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Mutated clones driving leukemic transformation are already
detectable at the single-cell level in CD34-positive cells in the
chronic phase of primary myelofibrosis

Sandra Parenti'’, Sebastiano Rontauroli'”, Chiara Carretta'’, Selene Mallia’, Elena Genovese', Chiara Chiereghin?, Clelia Peano??,
Lara Tavernari', Elisa Bianchi', Sebastian Fantini', Stefano Sartini', Oriana Romano @&", Silvio Bicciato (", Enrico Tagliafico®?,

Matteo Della Porta>®® and Rossella Manfredini @'

Disease progression of myeloproliferative neoplasms is the result of increased genomic complexity. Since the ability to predict
disease evolution is crucial for clinical decisions, we studied single-cell genomics and transcriptomics of CD34-positive cells from a
primary myelofibrosis (PMF) patient who progressed to acute myeloid leukemia (AML) while receiving Ruxolitinib. Single-cell
genomics allowed the reconstruction of clonal hierarchy and demonstrated that TET2 was the first mutated gene while FLT3 was
the last one. Disease evolution was accompanied by increased clonal heterogeneity and mutational rate, but clones carrying TP53
and FLT3 mutations were already present in the chronic phase. Single-cell transcriptomics unraveled repression of interferon
signaling suggesting an immunosuppressive effect exerted by Ruxolitinib. Moreover, AML transformation was associated with a
differentiative block and immune escape. These results suggest that single-cell analysis can unmask tumor heterogeneity and
provide meaningful insights about PMF progression that might guide personalized therapy.
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INTRODUCTION

Clonal evolution, mediated by the serial acquisition of somatic
mutations at the stem cell level, is the basis of myeloproliferative
neoplasms (MPNs) such as polycythemia vera, essential thrombo-
cythemia and primary myelofibrosis (PMF). PMF is a heteroge-
neous disorder characterized by bone marrow fibrosis,
megakaryocyte hyperplasia and extramedullary hematopoiesis
(EMH). PMF has the worst prognosis among MPNs also due to
evolution to acute myeloid leukemia (AML), which occurs in
15-20% of cases and is unresponsive to conventional therapy'?.

Three driver mutations leading to constitutive activation of the
JAK/STAT pathway were identified in JAK2, MPL, or CALR genes®.
The complex molecular phenotype of these disorders is however
characterized by other somatic mutations. Some of these, called
“High Molecular Risk” (HMR) mutations (e.g., in ASXLT and SRSF2),
are associated with a worse prognosis and leukemic transforma-
tion*. Moreover, other pathogenic variants affecting genes such as
TET2, TP53, and FLT3 are related to preleukemic and leukemic
conditions’.

Disease onset and evolution are the results of the sequential
acquisition of somatic mutations in different subclones, giving to
each clone phenotypic traits that influence their competition and
disease progression. The temporal order in which these variants
accumulate is crucial for the fate of the subclones and for disease
evolution. Recent studies at the single-cell level shed light on
intratumoral heterogeneity and identified therapy-resistant
clones®. For instance, the acquisition of a TET2 mutation preceding
JAK2V617F confers a lower sensitivity to Ruxolitinib, which is
nowadays the best available therapy”.

Up to date, several genomic lesions with potential pathogenetic
implications have been described, but the molecular mechanisms
underlying progression to leukemia have not been defined yet.
Several issues remain to be addressed: what are the molecular
mechanisms leading to disease progression? What are the
relationships between the clones maintaining the chronic phase
and the ones driving the leukemic phase? Can a consistent pattern
of clonal evolution be identified in MPN progression? Can specific
signaling pathways activated during disease evolution be
identified?

In order to answer these questions, here we show the single-
cell-based genomic profiling of CD34-positive (CD34™) cells from a
patient with PMF at three different timepoints. Moreover, we
analyzed the single-cell transcriptome of CD34% cells from the
same patient to identify signaling pathways abnormally activated
during disease progression and/or leukemic transformation that
could represent novel therapeutic targets.

RESULTS

Single-cell analysis in CD34" population reveals TET2 and
FLT3 as the first and the last mutated genes
In order to reconstruct the clonal architecture of the stem cell
compartment during MPN evolution, peripheral blood (PB) CD34"
cells were analyzed at three different stages of the disease: at
diagnosis (T1), during the accelerated phase (T2), and in the AML
phase (T3).

