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Abstract

Metabolic engineering in the post-genomic era is characterised by the development of new

methods for metabolomics and fluxomics, supported by the integration of genetic engineer-

ing tools and mathematical modelling. Particularly, constraint-based stoichiometric models

have been widely studied: (i) flux balance analysis (FBA) (in silico), and (ii) metabolic flux

analysis (MFA) (in vivo). Recent studies have enabled the incorporation of thermodynamics

and metabolomics data to improve the predictive capabilities of these approaches. How-

ever, an in-depth comparison and evaluation of these methods is lacking. This study pres-

ents a thorough analysis of two different in silico methods tested against experimental data

(metabolomics and 13C-MFA) for the mesophile Escherichia coli. In particular, a modified

version of the recently published matTFA toolbox was created, providing a broader range of

physicochemical parameters. Validating against experimental data allowed the determina-

tion of the best physicochemical parameters to perform the TFA (Thermodynamics-based

Flux Analysis). An analysis of flux pattern changes in the central carbon metabolism

between 13C-MFA and TFA highlighted the limited capabilities of both approaches for eluci-

dating the anaplerotic fluxes. In addition, a method based on centrality measures was sug-

gested to identify important metabolites that (if quantified) would allow to further constrain

the TFA. Finally, this study emphasised the need for standardisation in the fluxomics com-

munity: novel approaches are frequently released but a thorough comparison with currently

accepted methods is not always performed.
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Author summary

Biotechnology has benefitted from the development of high throughput methods charac-

terising living systems at different levels (e.g. concerning genes or proteins), allowing the

industrial production of chemical commodities. Recently, focus has been placed on deter-

mining reaction rates (or metabolic fluxes) in the metabolic network of certain microor-

ganisms, in order to identify bottlenecks hindering their exploitation. Two main

approaches are commonly used, termed metabolic flux analysis (MFA) and flux balance

analysis (FBA), based on measuring and estimating fluxes, respectively. While the influ-

ence of thermodynamics in living systems was accepted several decades ago, its applica-

tion to study biochemical networks has only recently been enabled. In this sense, a

multitude of different approaches constraining well-established modelling methods with

thermodynamics has been suggested. However, physicochemical parameters are generally

not properly adjusted to the experimental conditions, which might affect their predictive

capabilities. In this study, we have explored the reliability of currently available tools by

investigating the impact of varying said parameters in the simulation of metabolic fluxes

and metabolite concentration values. Additionally, our in-depth analysis allowed us to

highlight limitations and potential solutions that should be considered in future studies.

Introduction

Metabolic engineering aims to improve microbial strains by considering comprehensive meta-

bolic pathways in their entirety rather than overexpressing a single gene [1]. To improve the

strains, hypothesis-driven studies have attempted to rationally identify gene targets and to

evaluate the effects of those changes in the network [2,3]. However, the complex nature of cel-

lular metabolism and its regulation demands a holistic understanding, i.e. a data-driven

approach [1–3]. Combining metabolic engineering with systems biology and mathematical

modelling allows for an optimisation of entire cellular networks considering further down-

stream processes at early stages [4].

This systematic framework exploits information regarding the metabolic state, which com-

prises the metabolome (complete set of low-molecular-weight metabolites (<1.5 kDa)) and

the fluxome (or metabolic activity, distribution of rates of conversion/transport in the meta-

bolic network) [5,6]. Kinetic modelling can yield metabolic fluxes from metabolomics data,

but lack of high-quality enzymatic parameters and computational limitations (e.g. time-con-

suming processes) hinder its application [7–9]. Performing an elementary flux mode analysis

(EFMA) to decompose the metabolic network into minimal subsets allowing to maintain the

steady state provides useful information [10]. However, the combinatorial explosion makes

the algorithm computationally expensive and therefore limits the size of the network that can

be analysed [10,11]. Alternatively, stoichiometric modelling can provide a flux distribution for

larger networks without any kinetic or metabolomics information [12]. Briefly, a metabolic

(quasi) steady state for intracellular concentration values (C) is assumed, so that the stoichio-

metric matrix (S) (including the stoichiometric coefficients of metabolites in each reaction of

the metabolic network) constrains the set of metabolic fluxes (υ) [13]:

dC
dt
¼ S� v ffi 0 ð1Þ

Two main approaches to solve this equation can be found: (i) flux balance analysis (FBA),

normally applied to large models (genome-scale model, GSM) [14] or (ii) metabolic flux
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analysis (MFA), used for smaller metabolic networks (mainly the central carbon metabolism)

(Table 1). FBA solves the underdetermined system represented in Eq 1 by maximising or mini-

mising the value of an assumed objective function [14]. A plethora of different objectives has

been described in the literature [15]. Three of them can be highlighted: maximisation of bio-

mass yield (YX/S, equal to the ratio growth rate/substrate uptake rate), maximisation of ATP

yield, and minimisation of sum of fluxes, which have been suggested to compete in the regula-

tion of bacterial metabolism [16]. Hence, selecting an adequate one/multi-dimensional objec-

tive function when analysing a GSM will depend on the growth conditions to be simulated in

FBA. In general, measured extracellular metabolic rates (e.g. substrate uptake) are insufficient

to properly constrain the intracellular metabolic fluxes [13]. In contrast, MFA is based on a

least-squares-regression problem, normally solved by exploiting experimental mass isotopo-

mer distribution (MID) of proteinogenic amino acids (13C-MFA) [13]. Since this approach

requires fewer assumptions and uses more experimental information than FBA, 13C-MFA is

considered to be the gold standard in fluxomics [17]. However, current applicability (central

carbon metabolism), and technical/computational complexity (particularly for autotrophic

growth [18]) limit its usage.

