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Abstract

Convergent cross mapping (CCM) is designed for causal discovery in coupled time series, where 

Granger causality may not be applicable because of a separability assumption. However, CCM is 

not robust to observation noise which limits its applicability on signals that are known to be noisy. 

Moreover, the parameters for state space reconstruction need to be selected using grid search 

methods. In this paper, we propose a novel improved version of CCM using Gaussian processes 

for discovery of causality from noisy time series. Specifically, we adopt the concept of CCM and 

carry out the key steps using Gaussian processes within a non-parametric Bayesian probabilistic 

framework in a principled manner. The proposed approach is first validated on simulated data, and 

then used for understanding the interaction between fetal heart rate and uterine activity in the last 

two hours before delivery and of interest in obstetrics. Our results indicate that uterine activity 

affects the fetal heart rate, which agrees with recent clinical studies.

Index Terms—

Convergent cross mapping; state space reconstruction; Gaussian processes; fetal heart rate; uterine 
activity

1. INTRODUCTION

During labor, a fetus can be deprived of adequate levels of oxygen and can become hypoxic 

and acidotic. If the oxygen supply drops below a certain threshold, asphyxia occurs, and this 

can lead to permanent brain damage or even death of the fetus [1]. Cardiotocography (CTG) 

is the most widely used technology for monitoring the well-being of fetuses during labor. 

CTG comprises of the fetal heart rate (FHR) and uterine activity (UA) signals, which are 

both recorded and visually inspected by clinicians [2]. The purpose of CTG is to alert 

obstetricians of such alterations in blood flow and oxygen content that are reflected in the 

CTG patterns for appropriate and timely intervention. The interpretation of FHR recordings 

is a highly intricate and complex task with high inter- and intra-variable evaluations among 

obstetricians, notwithstanding the availability of various clinical guidelines from both the 

National Institute of Child Health and Human Development (NICHD) and the International 

Federation of Gynecology and Obstetrics (FIGO) [3, 4]. In fact, the current guidelines for 

FHR evaluation have been criticized for simplistic interpretation [5]. The reliable 
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interpretation of CTG tracings requires better understanding of the interaction between FHR 

and UA signals. In this paper, we address the problem of making inference about causality 

from CTG signals, which interestingly, has largely been overlooked in the literature.

The gold standard for identifying causal relationships is using controlled randomized 

experiments. In many situations, however, these experiments cannot be performed [6]. When 

we work with signals, their samples are usually stored in the form of time series. The 

samples are ordered in time, which helps in addressing the detection of causality because 

cause should occur before the effect [7, 8]. The Granger causality is the best known concept 

for discovering causalities [9]. The concept relies on two fundamental principles: (a) the 

effect does not precede its cause in time, and (b) the causing series contains unique 

information about the series being caused that is not available otherwise. However, when 

two time series are dynamically coupled, the second principle of the Granger causality is 

violated, and consequently, the causal discovery results may be unreliable [10].

Another approach for determining causality is known as convergent cross mapping (CCM), 

which was proposed in [11]. The method is designed for coupled time series and is based on 

state space reconstruction (SSR). We recall that in dynamical systems theory two time series 

are causally related if they are from the same dynamical system, or equivalently, share a 

common attractor manifold ℳ. Further, the signature of the causing series is embedded in 

the effect series [11]. Although CCM has been successfully applied to perform causal 

inference in many communities, e.g., social media [12] and neuroscience [13], it can be 

shown that CCM is sensitive to observation noise [14]. To improve the applicability of 

CCM, some variants of CCM have been proposed, e.g. [15, 16].