The single-cell tree based on the mutational profiles of 900 cells
(300/sample) is shown in Supplementary Fig. 1a. The heatmap was
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MUTATION TIME1 TIME2 TIME3
B TET2a 100 100 100
B JAK2 9443 9541 92,46
[ TET2b 84,64 82,16 89,73

ASXL1 78,86 81,10 88,50
B SRSF2 64,76 64,00 63,70
B P53 20,82 6326 51,37
W FLT3 16,60 20,93 3561
T3

Single-cell phylogeny and mutation acquisition order. a The phylogenetic tree of the most represented clones identified in T1, T2,

and T3. On the left is shown the tree starting from the founder cell carrying a single TET2a mutation (clone A). From the parental TET2a
mutated cell, 8 clones originate (B-I) and each clone is represented by a specific color; nodes are represented as white circles. On the right is
the heatmap showing the mutational event (blue: wild-type, red: mutated) of the genes indicated at the bottom. Each cell in the phylogenetic
tree corresponds to a row in the heatmap, identifying its mutational profile. In b, the fishplot indicates the abundance of 9 clones (A-I),
identified in a, and their temporal evolution. Each clone is represented by the same color used in a. In particular, F clone in red and | clone in
brown represent TP53-mutated clones, while G clone in blue and H clone in purple represent FLT3-mutated ones. In ¢, the fishplot indicated
the variation of mutation frequencies through time and the mutational acquisition order. Each variant is represented by a color. On the right,
the table summarizing the mutation frequencies in single cells during time is shown.

built according to the presence/absence of the mutations. The
tree reveals that just a small number of parental clones seem to
generate clonal complexity. Fifty-two clones are shown in the
phylogenetic tree during temporal evolution (Supplementary Fig.
1b).

The main branch arising from a TET2 p.Leu1248Pro (hereafter
called TET2a) mutated cell is shown in Fig. 1a along with its
mutational evolution, while Fig. 1b represents the clonal
prevalence during phylogenesis. Two main findings emerge from
this reconstruction: the expansion of the clone harboring the TP53
mutation during disease progression (Fig. 1a, b) and the early
identification of FLT3-mutant cells in the chronic phase (Fig. 1a, b).
However, FLT3 mutation has not been detected by the bulk
diagnostic NGS (Table 1).
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Interestingly, FLT3 mutation represents also the last evolution-
ary event of the clone in which all mutations accumulate (Fig. 1a,
b). This clone, although already present in a low percentage in T1
(9%), expands in T2 (15%) and in T3 (23%).

The study of the frequencies and associations of the variants
shows, as depicted in the fishplot in Fig. 1c, that TET2a mutation is
the most frequent, thus the first to be acquired, followed by the
JAK2V617F and by the second TET2 mutation (p.Gly1137Profs*5,
hereafter called TET2b) (Table 1). The frequency of ASXLT and
SRSF2 variants remains stable during disease progression, while
the percentage of TP53-mutated cells increases from 20.8% in T1
to 63% in T2. Finally, the frequency of FLT3-mutated cells grows
linearly from 16.6% in T1 to 25% in T2 up to 35.6% in T3, indicating
probable support for AML onset.

Published in partnership with The Hormel Institute, University of Minnesota



S Parenti et al.

npj

Table 1. Clinical data and mutational characterization of the patient in three different stages.

Clinical-hematological data Timepoint 1 Timepoint 2 Timepoint 3

White blood cells (x10%/1) 31.03 105.2 151.18

Neutrophils absolute count (x10°%/1) 27.8 95.6 118.5

Peripheral blasts (%) 2 2 20

Peripheral CD34" (%) 1 1 15

Leukoerythroblastosis Yes Yes Yes

Hemoglobin (g/1) 9.9 9.4 8.4

MCV (fl) 87.7 92.6 91.3

Platelets (x10%/1) 79 84 4

LDH 1153 2630 1848

Hepatosplenomegaly Yes Yes Yes

Transfusion dependency No Yes Yes

Bone marrow cellularity (%) 55 50 NA

Fibrosis (EUMNET consensus grade) 3 3 Fibrotic substitution

Karyotype (ISCN) 46,XY[25] Failed 47,XY,421[31/46,XY,i(21)(q10)[2)/
46,XY[25]