The set of constraints characterising stoichiometric modelling approaches (Eq 1) is insuffi-

cient to guarantee thermodynamically feasible results in the flux solution space [19,20]. Both

FBA and 13C-MFA assume most reactions to be reversible [13,21]: in the first case directionali-

ties are dictated by the optimal flux distribution (which depends on the a priori chosen objec-

tive function [14]), whereas in 13C-MFA they are determined by the MIDs [22]. The flux-force

relationship (thermodynamic displacement from the equilibrium [23]) links thermodynamic

potentials and fluxes (Eq 2):

DrG
0 ¼ DrG

0o þ RTlnQ ¼ RTlnðQ=keqÞ ¼ � RTlnðJ
þ=J � Þ ð2Þ

where ΔrG
0 and ΔrG

0o are the Gibbs free energies of reactions (the latter referring to adjusted

standard conditions), Q and keq are the ratio of products to reactant concentrations or activi-

ties (the latter at equilibrium) and (J+/J−) is the relative forward-to-backward flux [22].

Table 1. Comparison of frequently used approaches in fluxomics. Parameter A is used in the extended Debye-Hückel equation.

13C-MFA FBA TFA

Metabolic network size small GSM GSM

Flux distribution generated generated generated

Uptake rate Yes Yes Yes

Specific growth rate, μ (h-1) - Yes Yes

Gibbs free energy of formation (DG�f ) - - Experimental [32], or GCM [33]

Temperature, t (˚C) - - 25

Ionic strength, I (M) - - 0.25

Salinity, S (g/kg) - - -

Adjustment method - - Extended Debye-Hückel

Parameter A - - T-dependent

Metabolite concentration values - - Constraint or predicted

Problem formulation least square regression [13] LP [14] MILP [20]

13 C-MFA, 13C metabolic flux analysis; FBA, flux balance analysis; GCM, group contribution method; GSM, genome-scale model; LP, linear programming; MILP,

mixed-integer linear programming; TFA, thermodynamics-based flux analysis.

https://doi.org/10.1371/journal.pcbi.1007694.t001

PLOS COMPUTATIONAL BIOLOGY Thermodynamics-based stoichiometric modelling under mesophilic growth conditions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007694 January 25, 2021 3 / 18

https://doi.org/10.1371/journal.pcbi.1007694.t001
https://doi.org/10.1371/journal.pcbi.1007694


Four main approaches exploiting thermodynamics data can be highlighted: (i) energy bal-

ance analysis (EBA), where pre-selecting ΔrG
0 bounds leads to biased results [24], (ii) network-

embedded thermodynamic (NET) analysis, that needs pre-assigned directionalities (e.g.

obtained by FBA) and evaluates the thermodynamic consistency [25], (iii) max-min driving

force (MDF), which needs a flux distribution as input data to predict metabolite concentration

values [26], and (iv) thermodynamically-constrained FBA. Two methods were developed in

the latter approach: thermodynamics-based flux analysis (TFA), and an optimization problem

allowing to obtain a thermodynamically flux-minimised (TR-fluxmin) solution. TFA directly

yields a thermodynamically feasible FBA solution (e.g. by maximising YX/S) and simulates

metabolomics data [20,27]. In contrast, TR-fluxmin is based on the minimisation of sum of

fluxes in the system whilst applying a penalty score for in silico metabolite concentration values

[21]. Other recent approaches are based on alternative constraints, such as setting an upper

limit on the Gibbs energy dissipation rate [28], or only provide information regarding reaction

directionalities [29]. With regards to EFMA, even though using thermodynamics reduces the

aforementioned limitations due to combinatorial explosion, the network size is still a limiting

factor [30].

MDF and TFA are generally performed using eQuilibrator [26] and matTFA [20], respec-

tively. Since matTFA can be directly used to analyse a GSM, it was selected for this study.

Three features should be highlighted: (i) unique values for temperature (25˚C) are considered,

(ii) salinity (S) is not taken into account when calculating parameter A, and (iii) Gibbs free

energy values are adjusted for ionic strength (I) using the extended Debye-Hückel equation

(Table 1). It should be noted that in [20], I = 0.25 M and no salinity were assumed to study E.

coli (with a cytosol in the interval 0.15–0.20 M [27]), where the extended Debye-Hückel is only

valid for I< 0.1 M [31].

This study was based on determining the impact of varying and adjusting the physicochem-

ical parameters (t, I and S) on the predictive capabilities of TFA under mesophilic growth con-

ditions. In order to do so, a modified matTFA was developed by increasing the number of

parameters and parameter values that were originally considered [20]. To validate the results, a

comparison with published 13C-MFA and metabolomics data was performed. In particular,

flux pattern changes between in vivo and in silico fluxes in the central carbon metabolism were

analysed, with a focus on the anaplerotic reactions. In addition, a method based on centrality

measures was suggested to identify important metabolites that (if quantified) would allow to

further constrain the TFA.