In this paper, we propose a fully Gaussian process (GP)-based version of CCM. The GP-

based SSR step is capable of automatic learning an attractor manifold of better quality from 

noisy observations in a principled manner, unlike the original SSR method in CCM where 

the parameters for reconstruction are usually selected with grid search. For the cross 

mapping step, the GP-based method is able to provide cross mapping results under a 

probabilistic framework. More importantly, because of the Bayesian nature of the GP 

framework, the GPs are data efficient and robust to overfitting. As a result, our GP-based 

CCM can provide better convergence which is critical in distinguishing causation from 

correlation. We first validated the GP based approach using the well-studied Lorenz system 

with and without observation noise. Then we implemented the original CCM and the GP-

based CCM, respectively, on a segment of real CTG recordings. The results of the original 

CCM are ambiguous, whereas the results of the GP-based CCM clearly indicate that the 

changes in the UA signal cause changes in the FHR signal, and not vice versa. Our finding is 

consistent with recent clinical studies [17].

2. BACKGROUND

2.1. Takens’ Theorem

The CCM framework is built on Takens’ theorem proposed by Floris Takens in [18], which 

is of great importance in attractor reconstruction, i.e., the reconstruction of the state space of 

a system. When the conditions of the theorem are satisfied, the theorem provides guarantees 
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that, generically, the information about hidden states of a dynamical system can be 

reconstructed from a single observation variable of the system. Next, we state the theorem:

Theorem 1 (Takens’ theorem) Let ℳ be a compact manifold of (integer) dimension d. 
Then for generic pairs (ϕ, y), where

• ϕ:ℳ ℳ is a C2-diffeomorphism of ℳ in itself,

• y:ℳ ℝ is a C2-differentiable function, the map Φ(ϕ, y):ℳ ℝ2d + 1 given by

Φ(ϕ, y)(x): = y(x), y(ϕ(x)), y ϕ2(x) , …, y ϕ2d(x)

is an embedding of ℳ in ℝ2d + 1.

The most common choice of ϕ is a delay by a constant τ. A fundamental contribution of 

Takens’ theorem is the claim that for a reliable reconstruction of a manifold ℳ of dimension 

d, it is sufficient to have a delay embedding of dimension E = 2d + 1.

2.2. Convergent Cross Mapping

The CCM framework is composed of two steps. The first step is state space construction 

(SSR) using each time series. Given a time series x(t), a shadow manifold ℳx
DE of 

dimension E, as an estimate or reconstruction of latent attractor manifold ℳx, is constructed 

using delay embedding. The point corresponding to time instant t on ℳx
DE is an E-

dimensional vector mxDE(t) = [x(t), x(t − τ), …, x(t − (E − 1)τ)]⊤. If two time series, x(t) and 

y(t), are from the same dynamical system, ℳx
DE and ℳy

DE should be topologically similar, 

since they both are diffeomorphic to the true manifold ℳ.

In the second step, given two shadow manifolds ℳx
DE and ℳy

DE their correspondence is 

tested for causal discovery. Specifically, given a point in ℳy
DE ∈ ℝN × E, CCM will find its E 

+ 1 nearest neighbors (the minimum number of points to bound a simplex in ℝE) in ℳy
DE

and their corresponding time indices and then test whether these time indices can be used to 

identify nearby points on ℳx
DE, and vice versa. This is implemented using cross mapping 

with simplex projection, i.e., estimating x(t) with ℳy
DE denoted as x(t) |ℳy

DE, and vice versa. 

Essentially, the CCM test measures the extent to which the historical record of one time 

series can reliably estimate states of the other time series. If x(t) is a stochastic driver or 

cause of y(t) (e.g., x is an environmental driver and y is a population variable), information 

about the states of x can be recovered from the observations of y, but not vice versa.

Furthermore, the CCM takes convergence into consideration that not only distinguishes 

CCM from general cross prediction, but also allows for distinguishing causation from simple 

correlation. The convergence means that cross-mapped estimates improve in estimation 

capacity, which is usually measured by correlation, with the length of time-series, L (sample 

size used to construct the history). If the Pearson correlation coefficient (PCC), denoted as ρ, 
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is adopted as a capacity metric and the conditions of Takens’ theorem are satisfied, it can be 

proved that the PCC as a function of L will converge to 1 as L approaches infinity. In 

practice, because of observation noise and finite number of observations, the correlation will 

only converge to a value less than 1 [11].