DIPSS risk group High High /

Mutational state

Gene Transcript Variant Protein mutation VAF (%) VAF (%) VAF (%)

TET2 (a) NM_001127208 c.3743T>C p.Leu1248Pro 48.1 42.4 46.1

JAK2 NM_004972 c.1849G>T p.Val617Phe 75.8 715 51.6

TET2 (b) NM_017628 €.3409_3416delGGTAATGT p.Gly1137Profs*5 37.7 40.3 47

ASXL1 NM_015338 €.1934dupG p.Gly646Trpfs*12 43.6 40.6 40.6

SRSF2 NM_003016 Cc.284C>A p.Pro95His 46.1 45.6 453

TP53 NM_000546 c.713G>C p.Cys238Ser 5.7 25.6 13.7

FLT3 NM_004119 c.2503G>C p.Asp835Tyr / 6.3 353

Clonal heterogeneity increases during disease progression
Supplementary Figs. 2-4 show the phylogenetic trees in each
timepoint built considering the zygosity of the different muta-
tions. As shown by these heatmaps, the clonal heterogeneity
increases during disease progression, both in terms of mutations’
combinations and variants’ zygosity.

Noteworthy is the modulation of TP53 and FLT3 variants’
zygosity. The joy plots in Fig. 2a, b show that, while the number of
TP53 and FLT3 wild-type cells decreases during progression, the
number of mutated cells increases, particularly those carrying
heterozygous mutations. Particularly interesting is the presence of
FLT3 homozygous mutation only in the leukemic phase. The
change in zygosity of all mutations during time is shown in
Supplementary Fig. 5 and Supplementary Table 2.

Single-cell sequencing allows the characterization of a novel
TP53 variant

In order to assess whether copy number variations (CNVs) were
present during disease progression, bulk NGS data were analyzed
using the CNV algorithm implemented in the SOPHIA DDM
platform which revealed no detectable alterations.

TP53 loss-of-function is a crucial event in the activation of
mechanisms underlying tumor progression®. In order to identify
CNVs in the TP53 gene, we analyzed this region by MLPA in bulk
CD34" cells of T2 and T3, because of the significant expansion of
the clones carrying TP53 p.Cys238Ser mutation in these time-
points. As shown in Supplementary Fig. 6a-d, this analysis did not
highlight any gene rearrangement.

Finally, in order to identify any smaller CNVs affecting TP53, we
sequenced all of its exons in single cells of each timepoint.

Published in partnership with The Hormel Institute, University of Minnesota

Interestingly, Sanger sequencing identified a 454 bp deletion
between TP53 exons 2 and 4 (Supplementary Fig. 6e). This new
likely pathogenic variant was found in a small subpopulation of
cells already harboring the p.Cys238Ser homozygous mutation
and its frequency increases in T2 following the trend of p.
Cys238Ser mutated cells (Supplementary Fig. 6f).

Single-cell sequencing allows the characterization of SRSF2
homozygous mutation
Table 1 shows that the VAF of SRSF2 P95H in the diagnostic NGS
was 50%. However, P95H was detected as homozygous in 39.4%,
heterozygous in 26.7%, and wild-type in 33.8% of T1 single cells
(Fig. 2¢, d). The zygosity of this variant does not change
significantly during disease evolution (Supplementary Table 2),
but P95H homozygosity is detectable only at the single-cell level.
To exclude a possible allele drop out (ADO) effect and validate
our results, we performed the same analysis on CD34"-derived
colonies not subjected to WGA. Sanger sequencing detected only
heterozygous and homozygous colonies, as shown in Fig. 2d. To
further validate these findings, we performed a SNP genotyping
assay on both single-cell WGAs and colonies’ DNA. The results
confirmed the presence of 36% of wild-type, 28% of heterozygous,
and 36% of homozygous cells in T2 (Fig. 2e and Supplementary
Fig. 5). We identified 16% of heterozygous and 84% of
homozygous colonies in T2 (Fig. 2f). Surprisingly, no wild-type
colonies are detected. This difference between single-cell and
colonies analysis suggests that the semisolid culture could
introduce some bias due to the growth of selected clones.