Materials and methods

Metabolic network, mapping of metabolic fluxes and experimental data

Mesophilic growth conditions were studied by selecting a GSM for Escherichia coli (str. K-12

substr. MG1655): iJO1366, which has proven to predict phenotypes in a wide range of growth

conditions [34]. For the sake of consistency, metabolomics and fluxomics data were obtained

from the same experiment (S1 Dataset and S1 Table) [35]. Briefly, cells were grown in glucose-

limited chemostats at 37˚C with minimal medium and a fixed specific growth rate (μ) of 0.20

h-1. The experimental glucose uptake rate (2.93 mmol gDCW-1 h-1) was used as a constraint,

leaving the default lower and upper bounds for transport reactions. Maximisation of the bio-

mass yield was selected as the objective function, and no flux value was forced through the bio-

mass reactions (vbiomass). Directionalities of resulting flux values from TFA were compared on

a reaction-by-reaction case against in vivo fluxes from 13C-MFA, for which a mapping and

directionality correction step was needed (S1 Table).
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Generation of experimental design

The original matTFA toolbox uses unique values for t and I [20], and S is not taken into

account (Table 1). To explore their potential impact in the predictive capabilities, a modified

matTFA (mod-matTFA) allowing to consider alternative parameters values and methods was

created (Table 2). For the sake of reproducibility [36], the complete list of files used in this

study was collected in S2 Table, and are publicly available in Nottingham SBRC’s GitHub pro-

file (https://github.com/SBRCNottingham/Impact-of-Physicochemical-Parameters-on-

thermodynamics-based-FBA). Analyses were performed using the COBRA toolbox [37] in

MATLAB R2016b with the solver CPLEX 12.8.0 to ensure compatibility.

Since I affects the Gibbs energy of formation, an adjustment from the reference state (DfGo
j )

was needed to obtain the standard transformed Gibbs energy of formation (DfG0oj ) [32]. In the

original matTFA [20] and other studies [26,28] the extended Debye-Hückel equation was used

to adjust the Gibbs free energy values, with a proven validity for I< 0.1 M [31](Eq 3). The

parameter B was assumed to be constant, with a value of 1.6 mol-1/2L1/2 [27,32]. Mod-matTFA

also explored the impact of using the Davies equation (β = 0.3) (Eq 4) as an alternative adjust-

ment approach, with a tested validity for I< 0.5 M [31].

DfG
0o
j Ið Þ ¼ DfG

o
j þ NH jð ÞRTlnð10ÞpH � RT

A
ffiffi
I
p

1þ B
ffiffi
I
p

� �

ðz2

j � NHðjÞÞ ð3Þ

DfG
0o
j Ið Þ ¼ DfG

o
j þ NH jð ÞRTlnð10ÞpH � RT

A
ffiffi
I
p

1þ
ffiffi
I
p � bI

� �

ðz2

j � NHðjÞÞ ð4Þ

Both formulas include terms correcting the pH and I, where NH(j) is the number of hydro-

gen atoms in species j, R is the gas constant, T is the absolute temperature and zj refers to the

charge of the species [32]. Applying the Gibbs-Helmholtz equation would be necessary to

account for temperature different from standard conditions, i.e. 25˚C, but the lack of measured

changes in enthalpy (ΔHo) for all the metabolites prevents from doing so [38]. Hence, varia-

tions from 25˚C to 37˚C were assumed to be small, as shown elsewhere [39]. The parameter A
is normally assumed to be constant [27]or calculated using a temperature-dependent function

Table 2. Factors considered in mod-matTFA. Values 0/1 refer to the binary codification for the full factorial design

(S3 Table). In total, 26 combinations were tested.

Temperature, t (˚C) (0): 25

(1): 37

Ionic strength, I (M) (0): 0

(1): 0.25

Salinity, S (g/kg) (0): 0

(1): 13.74

Adjustment method (0): Extended Debye-Hückel equation

(1): Davies equation

Parameter A (0): T-dependent�

(1): T,S-dependent

Metabolite concentration values (0): Default matTFA

(1): experimental data

� T is temperature in K. There is a ‘default matTFA’ constraint regarding set concentrations values for cofactors

(AMP, ADP and ATP) as included in the original matTFA code. ‘Experimental data’ refers to the use of published

metabolomics data (S2 Dataset), setting the lower and upper bound for the simulation as 90–110% of the

concentration values.

https://doi.org/10.1371/journal.pcbi.1007694.t002
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(Eq 5) [20,26], and the impact of using a temperature/salinity-dependent function (Eq 6) [38]

was also tested in this study (Fig 1).

Aðmol� 1=2kg1=2Þ ¼ 1:10708 � 1:54508� 10� 3T þ 5:95584� 10� 6T2 ð5Þ

A mol� 1=2kg1=2
� �

¼
F3

ffiffiffiffiffiffiffiffiffiffiffi
2ε0R3

p

4pε0NA
�

rswðt; SÞ
ðεswðt; SÞTÞ

3

 !1=2

ð6Þ

where the first term in (Eq 6) includes physical constants (Faraday’s constant (F), vacuum per-

mittivity (ε0), gas constant (R) and Avogadro’s constant (NA)), and the second is the tempera-

ture (T in K and t in ˚C), and salinity (S) dependent functions to calculate the density (ρsw)

[40]and the relative permittivity (εsw) [41]for seawater (S2 Table).

