder and de Roda 
Husman, 2020; Randazzo et al., 2020; Chen et al., 2020a; Gao et al., 
2020; Wang et al., 2020a, 2020b, 2020c; Xiao et al., 2020a; Ling et al., 
2020; Kitajima et al., 2020), and it has been suggested that this is a 
sensitive surveillance system and early warning tool for COVID-19, as 
was previously shown for poliovirus (Lodder et al., 2012) and Aichi virus 
(Lodder et al., 2013). Kitajima et al. (2020) recently reviewed the po-
tential of wastewater surveillance for understanding the epidemiology 
of COVID-19. SARS-CoV-2 in wastewater can enter aquatic ecosystems, 
particularly during poor sanitation, and infect many people (Wartecki 
and Rzymski, 2020), for example, via aerosolization. The concern for the 
role of wastewater as a potential source of SARS-CoV-2 has been 
heightened by three lines of evidence supporting the possibility that 
SARS-CoV-2 can replicate in enterocytes of the gastrointestinal tract 
(Kitajima et al., 2020; Singh et al., 2020): 

1. Reports of COVID-19 patients with diarrhea and with the virus in 
feces (Chen et al., 2020a; Gao et al., 2020; Wang et al., 2020a, 2020b, 
2020c; Kitajima et al., 2020). A systematic review and meta-analysis of 
such studies found that 12% of COVID-19 patients have gastrointestinal 
symptoms, and 40.5% of patients with confirmed SARS-CoV-2 infection 
passed the virus in feces (Parasa et al., 2020). Another meta-analysis on 
COVID-19 patients found fecal samples from 48.1% of the patients 
positive for viral RNA, and of these, 70.3% were positive even after their 
respiratory samples tested negative (Cheung et al., 2020). 

2. Reports showing that SARS-CoV-2 infects gastrointestinal glan-
dular epithelial cells (Xiao et al., 2020a) and gut enterocytes (Lamers 
et al., 2020), and the ACE2 cell receptor for SARS-CoV-2 (Yan et al., 
2020) is expressed in the small intestine, lung and oral mucosa (Kitajima 
et al., 2020; Hamming et al., 2004; Xu et al., 2020b; Liang et al., 2020). 
Furthermore, ACE2 and the cellular serine protease TMPRSS2 were 
found to be coexpressed not only in lung alveolar type 2 cells but also in 
esophageal upper epithelial and gland cells, ileum and colon (Zhang 
et al., 2020b). 

3. Report by Singh et al. (2020) predicting enterocytes and goblet 
cells of the small intestines and colon, and gallbladder basal cells to be 
susceptible to SARS-CoV-2 based on their expression of SARS-CoV-2 and 

Fig. 2. Illustration of the potential risk of transmission of the virus via contaminated aquatic food products, particularly when handled by infected workers.  
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coronavirus-associated receptors and factors (SCARFs). 
In contrast, although a positive fecal test is as accurate as a 

pharyngeal swab test for laboratory diagnosis of COVID-19, patients 
with a positive fecal test did not have gastrointestinal symptoms (Zhang 
et al., 2020c). Moreover, while the virus is readily isolated from throat 
and lung samples, there is only one report on the isolation of SARS-CoV- 
2 from a single fecal sample (Holshue et al., 2020) – despite high con-
centrations of viral RNA (Wölfel et al., 2020). Besides, viral RNA 
detection does not equate to the infectious virus (Cevik and Bamford, 
2020) - “The viral RNA is the equivalent of the corpse of the virus,” 
(Emanuel Goldman quoted by Lewis (2021)); while RT-PCR could detect 
SARS-CoV RNA in untreated wastewater from two hospitals, the virus 
could not be isolated using Vero E6 cell culture (Wang et al., 2005a). The 
stability of SARS-CoV in feces, urine, and water and chemical inactiva-
tion of the virus in wastewater were studied by Wang et al. (2005b). The 
intact virus was reported to persist for two days (viral RNA for seven 
days) in hospital or domestic sewage or tap water; three days in feces; 
14 days in PBS; and 17 days in urine at 20 ◦C (Silverman and Boehm, 
2020). The virus persisted longer at 4 ◦C: 14 days in wastewater and 17 
days in feces or urine (Wang et al., 2005b). It is also unknown if 
SARS-CoV-2 could survive passage through the stomach (Ng and Tilg, 
2020), and how long it remains infective in wastewater remains to be 
determined (Wartecki and Rzymski, 2020). 