npj Precision Oncology (2021) 4
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Fig.2 TP53, FLT3, and SRSF2 mutations evolution during time and detection of SRSF2 homozygous mutated cells. a-c The joy plot shows
the distribution of zygosity of TP53 (a), FLT3 (b), and SRSF2 (c) in T1, T2, and T3, respectively. d The results of Sanger sequencing on single cells
(SC) and colonies obtained from PB CD34" cells. On the left are shown the electropherograms representing wild-type, heterozygous, and
homozygous SRSF2 gene variants in SC, while on the right there are electropherograms from colonies indicating the heterozygous and
homozygous mutational state. In e—f, representative dot plots show genotyping results obtained from SC and colonies. Allele 1 (x) indicates
SRSF2 mutated gene and allele 2 (y) refers to SRSF2 wild-type gene. The graph represents the distribution of amplified DNA according to a
wild-type (y/y, blue dot), heterozygous (x/y, green dot), and homozygous (x/x, red dot) configuration. In e, the dot plots highlight the presence
of wild-type (blue), heterozygous (green), and homozygous (red) single cells. In f, the dot plot shows heterozygous (green) and homozygous

(red) colonies.

Leukemic transformation is characterized by a less
differentiated phenotype

To investigate the molecular processes and transcriptional
changes occurring during disease progression, we performed
scRNA-seq of CD34 " cells isolated at the same timepoints as those
of genomic analysis. Clustering analysis led to the identification of
5 clusters in T1 and 4 in T2 and T3 (Fig. 3b).

As detailed in Supplementary Discussion, we were able to
classify these clusters in 4 cell populations shared by the three
samples, namely HSC_MPP, MPP_GMP, MEP_1, and MEP_2 (Fig. 3c

npj Precision Oncology (2021) 4

and Supplementary Fig. 7) according to the expression of genes
related to specific lineages (Fig. 3d and Supplementary Data File 1,
2, Supplementary Table 3) and to a more primitive or differ-
entiated phenotype (Supplementary Fig. 8). To better characterize
the differentiation status of cells in the three samples, we
performed a trajectory analysis that allowed the identification of
seven cell states (Fig. 3e). The distribution of cells belonging to
different samples (Fig. 3g) shows that 43.8% of T3 cells are
included in state 5, the most primitive one enriched in HSC_MPP
cells, while only 17.6% of T1 cells are included in this state. On the

Published in partnership with The Hormel Institute, University of Minnesota
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contrary, T1 cells are present at a higher frequency in more
differentiated states, including state 6 (myeloid biased progeni-
tors, 37.1%) and state 1 (MEPs, 30.5%), thus confirming that CD34*
cells from secondary AML are characterized by a less differentiated
phenotype compared to the same cells from the chronic phase of
the disease.

Gene expression changes during disease progression

Gene expression analysis, made by comparing the same cluster of
each timepoint, highlighted the major transcriptional variation
between T3 and T1 rather than in T2 vs. T1 comparison
(Supplementary Table 4 and Supplementary Data 3).

To better understand biological processes deregulated during
disease progression, we interrogated Differentially Expressed
Genes (DEGs) lists by means of IPA°. Malignant cells put up
several strategies in order to avoid immune system control®. One
of the contributors to this mechanism is Ruxolitinib'® that induces
a marked downregulation of Interferon (IFN) signaling. “Interferon
signaling” canonical pathway is significantly inactivated according
to IPA® in T2 and T3 vs. T1, increasing its significance in more
differentiated clusters (Supplementary Fig. 9 and Supplementary
Discussion). In particular, IFN-y pathway blockade leads to the
downregulation of type | and Il HLA antigens, together with B2M
protein (Fig. 4b), in peripheral blood mononuclear cells (PBMCs),
thus causing the immune escape of AML malignant cells''. IFN
pathway influences also apoptosis through BAK1 downregulation
(Supplementary Fig. 9c). The predicted inactivation of several
functional categories related to cell death together with the
activation of cell quiescence might cooperate, favoring resistance
to therapy and escape of leukemic cells from the immune
surveillance (Supplementary Discussion).