The choice of reconstruction parameters E and τ need to be carefully selected. In many 

situations, the true manifold ℳ that is responsible for generating the data is usually 

unknown. As a result, we do not have any knowledge about the true dimension d of the 

manifold ℳ (or E = 2d + 1). In practice, the common approach of choosing E is using false 

nearest neighbours [19] in a grid search manner, which is not principled. In theory, τ is a 

free parameter and can be arbitrarily selected. However, because in reality the number of 

observation is finite, the value of τ will actually affect the quality of ℳDE in term of 

capturing the underlying dynamics of the system. One common approach for choosing τ is 

based on mutual information and is also obtained by a grid search [20].

2.3. Gaussian Processes

In machine learning literature, GPs provide powerful and flexible Bayesian nonparametric 

framework for modeling functions and mappings, and they have been successfully applied in 

both supervised and unsupervised learning [21, 22]. By definition, a GP indexed by x is a 

stochastic process in which every finite collection of random variables has a multivariate 

normal distribution, and it is completely specified by its mean function m(x) and covariance 

function kf(x, x′), which are defined by m(x) = E[f(x)], and 

kf x, x′ = E (f(x) − m(x)) f x′ − m x′ . Conceptually, a real valued function f(x) can be 

seen as a vector with infinite dimensionality. Therefore, GPs are suitable for specifying the 

prior distribution of a latent function f(x), and our prior knowledge and assumption about 

f(x) can be conveniently encoded in the design of the covariance function without assuming 

any analytical form of f(x). To reduce the number of hyperparameters, a GP is often assumed 

to be zero mean, and we write f(x) ~ GP(0, kf(x, x′)). The covariance function kf(x, x′) is of 

great importance because it maps the distance, or similarity, between the inputs x and x′ to 

the covariance between the outputs f(x) and f(x′).

3. MODEL DESCRIPTION

3.1. State Space Reconstruction

Given a time series, we first construct a shadow manifold ℳinit using delay embedding, with 

τ = 1 (delay by one sample) and E that is relatively large, e.g., E = 20. The intuition of it is 

that, a relatively large E ensures the conditions in Takens’ theorem to be satisfied, and τ = 1 

is the minimum delay, which suggests that there is no information loss regarding the 

underlying dynamics. Consequently, ℳinit is of high dimension and the variables from the 

different dimensions are highly correlated. Therefore, ℳinit is not suitable for simplex 

projection where E+1 nearest neighbours need to be identified because the Euclidean 

distance in high dimensions is large, and neighbours in high dimensions are sparse.
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We use the Bayesian GP latent variable model (GPLVM) [23], to infer the low dimensional 

manifold ℳGP that is responsible for generating ℳinit. Let ℳinit ∈ ℝN × Q be a matrix whose 

rows lie in ℳinit and similarly, ℳGP ∈ ℝN × E is a matrix with rows that lie in ℳGP. The 

generative process can then be expressed as follows:

Minit  = f MGP + ϵ, (1)

where ϵ ∈ ℝN × Q is a matrix whose rows are zero mean Gaussian with covariance σϵ2I. 

Since our purpose is not to predict how the system will evolve on the attractor manifold in 

the future, we initialize each dimension in f as an independent draw from a GP, i.e., f ~ 

GP(0, k(x, x′)), where the covariance function is a Q-dimensional radial basis function 

(RBF), which has the following form:

k x, x′ = σf
2 exp  − 1

2 ∑
q = 1

Q 1
lq

xq − xq′ 2 . (2)

The learning requires maximizing the marginal likelihood given by:

p Minit = ∫ p Minit |MGP p MGP dMGP . (3)

Unlike the GP regression framework, this marginal likelihood is intractable because MGP 

and Minit are related by the covariance function in a highly nonlinear manner, and in general, 

nonlinear mapping will not preserve Gaussianity. This is handled in [23] by employing 

variational inference, and approximating the true posterior p(MGP | Minit) by a Gaussian 

variational distribution q(MGP), from which a tractable lower bound on the marginal 

likelihood was obtained and then adopted for learning.