In general, consistency in units between parameters A (mol-1/2kg1/2) and B (mol-1/2L1/2) is

achieved by assuming 1 kg = 1 L. In this study, an expression for seawater (Eq 7) [42]was used

to estimate a salinity value by considering a buoyant density (ρ) for bacterial cells of 1.11 kg/L

[43]. For I, a value of 0.25 M was used (Table 2).

I Mð Þ � r kg=Lð Þ ¼
19:92� S

1000 � 1:005� S
ð7Þ

Assessment of fluxomics and metabolomics predictive capabilities

Mesophilic growth conditions for E. coli were selected as a case study to explore the impact of

metabolic and physiochemical constraints on the predictive capabilities of TFA at the fluxo-

mics and metabolomics level. Accordingly, 64 different factor combinations (Table 2) were

tested using mod-matTFA. It is important to note that not all test yielded a solution where cell

growth was achieved (i.e. vbiomass > 0 mmol gDCW-1 h-1). Since different factor combinations

converged into the same set of solutions, tests were characterised at the fluxomics and

Fig 1. Calculation of the parameter A. The red line refers to the temperature-dependent function (Eq 5), whereas the

surface is the temperature/salinity-dependent function (Eq 6).

https://doi.org/10.1371/journal.pcbi.1007694.g001
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metabolomics levels by considering either the full set of values, or the subset with an experi-

mental counterpart.

Results yielding feasible solutions were also compared against 13C-MFA flux values (S1

Table) and experimental metabolomics data (S1 Dataset), respectively. A goodness-of-fit anal-

ysis based on the Pearson correlation coefficient (r) was performed, as shown in [44]. In order

to identify the test(s) with the best predictive capabilities at both levels, they were separately

ranked according to two criteria: (i) correlation coefficient at the fluxomics level, and (ii) cor-

relation coefficient at the metabolomics level. The concordance between results was assessed

by the Kendall’s W statistics (S2 Table), where a value of 0 means no agreement of ranking

position with respect to each criterion, and a value of 1 indicates total agreement. This statistics

is a normalisation of the Friedman test, which simply tests whether samples are from the same

population or not [45]. Finally, a joint ranking after weighting the ranking position according

to each criterion was considered (the higher the score, the better the correlation in both the

fluxomics and metabolomics levels).

Thermodynamics-enriched network analysis

The constraining capacity of metabolites is not uniform, and depends on their connectivity in

the network [20,46]. To further constrain the model, a priority list of metabolites to be quanti-

fied should be considered when designing the metabolomics protocol. In this study, the suit-

ability of the selected dataset for this purpose was analysed (S1 Dataset). The importance of

each metabolite in the network was measured by means of PageRank as implemented in

MATLAB. This algorithm was developed by Google [47]and has been recently applied to met-

abolic networks [48]. In this sense, the presence of over-represented metabolites (e.g. proton

donor) biases centrality measures [48]. Therefore, a removal of these currency [49], side [48]or

pool [50]metabolites from the network was performed (S1 Appendix).

Non-redundant flux distributions from TFA were selected and subjected to network simpli-

fication and correction. Briefly, only active metabolites and reactions were kept, and stoichio-

metric coefficients were corrected so that they reflected the flux direction of each reaction.

Centrality measures require a graph G, defined as a pair G = (V, E), where the vertices (or

nodes) V are the metabolites, and the edges E the reactions connecting them. The stoichiomet-

ric matrix was converted into an adjacency matrix using an in-house script (S1 Appendix),

which was later used to generate a G ready for the PageRank analysis. The final lists of metabo-

lites were ranked by their centrality score, and the top 50% compared against the list of avail-

able experimental values.

Results and discussion

In the last two decades, biotechnology and systems biology have benefitted from the develop-

ment of 13C-MFA and FBA to measure and estimate intracellular metabolic fluxes in industri-

ally relevant bacteria. Although the influence of thermodynamics in living systems has been

considered for several decades, its application to study biochemical networks has been only

recently enabled [24,32]. In this sense, a multitude of different approaches constraining well-

established modelling approaches with thermodynamics have been suggested. Given its rele-

vance, this study focused on analysing TFA (performed by matTFA toolbox [20]). This study

aimed at: (i) assessing and improving TFA’s reliability of predicting metabolic fluxes and

metabolite concentration values, and (ii) identifying important metabolites to further con-

strain the model. In order to do so, (i) the published matTFA toolbox was modified to include

a broader range of parameters (and parameter values) as well as alternative equations and
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constraints (Table 2), and (ii) an in-house script was developed to perform a GSM-wide net-

work analysis exploiting TFA-derived reaction directionalities.