PD-L1/PD-1 axis is involved in this process since it can inhibit T
cell proliferation while favoring regulatory T cell apoptosis'%
According to IPA® analysis, this pathway was found significantly
activated in HSC_MPP, MEP_1, and MEP_2 clusters of T2 and in
MEP clusters of T3 (Fig. 4a and Supplementary Data 4), increasing
its significance in more differentiated clusters (Supplementary
Data 4). This observation is strengthened by the upregulation of
PD-L1 expression in MEP clusters (MEP_2 in T2 vs. T1; MEP_1 and
MEP_2 in T3 vs. T1) (Fig. 4b and Supplementary Data 3). Flow
cytometry analysis of T cell activation in PBMCs from the three
timepoints supported these results showing a global induction of
CD4" and CD8™ cell activation compared to healthy donors (Fig.
4c, d). Moreover, disease progression displays a progressive
reduction of T cell activation (Fig. 4c, d), thus representing an
acquired immune escape mechanism and confirming
transcriptomic data.

Mobilization of hematopoietic stem cells (HSCs) and extra-
medullary hematopoiesis (EMH) are distinctive traits in PMF'2, In
this patient, we observed a complete fibrotic substitution at T3
associated with marked splenomegaly; these clinical features are
supported by the transcriptomic analysis, which reveals the
activation of molecular processes involved in EMH (Supplemen-
tary Discussion).

Disease progression correlates with increased FLT3 expression

Single-cell sequencing demonstrated a significant increase in the
number of FLT3-mutated cells during disease progression. Since
FLT3 tyrosine kinase domain (TKD) mutations, like p.Asp835Tyr,
are associated with increased expression of FLT3 in AML', we
analyzed its transcriptional level in the three timepoints. FLT3
transcript is significantly upregulated in T2 HSC_MPP and
MPP_GMP clusters compared to T1, while in T3 a significant
increase is evident in MEP_1 and MEP_2 clusters (Supplementary
Data 3). As shown in Fig. 4e, FLT3 expression is detected in more
primitive clusters (HSC_MPP and MPP_GMP), while only a small
fraction of MEP_1 and MEP_2 cells express this gene. Furthermore,
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a higher proportion of T2 and T3 cells shows detectable levels of
FLT3 transcript if compared with T1 (Fig. 4f). By means of AUCell
task in Partek” Flow”, we assayed a gene module related to FLT3'®
and revealed that its activation increases in HSC_MPP and
MPP_GMP clusters, in agreement with FLT3 expression (Fig. 4g).
The frequency of cells with higher AUC values is significantly
increased in the T3 sample compared with T1 and T2 (Fig. 4h).
These results are therefore in line with genomic data showing the
expansion of FLT3-mutated clones during disease progression.

DISCUSSION

Clonal evolution is the result of the serial accumulation of
genomic alterations that determine the fate of a neoplastic
population, clinical history, and response to therapy. PMF
pathogenesis is characterized by the acquisition at the HSC level
of somatic mutations in genes involved in the JAK/STAT pathway,
such as JAK2, MPL, and CALR. Moreover, other genes implicated in
epigenetic modification (TET2, ASXL1), splicing regulation (SRSF2),
DNA repair (TP53), and cell proliferation (FLT3), are frequently
mutated in MPNs.

It has been demonstrated since 2015 that the order of mutation
acquisition in HSCs influences disease progression’. To describe
the mutation acquisition order and characterize the clonal
architecture of PMF in stem and progenitor cell compartment,
we performed genomic single-cell analysis on CD34" cells from a
PMF patient during Ruxolitinib treatment and disease progression.

Our results demonstrated that in this patient the p.Leu1248Pro
substitution in the TET2 gene was the first mutational event,
followed by the JAK2V617F mutation. Treatment with Ruxolitinib
did not significantly change the clinical history of the patient we
described and did not prevent progression to leukemia, in
agreement with the data from Ortmann et al.”, which demon-
strated that “TET2-first patients” are less sensitive to Ruxolitinib.

Clonal phylogeny reconstruction demonstrates that clones
carrying TP53 mutations expand during disease progression (T2
vs. T1) and show a slight decrease in T3 vs. T2, suggesting that
TP53 mutations could promote the accelerated phase (T2) of the
disease, but was not sufficient to support leukemic transformation.
Since a recent work by Bernard et al.® demonstrated that TP53
impairment determines CNVs which correlate with poor prognosis
in hematological malignancies, we deeply analyzed TP53 muta-
tional state and identified a novel deletion at the single-cell level.
Although this variant affects a small cell subpopulation, it could
support the genomic instability that characterizes the accelerated
phase of the disease. Interestingly, this mutation was found in co-
occurrence with the TP53 p.Cys238Ser homozygous mutation. This
mutational asset assigns our patient to the multi-hit state
described in the paper by Bernard et al®, which is associated
with lower overall survival and higher incidence of AML
transformation.