In our work, the mean of q(MGP) is used as reconstructed attractor manifold, and the 

covariance q(MGP) is adopted for measuring the uncertainty in the learning. In the 

covariance function, shown in (2), each dimension q is associated with rq = 1
lq

, which can be 

seen as an importance weight of dimension q in the modeling. Since ℓq as a hyperparameter 

will be automatically learned from the data, this is known as automatic relevance 

determination (ARD). We initialize Q = E, and use ARD for learning the dimension of ℳGP. 

The values of the importance weights of irrelevant or redundant embedding dimensions will 

be close to zero, and the final learned Q will be much smaller than E.

3.2. Cross Mapping

Let the two reconstructed attractor manifolds be ℳx
GP and ℳy

GP and that they correspond to 

two time series x(t) and y(t), respectively. We will use them to discover causality by using 

GP-based cross mapping. For convenience, we only discuss the cross mapping of x(t) |ℳy
GP

using GP regression framework.
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For each time instant t0 in L − E + 1 ≤ t0 ≤ L, we first find myGP t0  and its corresponding Q + 

1 nearest neighbours for t < t0 on ℳy
GP, denoted as myGP tni

0
i = 1
Q + 1

, where tni
0  is time index of 

the ith nearest neighbor of myGP t0 . Then we train a GP regression model to learn the 

mapping from yt0 = y tn1
0 , y tn2

0 , …, y tnQ + 1
0 ⊤

 to y(t0), using the generative process as 

follows:

y t0 = g yt0 + η, (4)

where g is governed by a GP with zero mean and covariance function kg(x, x′) which is a Q 
+ 1 dimensional RBF, and η N 0, ση2  is a white Gaussian noise.

Let Y = yti i = 1
N  denote the collection of all input vectors, and Kgg the covariance matrix 

obtained by evaluating the covariance function for Y, i.e., Kgg = kg(Y, Y). Then the prior 

probability density function (pdf) of g given Y is given by

p(g |Y, θ) = N g|0, Kgg . (5)

The hyperparameters θ in the covariance function and the noise variance ση2 are learned in 

the training stage by maximizing the (tractable) model evidence,

log p(y |Y, θ) = log N y|0, Kgg + ση2I
= − 1

2yTK−1y − 1
2log |K| − N

2 log 2π, (6)

where K = Kgg + ση2I. If we have test inputs y*, the predictive pdf p g* | y*, Y, y, θ  will be 

Gaussian with a mean given by:

E g* = kg y*, Y K−1y . (7)

Since we need to perform cross mapping, we modify (7) as

x t0 = kg xt0, Y K−1y, (8)

where xt0 is formed from x(t) and corresponding to the ordered time indices of the 

neighbours of myGP t0  on ℳx
GP. The variance of the cross mapping can also be computed 

readily [21]. If x drives y, the estimation capacity of x(t) |ℳy
GP, which is usually measured by 

the correlation coefficient ρ between x(t) and x(t), will be improved with the increase of L 
and will converge.

4. EXPERIMENTS AND RESULTS

4.1. Synthetic Data

We first validate our GP-based method on the well-known Lorenz system defined by
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dx/dt = a(y − x),
dy/dt = x(c − z) − y,
dz/dt = xy − bz .

(9)

The system is nonlinear, non-periodic, three-dimensional and deterministic.

We generated a Lorenz attractor (a set of chaotic solutions of the Lorenz system) ℳ of 

length 365 with (9) and a classic set of parameter values a = 10, b = 8
3 , and c = 28, along 

with the three time series obtained by projecting points in ℳ to the X, Y and Z axes shown 

in Fig. 1.

To make our experiments more realistic, we added white Gaussian noise e N 0, σe2 , and we 

set σe2 = 0, 1 and 9, respectively. Then we implemented the original CCM and our GP-based 

method to discover causality between X(t) and Y (t). Recall that in the original CCM, the 

SSR parameters are selected using grid search [19, 20]. From (9), we know that the true 

causal relationship is that X(t) is a cause of Y (t), and Y (t) is also a cause of X(t).