Evaluation of the reliability of predicted flux and concentration values

A full factorial design comprising 26 tests (Table 2) was applied in TFA to constrain the GSM

iJO1366 [34], selecting the maximisation of biomass yield as the objective function. An experi-

mental glucose uptake rate was set (2.93 mmol gDCW-1 h-1), reaching a μ� 0.28 h-1 (the

experimental was 0.20 h-1) for all FBA and TFA tests. Overall, 26/64 tests were unsuccessful

(no cell growth), and the remaining 38/64 converged into common optimal solutions (S4

Table). At the fluxomics level, a single flux distribution was achieved in FBA for all tests,

whereas for TFA a different number of non-redundant solutions were found: 5 (when consid-

ering all reactions) or 4 (only those with an experimental counterpart). Likewise, at the meta-

bolomics level, the 38 tests were reduced to 9 optimal solutions. Results were tested against

available experimental data (13C-MFA [35,51]and metabolomics [35]) by calculating the Pear-

son correlation coefficient. Therefore, each successful test was characterised by the optimal

solutions it achieved and the correlation coefficients at both the fluxomics and metabolomics

levels.

The importance of each factor was assessed by means of decision trees (CART in Minitab

19) (Table 3). Briefly, models were built considering categorical predictors (the factors after

the codification (S3 Table)) and responses: the importance of a factor measured the improve-

ment on the model when using it to split the data. Accordingly, the relative importance was

calculated with respect to the best predictor (Table 3). The I (M) was the top one for all

responses except for TFA (full), where it equalized t (˚C) at 95.7% and was second to the

adjustment method. In all cases, using either default concentrations values for AMP, ADP and

ATP (as included in the original matTFA), or experimental data made no difference. As a

result, tests only differing in this factor showed the same correlations with experimental data

(Table 4).

Correlation coefficients for FBA in all tests was r� 0.02, whereas for TFA it varied within

the range from 0.90 to 0.95. A reaction-by-reaction comparison of flux directionalities in cen-

tral metabolism showed inherent differences between 13C-MFA and FBA/TFA, as discussed in

the last section of this study. At the metabolomics level, it ranged from 0.08 to 0.18 (S4 Table).

Tests were ranked independently by both criteria, showing a notable agreement in their posi-

tions (Kendall’s W� 0.81). Scoring the position according to each criterion allowed creating a

joint ranking to identify the test(s) with the best predictive capability at both levels (Table 4).

Four tests held the first position, since they all converged into the same optimal solutions (S4

Table 3. Relative factor importance. The type of analysis depended on the nature of the response: classification was selected for TFA (full), TFA (match 13C-MFA), con-

centration values (full) and concentration values (match experimental), and regression for r (fluxomics) and r (metabolomics). The former was suited for categorical

responses (i.e. which solution is achieved, as shown in S4 Table), and the latter for continuous responses (for Pearson’s r, from -1 to +1).

TFA (full) TFA (match
13C-MFA)

Concentration values

(full)

Concentration values (match

experimental)

r (fluxomics) r (metabolomics)

t (˚C) 95.7 50.0 50.0 50.0 29.8 60.4

I (M) 95.7 100.0 100.0 100.0 100.0 100.0

S (g/kg) 19.9 7.8 27.5 27.5 - -

Parameter A - 1.0 50.0 50.0 2.6 -

Adjustment

method

100.0 52.1 44.4 44.4 52.3 0.9

[met] - - - - - -

https://doi.org/10.1371/journal.pcbi.1007694.t003
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Table). Specifically, t = 37˚C, I = 0.25 M and the Davies equations as adjustment method were

used. Following the relative factor importance (Table 3), correlation coefficients were not

affected by S and the selection of concentration values.

This analysis showed that adjusting the physicochemical parameters to the experimental

conditions did improve the predictive capabilities of TFA, but certain technical limitations at

both levels need to be discussed. The nature of 13C-MFA only allows determining the flux dis-

tribution in the central carbon metabolism by considering amino acid synthesis [13], which

has been noted to be very robust against changes in the intermediate metabolite concentra-

tions [52,53]. The recent discovery of non-enzymatic metabolism-like reactions suggests that

current metabolic networks evolved from prebiotic reaction sequences. Therefore, a well-

established flux distribution in the central pathways can be expected [54]. In order to discern

among tests, focus on highly variable flux values should be promoted, but the variance among

them was low (S2 Dataset). In fact, only 36/1679 showed a variance greater than zero, where 6

reactions had an experimental counterpart to compare against. Optimal solutions for all tests

were similar (reducing the discerning capacity), which explained the overall high correlation

coefficients for all tests. Therefore, results from the comparison of predicted and experimental

metabolite concentration values are paramount to better understand the impact of varying the

physicochemical parameters.

Regarding the metabolomics level, the 9 non-redundant solutions were subjected to a simi-

lar analysis. Likewise, only 46/972 metabolites had a variance among tests greater than zero

(S3 Dataset), out of which 7 were quantified: L-aspartate, phosphoenolpyruvate, ATP, L-valine,

pyruvate, NADP+, and FAD. Reliable quantitation of energy-carrying molecules and redox

cofactors is not easily achievable, given the inherent cell dynamics (e.g. cell cycle and cell size

variations) and degradation during extraction [55–63]. Since the correlation coefficients were

calculated using a dataset blind to highly variable metabolites (e.g. 3-phosphohydroxypyruvate

ranged four orders of magnitude), resulting values were similar for different factor

Table 4. Tests with the highest score in the joint ranking. The full list is available in (S4 Table). �(run #3) reflects the conditions used in the original matTFA.