On the other hand, the linear expansion of FLT3-mutated cells
from T1 to T3 seems to trigger AML onset. To date, FLT3 mutations
are widely recognized AML-associated driver mutations. The FLT3-
TKD mutation, carried by the patient, like the canonical FLT3-ITD,
constitutively activates the receptor and promotes cell
proliferation'®.

Regarding the global mutational profile of single cells studied at
the zygosity level, we observed a significant increase in the clonal
heterogeneity during disease evolution, in agreement with recent
data by Mylonas et al.'”. This causes the expansion of highly
mutated clones in later stages of the disease, accounting for the
worsening of the patient’'s conditions. The study of mutation
zygosity further confirmed that TP53 and FLT3 are responsible for
disease evolution, indeed the VAFs of these mutations are the
most modulated during disease progression. Noteworthy, the
clone recapitulating all mutational events, in which FLT3 mutation
is the last event, is already detectable at low frequency in T1 when

Published in partnership with The Hormel Institute, University of Minnesota
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FLT3 mutation is undetectable by the bulk diagnostic NGS.
Furthermore, homozygous FLT3 mutations are detected only in
T3 by single-cell analysis.

Spliceosome machinery gene mutations are usually mutually
exclusive and heterozygous, suggesting that cells cannot tolerate
significant malfunction of the normal splicing activity'®. Although
the presence of SRSF2 homozygous mutation has not been yet
well characterized in MPNs'®, single-cell genomic analysis has
demonstrated the presence of a significant stem cell fraction
carrying P95H mutation in homozygous status.

Altogether these data demonstrate that single-cell genomics
represents a promising and powerful method to describe a real
scenario of mutational zygosity state in complex genotypes and
high heterogeneous contexts such as PMF.

As well as genomic analysis, single-cell transcriptomics depicted
the worsening of the patient condition during disease progres-
sion. Gene enrichment analysis demonstrated the deregulation of
several pathways and molecular mechanisms that might con-
tribute to the clinical characteristics of the patient. Trajectory
analysis clearly showed that CD34" cells in T3 display a more
primitive phenotype compared to those in T1 demonstrating that
these cells underwent a progressive differentiative block resulting
in the development of secondary AML. Interestingly, despite
Ruxolitinib treatment, the marked splenomegaly observed during
the chronic phase has only been partially reduced. This is
consistent with the activation of pathways favoring EMH'3, such
as CXCR4, MMP7, and several chemoattractant cytokines (i.e., IL-8,
PDGFB, and PF4) that displayed increased activity in T3. The
activation of the EMH pathway is related to disease progression
since the patient suffered from a grade 3 of bone marrow fibrosis
at T1 and T2, which evolved in a complete fibrotic substitution
with severe bone marrow damage in T3.

One of the most relevant processes deregulated during disease
progression is represented by immune escape. In particular, gene
expression analysis showed that hematopoietic stem and
progenitor cells activated several mechanisms that reduce their
sensitivity to immune surveillance, such as PD-L1 increased
expression, downregulation of molecules involved in antigen
presentation, and inactivation of IFN-signaling. Our data suggest
that Ruxolitinib exerts a direct inhibition of IFN-signaling,
mediated by the JAK/STAT pathway. The immunosuppressive side
of Ruxolitinib has already been identified in different studies, as it
is able to reduce leukemic cells' sensitivity to NK cells?®. This
observation was confirmed by the decrease of CD8" and CD4*
cell activation during disease progression, which could be due to
the anti-inflammatory effect of Ruxolitinib®® and to the interaction
between T cells and leukemic CD34" cells, which activate the PD-
1/PD-L1 axis.

On the other hand, IFN-signaling inhibition was related to
apoptosis inhibition. Together with the activation of molecular
pathways favoring HSC quiescence in T3, this observation
suggests that leukemic cells acquired phenotypic traits that
protect them from cell death thus resisting therapy.