The comparison of SSR results for Y (t) are shown in Fig. 2, where we see that the GP-based 

SSR consistently provided better reconstructions. This was especially the case for σe2 = 9, 

where the ℳY
DE is essentially unrecognizable, whereas ℳY

GP is still topologically similar to 

ℳ. It is worth noting that when σe2 = 0, i.e., noise-free, the ℳY
DE is distorted, especially for 

the curves within the left lobe, whereas, in ℳY
GP there is no such distortion. Moreover, the 

true dimensionality of ℳ is correctly estimated with and without observation noise.

Finally, the test results of both methods are summarized in Fig. 3. We can see that both 

methods are able to identify the correct causal relationship when σe2 = 0. However, for σe2 = 1
and 9, the GP-based method demonstrated better convergence, which is crucial for 

distinguishing causation from correlation.

4.2. Real CTG Segment

In our experiments with real CTG data, we selected data records from an open access 

database that were acquired at the obstetrics ward of the University Hospital in Brno, Czech 

Republic. A detailed description of the database can be found in [24]. We applied our GP-

based method on a real CTG segment of length 480 samples, which corresponds to a 

duration of 2 minutes (the sampling rate for both FHR and UA signals was 4 Hz). The FHR 

and UA signals and their corresponding attractor manifolds obtained by the GP-based 

method are shown in Fig. 4. Although the FHR and UA recordings are very different, their 

attactor manifolds are similar.

The test results of the CTG segment using the original CCM and our GP-based method are 

shown in Fig. 5, where X denotes UA signal and Y denotes FHR signal. The results of the 

original CCM is ambiguous, since for both directions, the correlation coefficient shows 

decreasing trend, after L = 400. Moreover, there was no convergence for both directions. The 

test results of the GP-based method clearly showed that changes in the UA signal is a cause 
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of changes in the FHR signal and not vice versa. For cross mapping from UA to FHR 

(Y (t) |ℳX
GP), the correlation coefficient showed high variance and no convergence, which 

indicates that FHR is not a cause of UA. Meanwhile, in the cross mapping from FHR to UA 

(X(t) |ℳY
GP), the correlation coefficient showed small variance, and was gradually improved 

with L, and finally converged around 0.99. This suggests that changes in the UA signal cause 

changes in the FHR signal. This finding is consistent with clinical studies [17].

5. CONCLUSION

In this paper, we proposed a fully GP-based version of CCM for casual discovery that is 

robust to observation noise. Both the SSR and cross mapping steps are carried out using GPs 

within the Bayesian nonparametric probabilistic framework, which is data efficient and 

robust to overfitting. The method is also capable of properly handling uncertainties. We first 

validated our approach on synthetic data with different levels of noise variance and found 

that the GP-based CCM demonstrated better convergence, which is critical for distinguishing 

causation from correlation. Then we applied the GP-based CCM on a segment of real CTG 

recordings, and the results indicate that uterine activity affects fetal heart rates. The proposed 

method can readily be adopted for causal discovery in other areas, e.g., neuroscience.
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Fig. 1. 
Synthetic data, the Lorenz attactor ℳ (left) along with the three time series obtained by 

projecting ℳ to X, Y and Z axis (right).
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Fig. 2. 
Attactor manifold reconstruction results for the synthetic dataset using delay embedding 

with optimal setting (top), and GP-based method (bottom) along with the importance weight 

of each dimension in ℳY
init that reveals the dimensionality of ℳY

GP (middle). From left to 

right, the variance of observation noise is σe2 = 0, 1, and 9, respectively.
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Fig. 3. 
The test results on synthetic data using the orginal CCM (top), and the GP-based method 

(bottom). From left to right, the variance of the observation noise is σe2 = 0, 1, and 9, 

respectively. The time series length L is increased from 180 to 360 with a step size of 10.
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Fig. 4. 
Raw FHR and UA segments (top), and their corresponding reconstructed attractor manifolds 

with the GP-based method (bottom).
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Fig. 5. 
The test results on CTG segment using original CCM (left), and the GP-based method 

(right), where X denotes UA signal, and Y denotes FHR signal. The time series length L is 

increased from 200 to 480 with a step size of 10.
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