Rank sum 62.5 59.5 56.5 51.5

Correlation coefficient

TFA vs. 13C-MFA

0.95 0.95 0.90 0.90

Correlation coefficient metabolomics 0.18 0.17 0.17 0.15

Run number 20 24 52 56 28 60 32 64 12 44 3�

t (˚C)

(0 = 25, 1 = 37)

1 1 1 1 1 1 1 1 1 1 0

I (M)

(0 = 0, 1 = 0.25)

1 1 1 1 1 1 1 1 1 1 1

S (g/kg)

(0 = 0, 1 = 13.74)

0 1 0 1 0 0 1 1 0 0 0

Parameter A
(0 = t-dependent, 1 = t/S-dependent)

0 0 0 0 1 1 1 1 1 1 0

Adjustment method

(0 = DH, 1 = Davies)

1 1 1 1 1 1 1 1 0 0 0

[met] (0 = default, 1 = experimental values) 0 0 1 1 0 1 0 1 0 1 0

Davies, Davies equation; DH, extended Debye-Hückel equation; [met], metabolite concentration values. Values of 0 and 1 in the headers refer to the binary codification

from the full factorial design (S3 Table). �Run #3 represents the analytical conditions from the original matTFA, added here as a reference. There is a ‘default matTFA’

constraint regarding set concentrations values for AMP, ADP and ATP, as included in the original matTFA script. ‘Experimental values’ refers to the use of published

metabolomics data (S1 Dataset). Correlation coefficient values were rounded to the closest integer for ranking purposes.

https://doi.org/10.1371/journal.pcbi.1007694.t004

PLOS COMPUTATIONAL BIOLOGY Thermodynamics-based stoichiometric modelling under mesophilic growth conditions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007694 January 25, 2021 9 / 18

https://doi.org/10.1371/journal.pcbi.1007694.t004
https://doi.org/10.1371/journal.pcbi.1007694


combinations (Table 4). Thus, said metabolites should be quantified to deconvolute the impact

of using default or experimental concentration values in the predictive capabilities.

Other limitations refer to the design of the tool itself. This method does not consider other

complex phenomena affecting the thermodynamic feasibility of metabolic pathways, such as

Mg complexation with metabolites, or compound dissociation into more than two protonated

species [19,20](as shown in the file calcDGspecies.m). In addition, Gibbs free energy values are

relaxed when no feasible solution is found, so the constraining power of experimental metabo-

lite concentration values is reduced [20]. Related to this, an approach allowing to identify

metabolites to further constrain the model was developed in this study (next section). Finally,

it should be noted that to apply matTFA to thermophilic species (e.g. Thermus thermophilus, a

potential non-model metabolic engineering platform [64]), recent methods to adjust Gibbs

free energies to high temperatures should be considered [65].

Identification of central metabolites to further constrain the model

Successful tests converged into 5 solutions at the fluxomics level (S4 Table), which are structur-

ally equivalent. Therefore, a single stoichiometric matrix was considered for further analysis.

After the simplification step (removal of inactive metabolites and reactions, as well as side

compounds) 622/1805 metabolites were left in the network. The experimental dataset included

information about 44 metabolites (S1 Dataset), out of which 34 were also considered in the

simplified network, and the rest was discarded as side compounds.

PageRank scores were calculated, allowing to identify metabolites in the top 50% for which

experimental data was available (Table 5). Overall, 18/34 quantified metabolites were in the

top 50%, with only 7 in the top 10%. The lack of high centrality for most metabolites explains

the aforementioned result, where tests only differing in the set of concentrations values used as

a constraint (default ATP/ADP/AMP or experimental) led to the same optimal solution (e.g.

tests 20 and 52, Table 3).

Table 5. Quantified metabolites in the top 50% of PageRank (PR) based analysis. The last position in the ranking (#622) was L-Tyrosine (PR score = 0.0004), which

had been quantified. The full list can be found in (S4 Dataset).

Quantile Ranking position Metabolite Node PR score

10% 1 L-Glutamate glu-L_c 0.0172

2 Pyruvate pyr_c 0.0126

4 D-Fructose 6-phosphate f6p_c 0.0079

6 Acetyl-CoA accoa_c 0.0071

7 L-Methionine met-L_c 0.0071

23 Succinyl-CoA succoa_c 0.0046

44 L-Serine ser-L_c 0.0034

30% 69 Dihydroxyacetone phosphate dhap_c 0.0029

70 L-Tryptophan trp-L_c 0.0029

88 Phosphoenolpyruvate pep_c 0.0026

103 S-Adenosyl-L-methionine amet_c 0.0024

129 L-Alanine ala-L_c 0.0021

157 L-Histidine his-L_c 0.0020

161 D-Glucose 1-phosphate g1p_c 0.0019

177 L-Proline pro-L_c 0.0019

181 3-Phospho-D-glycerate 3pg_c 0.0018

50% 249 D-Fructose 1,6-bisphosphate fdp_c 0.0016

258 L-Leucine leu-L_c 0.0015

https://doi.org/10.1371/journal.pcbi.1007694.t005
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The priority list is led by L-glutamate, pyruvate, 2-oxoglutarate (not quantified), D-fruc-

tose-6-phosphate and glyceraldehyde 3-phosphate (not quantified). Both L-glutamate and