The activation of the PD-1/PD-L1 pathway was predicted by
IPA” due to the downregulation of class | and Il HLA and B2M and
to the increased expression of PD-L1 in T3 vs. T1. A recent work
described how a TP53 mutation inhibits miR34 transcription,
which in turn cannot inhibit the translation of its target PD-L1%". In
agreement with these data, the patient we studied harbors a loss-
of-function mutation in TP53 (p.Cys238Ser), which contributes to
PD-L1 upregulation.

It has been demonstrated that FLT3-p.Asp835Tyr is associated
with FLT3 increased expression in AML samples'®. Consistently, we
observed an increase in FLT3 expressing cells during disease
progression and a higher frequency of cells with activated FLT3
gene module in T3. These results confirm single-cell genomics
findings and strengthen the hypothesis that FLT3 mutation has a
pivotal role in the induction of AML transformation.
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As a whole, in this work, we characterized by genomic stem cell
analysis the clonal architecture of the stem cell compartment of a
PMF patient in different stages of disease evolution. This analysis
allowed us to identify the first mutational hit, the increasing clonal
heterogeneity during the disease progression, and the presence of
TP53 and FLT3-mutated clones also in the chronic phase of the
disease, months before the leukemic transformation.

In conclusion, the results described so far suggest that the
single-cell genomic study could provide information with the
possible predictive value of the evolution of the clinical history of
the disease. It is difficult to speculate on the actual clinical
applicability of such a complex and expensive study, but certainly,
our data serve as proof of principle that the possibility to identify
these clones in the early stages of disease could allow a better
prognostic evaluation and could address to personalized ther-
apeutic strategies. Finally, the single-cell transcriptome analysis of
the stem cell compartment in the same patient allowed us to
identify several pathways deranged during disease evolution
which could lead to the development of new targeted therapies.

METHODS
Ethics statement

A PMF patient (Table 1) who evolved to AML was studied at three
timepoints: during the chronic phase (Timel, T1), after 8 months of
Ruxolitinib treatment (Time2, T2), and after 11 months of Ruxolitinib
treatment at AML diagnosis (Time3, T3). The diagnosis was performed in
agreement with the World Health Organization (WHO) criteria updated in
2016%% The study was conducted in accordance with the Declaration of
Helsinki and with ethical approval obtained from the local ethics
committee of the Humanitas Research Hospital - Milan, Italy. (Approval
date: 28 Jan 2019; approval file # 2175). The patient provided written
informed consent to take part in the study.

Bulk next-generation sequencing (NGS) analysis

Targeted DNA-sequencing on genomic DNA extracted from whole
peripheral blood of the patient was performed through a Capture-based
target enrichment kit—CE-IVD Myeloid Solution™ by Sophia Genetics.
Sequencing was performed on the Illumina MiSeq instrument. The
minimum required coverage was set to 1000x. After demultiplexing the
FASTQ files were further processed using the Sequence Pilot software
version 4.1.1 Build 510 (JSI Medical Systems, Ettenheim, Germany) for
alignment and variant calling. Analysis parameters were set according to
manufacturers’ default recommendation. The validity of the somatic
mutations was checked against the publicly accessible COSMIC v69
database (http://cancer.sanger.ac.uk/cancergenome/projects/cosmic) and
functional interpretation was performed using SIFT 1.03 (http://sift.jcvi.org),
PolyPhen 2.0 (http://genetics.owh.harvard.edu/pph2) and MutationTaster
1.0 algorithms (http://www.mutationtaster.org). Additionally, TP53 variants
were verified using the IARC repository. Single nucleotide polymorphisms
(SNP) were annotated according to the NCBI dbSNP (http://www.ncbi.nlm.
nih.gov/snp; Build 137) and gnomAD (http://gnomad.broadinstitute.org;
gnomAD r2.0.1) databases.

Purification of CD34" cells

Frozen peripheral blood mononuclear cells (PBMCs) were thawed
following 10x Genomics® “Sample Preparation Demostrated Protocol”
(10x Genomics, Pleasanton, CA, USA). Immunomagnetic selection of
CD34" cell population was then performed by means of “CD34 Microbead
kit, human” (Miltenyi Biotec, Bergisch Gladbach, Germany) following the
protocol provided by the manufacturer. The sample was then split
between genomic and transcriptomic analyses.

Moreover, a fraction of the CD34" cell population was seeded in
MethoCult™ GF H4434 (StemCell Technologies Inc; Vancouver), as
previously described®®. Colonies were picked and genotyped for SRSF2
p.P95H mutation, as previously described”.