In experimental studies of SARS-CoV-2 infection in cats published to 
date (Shi et al., 2020; Halfmann et al., 2020; Bosco-Lauth et al., 2020), 
and where fecal samples were tested, viral RNA was either not detected 
in the feces of virus-inoculated cats or was detected. However, the virus 
was not recovered from the viral RNA-positive small intestines. Exper-
imental studies using ferrets showed them to be highly susceptible to 
SARS-CoV-2 infection and transmitted the virus through direct and in-
direct contact similar to humans (Kim et al., 2020; Richard et al., 2020; 
Schlottau et al., 2020). However, the infectious virus could not be 
recovered from the trachea, kidney, and intestine tissues (Kim et al., 
2020) or was isolated from the throat and nasal swabs but not from 
rectal swabs (Richard et al., 2020). In the experimental study with 
minks, which developed the more severe disease, infectious virus was 
detected in the nasal washes of all three animals on days 2 and 4 post- 
inoculation (p.i) but not from the concha swabs or rectal swabs of any 
animals at any time points (Shuai et al., 2020). White-tailed deer 
experimentally inoculated intranasally with SARS-CoV-2 developed a 
subclinical infection, and infected animals shed infectious virus in their 
nasal secretions (Palmer et al., 2021). Although viral RNA was detected 
in nasal secretions of all inoculated and indirect contact animals be-
tween 2 and 21 days p.i, viral RNA from feces was detected only inter-
mittently and transiently through days 6–7 p.i; infectious SARS-CoV-2 
shedding was detected by virus isolation in nasal secretions of all 
inoculated and indirect contact animals between days 2 and 7 p.i, 
whereas shedding in feces was only detected in inoculated animals and 
only on day 1 p.i (Palmer et al., 2021). Thus, the SARS-CoV-2 material 
detected in wastewater may not be infectious, and wastewater may not 
move the viable virus to an aquatic environment (Wartecki and Rzym-
ski, 2020). However, it is still possible for the ingested virus to migrate 
to the respiratory tract (Li et al., 2020a). 

Wartecki and Rzymski (2020) reviewed the potential survival of 
coronaviruses in aquatic environments and wastewater and observed 
that coronavirus survival likely depends on four key conditions:  

1. Water temperature – higher temperature decreases survivability.  
2. Light availability – UV-B light decreased SARS-CoV titer. 
3. Level of organic matter – adsorption of virus particles to the sus-

pended organic matter may be protective, whereas the presence of 
antagonistic microorganisms may inactivate the virus.  

4. Predation – certain protozoa graze on viruses (Feichtmayer et al., 
2017). 

In organic matter, for example, transmissible gastroenteritis virus 

(TGEV), a diarrheal pathogen of swine and surrogate for SARS-CoV-2, at 
25 ◦C, survived for 22 days in reagent-grade water. In contrast, in 
wastewater (lake water), it survived for only nine days (Casanova et al., 
2009). Thus, coronavirus survival in treated wastewater (Carducci et al., 
2020) is significantly different from survival in untreated wastewater 
that is known to contain microorganisms (protozoa, ciliates, flagellates, 
bacteria), which decrease the presence of viable viruses (Feichtmayer 
et al., 2017; Wartecki and Rzymski, 2020). 

4. Consideration for the aquaculture industry 

The impacts of the COVID-19 pandemic on the fisheries and aqua-
culture sector are wide-ranging (FAO/WHO Food and Agriculture Or-
ganization of the United Nations/World Health Organization, 2008). 
The concerns about the safety of aquatic animal food products have 
directly impacted the aquaculture industry. This review aims to better 
understand the potential for SARS-CoV-2 contamination and its poten-
tial transmission via aquatic food animals or their products to curtail 
these direct impacts. The industry also faces global economic impacts by 
changing consumer demands, access to international markets, and 
problems with transport and border restrictions (FAO/WHO Food and 
Agriculture Organization of the United Nations/World Health Organi-
zation, 2008) that may be longer-lasting, making the COVID-19 
pandemic one of the most economically devastating diseases to affect 
the whole aquaculture value chain. This review supports the under-
standing that contaminated cold-chain food sources may introduce SAR- 
CoV-2 via food imports (Dai et al., 2020; Fisher et al., 2020), although 
the virus is unlikely to infect humans through consumption of aquatic 
food animals or their products or drinking water, i.e., SAR-CoV-2 is not a 
foodborne virus (Li et al., 2020a) and should not be managed as such but 
instead through the implementation of strong, multifaceted public 
health interventions such as physical distancing, rapid contact tracing, 
and testing, enhanced hand and respiratory hygiene, frequent disinfec-
tion of high-touch surfaces, and isolation of infected workers and their 
contacts, as advocated by the GAA (GAA [Global Aquaculture Alliance], 
2020). The “non-traditional” transmission of SAR-CoV-2 via cold-chain 
food contamination calls for enhanced screening protocols used in in-
ternational seafood trade to prevent re-introducing SAR-CoV-2 in 
importing countries and regions. 

5. Conclusions 

We provide critical information about how aquatic food does not 
present the big danger to the human population as was initially feared 
due to the association of early outbreaks to seafood markets and indicate 
areas needing more research. SARS-CoV-2 is not a foodborne virus and 
should not be managed as such. This virus can contaminate surfaces, 
including food handled by an infected person or coming in contact with 
contaminated material. Although SARS-CoV-2 has low stability on fo-
mites at 21-23 ◦C (room temperature), it has been demonstrated that the 
virus can survive the time and temperatures associated with trans-
portation and storage conditions associated with international food 
trade, thereby presenting a “non-traditional” transmission mechanism 
requiring enhanced screening protocols for the international seafood 
trade. While mostly viral RNA has been found on aquatic animals’ 
products or surfaces in contact with aquatic animal products, a recent 
COVID-19 resurgence in Beijing, China, was linked to contaminated 
cold-chain food sources. However, a direct link between SARS-CoV-2 
infection and food consumption remains to be documented. 
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