2-oxoglutarate participate in the assimilation of nitrogen in E. coli, where the former also plays

a role as nitrogen donor in the biosynthesis of nucleic acids [66]. The latter along with the rest

(except for glyceraldehyde 3-phosphate), and acetyl-CoA are important biosynthetic precur-

sors used in modelling [49]. Accordingly, other metabolites participating in central pathways

such as glycolysis (glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, etc.) and protein

biosynthesis (amino acids) were also identified. Important metabolites highlighted here agree

with results from the seminal work by Wagner et al. [49], where they used a smaller network

(317 vs. 931 reactions). Due to computational costs, other attempts specifically focusing on the

constraining capacity with regards to TFA (Thermodynamics-based Metabolite Sensitivity

Analysis, TMSA) are also limited by the network size (156 reactions in [46]). In particular, this

approach identified pyruvate as the most significant metabolite in terms of reducing the vari-

ability in the thermodynamic properties of reactions, and attributed it to its high connectivity

in the network. Other important compounds included phosphate, NAD+, NADH, CO2, mena-

quinol-8, menaquinone-8 and D-lactate. All but the latter were classified as side compounds

for this study (and therefore excluded (S1 Appendix)), since the centrality measures are biased

by ubiquitous metabolites [48].

The impact of the inherent dynamics (cell cycle and cell ageing) has been pointed out as a

source of metabolic heterogeneity in clonal microbial populations [55]. In a chemostat, cells

are maintained at the exponential growth phase, but the cell cycle is not synchronised across

single cells unless forced [56,57]. In E. coli, concentration values for NAD(P)H oscillate along

the cell cycle [58], and ATP concentration values show an asymmetric distribution across sin-

gle cells in a continuous culture [59]. From a metabolomics point of view, an unbiased extrac-

tion and quantitation method is yet to be developed [60]. Particularly, ATP/ADP/AMP

quantitation require specific culture conditions [61], and nicotinamides parallel protocols to

avoid degradation. Overall, the method developed here generated a priority list to be consid-

ered when selecting a metabolomics protocol aiming at providing data to further constrain a

model in TFA.

Reaction directionalities in the central carbon metabolism

Finally, flux pattern changes between in vivo and in silico fluxes in the central carbon metabo-

lism were analysed, with a particular focus on the anaplerotic reactions. The ‘anaplerotic node’

(Fig 2) consists of carboxylation/decarboxylation reactions including intermediates participat-

ing in the tricarboxylic acid (TCA) cycle that are used for biosynthesis of amino acids [67].

Given the fact similar MIDs (from proteinogenic amino acids) can be obtained from different

precursors, 13C-MFA has been noted to show a limited capability to elucidate fluxes around

the anaplerotic node [52,68,69]. In order to evaluate changes in reaction directionalities, the

available in vivo fluxes were tested against their equivalents in the simulated TFA flux distribu-

tions (S1 Table). Overall, 13/40 flux directions disagree between approaches (Table 6).

Discrepancies in flux pattern between methods are caused by both differences in the struc-

ture of the metabolic networks and the way the problem is defined (Table 1). On the one hand,

iJO1366 includes 8 reactions concerning the anaplerotic node and the glyoxylate shunt: PPC

and PPCK (between phosphoenolpyruvate and oxaloacetate), PYK and PPS (between phos-

phoenolpyruvate and pyruvate), ME1 and ME2 (between pyruvate and malate) (Fig 2), and

finally ICL and MALS (from isocitrate to malate, via glyoxylate). In contrast, the metabolic net-

work used for the 13C-MFA did not consider PPCK and PPS (S1 Table), which could affect the

determination of fluxes to/from phosphoenolpyruvate. Since 13C-MFA is based on lumped
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reaction, branched pathways are not taken into account [13]. Thus, having a smaller range of

alternative pathways than FBA/TFA may affect the estimation of flux values.

On the other hand, in silico flux distributions are the result of optimising the system accord-

ing to the chosen objective function. Accordingly, when maximising the biomass production

(which requires ATP), FBA and TFA promote pathways that reduce wasting ATP in the opti-

mal solution [14]. For instance, PPCK (ATP-consuming reaction) carried no flux. In contrast,

experimental data from E. coli grown on glucose has proven that both PPC and PPCK (which

constitute a futile cycle) are active and play a role in metabolic regulations [70]. However,

Fig 2. Anaplerotic node for E. coli. Set of carboxylation/decarboxylation reactions including phosphoenolpyruvate,

pyruvate, oxaloacetate, and malate. Arrows indicate the expected direction of carbon fluxes. Boxes refer to reactions:

blue when they are defined in both the GSM and the metabolic network used for 13C-MFA, and orange when they are

exclusively considered in the GSM. In the latter case no mapping was possible (S1 Table).

https://doi.org/10.1371/journal.pcbi.1007694.g002
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given the fact that ICL and ME1/ME2 do not generate any ATP, fluxes are shut down in the

simulated flux distributions (as shown in [52]). In this sense, it should be noted that stochastic

events or regulatory processes have been suggested to provoke a variation of the fluxes through

PPCK and ME1/ME2 [71]. FBA/TFA also faced problems regarding the overflow metabolism:

acetate was predicted to be produced (PTAr and ACKr), as opposed to the lack of flux accord-

ing to 13C-MFA.

Even though flux pattern changes between predicted and experimentally determined intra-

cellular fluxes were present, TFA offered a reliable prediction of intracellular fluxes (Table 4).

This overall consistency has been noted in the literature by comparing an array of different

objective functions and constraints (based on split ratios rather than on mapping on a reac-

tion-by-reaction case) [15]. A combination of both approaches to overcome their limitations

and different flux space solutions has also been suggested [72,73]. However, fluxes concerning

the TCA cycle, the glyoxylate shunt and acetate secretion have proven to be difficult to predict

[15], as also shown in this study. Similarly, other reactions are also affected by the substrate

uptake rate: ALCD2x becomes unidirectional at high glucose levels [28].

In addition, the nonlinear dependency of the anaplerotic fluxes on the growth rate has been

reported in the literature, limiting the reliability of conclusions from experiments using single

dilution rates [70,71]. Particularly, metabolic fluxes through the aforementioned futile cycle

are expected to be active under glucose-limited growth conditions [74], rather than being

totally shut down (Fig 2). In this sense, a higher degree of consistency between predicted and

experimental flux distributions could have been achieved by (i) focusing on data from cultures

with high dilution rates, so that futile cycle activity is lowered and the flux distribution

becomes closer to the optimal solution, or (ii) applying further constraints to properly model

the anaplerotic reactions [75]. The first option is limited by the lack of published data at both

Table 6. Flux pattern changes between 13C-MFA data and matTFA predictions.

Reaction

(GSM)

Definition (GSM) Definition (13C-MFA) Direction

(13C-MFA)

Corrected direction

(13C-MFA)

Direction (TFA)

ACALD acald_c + coa_c + nad_c$ accoa_c + h_c

+ nadh_c

AcCoA! Ethanol + - 0

ACKr ac_c + atp_c + h_c$ actp_c + adp_c AcCoA! Acetate 0 0 +

ACONTb acon-C_c + h2o_c< = > icit_c CIT -> ICT + + 0/+

ALCD2x etoh_c + nad_c$ acald_c + h_c + nadh_c AcCoA! Ethanol + - +

FBA fdp_c$ dhap_c + g3p_c F1,6P! DHAP + G3P + + 0/+

ICL icit_c! glx_c + succ_c ICT! Glyoxylate

+ SUC

+ + 0

ME1 mal-L_c + nad_c! co2_c + nadh_c + pyr_c MAL! PYR + CO2 + + 0

ME2 mal-L_c + nadp_c! co2_c + nadph_c + pyr_c MAL! PYR + CO2 + + 0

PFK atp_c + f6p_c < = > adp_c + fdp_c F6P -> F1,6P + + 0/+

PTAr accoa_c + h_c + pi_c$ actp_c + coa_c AcCoA! Acetate 0 0 -/0

PYK adp_c + pep_c$ atp_c + pyr_c PEP! PYR + + 0/+

SUCOAS atp_c + coa_c + succ_c$ adp_c + pi_c

+ succoa_c

2-KG! SUC + CO2 + + -

TALA g3p_c + s7p_c$ e4p_c + f6p_c S7P + G3P$ E4P

+ F6P

+ + -/0

Where +, flux in the forward direction; -, flux in the reverse direction; 0, no flux. Corrected direction, refers to the adjustments due to differences in the definition of the

reaction between 13C-MFA and GSM (S1 Table). For example the case of ALCD2x: in vivo flux (13C-MFA) suggests production of ethanol, whereas the in silico one

(GSM/TFA) predicts consumption of ethanol. Since reactions are defined in opposite directions, a correction becomes necessary. Discrepancy between corrected

directions and predicted ones allowed an automated identification of flux pattern changes.

https://doi.org/10.1371/journal.pcbi.1007694.t006
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the metabolomics and fluxomics levels from the same experiment, and the second one by the

lack of implementation.

Consequently, it was assumed that the high correlation coefficient achieved for TFA against

in vivo fluxomics data (r� 0.9) was high enough to enable the analyses on the impact of vary-

ing the physicochemical parameters in the predictive capabilities. Studying flux pattern

changes on a reaction-by-reaction basis also allowed to confirm previously reported limita-

tions from both 13C-MFA and FBA/TFA with regards to the anaplerotic node [68,69,75].

Thus, metabolites in the node are expected to be directly affected.

Conclusions

This study showed that the predictive capabilities of TFA can be potentially improved by using

physicochemical parameters closer to the experimental conditions and adequate equations. In

addition, we proposed a method based on centrality measures to identify important metabo-

lites allowing to further constrain the TFA. In contrast to previous attempts, our strategy is not

limited by the size of the network and is computationally cheap. Therefore, a preliminary TFA

could be considered when designing a metabolomics protocol to maximise the constraining

power of the experimental concentration values. Overall, our study stressed the necessity of

performing an in-depth assessment of available methods in the fluxomics field. For instance,

interesting published potential solutions to known problems (e.g. elucidation of the anaplero-

tic fluxes) should be integrated with the widely used approaches. This should increase the

degree of standardisation in the community, allowing to cross-validate novel strategies and

improving the reliability of the simulated data.
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