CD34" cell immunostaining, fixation, and single-cell sorting

Cells were stained with anti-human CD34 (AC136, APC, Miltenyi Biotec, Cat
No. 130-113-738, 1:50) and anti-human CD38 (IB6, PE, Miltenyi Biotec,
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Cat No. 130-113-989, 1:50) antibodies. Immunostained cells were then
fixed with Paraformaldehyde (PFA) 0.5% in PBS 1x at 4°C for 15’ and
washed with PBS 1x before being resuspended in autoMACS Running
Buffer (Miltenyi Biotec). Immunostained CD34" cells were then subjected
to single-cell sorting by means of DEPArray™ Technology (Menarini Silicon
Biosystems). Every single cell was resuspended in 1 ul PBS 1x.

Whole-genome amplification

Whole-genome amplification (WGA) was performed on 300 single cells for
each Time by means of SMARTer PicoPLEX Single Cell WGA kit (Takara)
following the manufacturer’s protocol as previously described®*. For each
WGA experiment, a genomic DNA sample and 1pl Low TE (Tris-EDTA)
buffer (ThermoFisher Scientific) were included as a positive and negative
control, respectively. WGA product was then purified by means of AMPure
XP (Beckman Coulter) immunomagnetic beads and eluted in 20 pl Low TE
buffer. Quality control on WGA yield and amplicons’ size was performed
through Bioanalyzer High Sensitivity DNA Analysis (Agilent) on 1 pl of 1:20
diluted WGAs.

Mutation detection

PCR and sequencing analysis were performed by using BigDye® Direct
Cycle Sequencing Kit (Applied Biosystem®) following the manufacturer’s
protocol. Primers used for PCR reactions were synthesized (Supplementary
Table 1) (ThermoFisher Scientific and Integrated DNA Technologies).
Sequencing products were purified by ethanol/EDTA precipitation.
Sequencing was performed by capillary electrophoresis on 3130x| Genetic
Analyzer (Applied Biosystems®).

SRSF2 p.P95H variant was also analyzed by means of SNP genotyping
through the Custom TagMan™ SNP Genotyping Assay (rs751713049_g_t,
ANAAJWD, SNP, ThermoFisher Scientific) in picked colonies and in single-
cell WGAs.

Clonal hierarchy reconstruction

The clonal tree reconstruction of the mutations’ acquisition order was
performed through the CellScape R package (script retrieved from https://
github.com/shahcompbio/cellscape/blob/511a8b6a2d7c6eb28fddb83f1b2
9c2c1092d5bae/R/cellscape.R)>°. For the trees representing the presence/
absence of the variants, variant allele frequency (VAF) = 0 was assigned to
a wild-type status and VAF =1 was assigned to a mutant status in the
mutational matrix. Clonal evolution analysis was performed through the
TimeScape R package (script retrieved from https://github.com/
shahcompbio/cellscape/blob/511a8b6a2d7c6eb28fddb83f1b29c2c1092d5
bae/R/cellscape.R)*. Each clone was assigned to a letter and Timepoints
were indicated as T1, T2, and T3. For the trees representing the zygosity of
the mutations, VAF = 0 was assigned to a wild-type status, VAF = 0.5 was
assigned to heterozygosity and VAF = 1 was assigned to homozygosity. All
analyses were performed using R (version 3.6.2) and R Studio (version
1.3.959) software.

Genomic data analysis

The fishplot representing mutational frequencies was performed through
the Fishplot R package (script retrieved from https://github.com/
chrisamiller/fishplot)?®. The mutational frequency for each variant was
computed as the percentage of mutated cells (either heterozygous or
homozygous) within the totality of the cells of each timepoint.

Joy Plots of the frequencies of TP53, FLT3, and SRSF2 mutations through
time were performed by means of ggridges R package (retrieved from
https://CRAN.R-project.org/package=ggridges;  script retrieved from
https://cran.r-project.org/web/packages/ggridges/vignettes/introduction.
html).

The bubble-plot of the frequencies of mutations through time was built
through ggplot2 R package (script retrieved from https://www.r-graph-
gallery.com/320-the-basis-of-bubble-plothtml)?’. All analyses were per-
formed using R (version 3.6.2) and R Studio (version 1.3.959) software.

TP53 multiplex ligation-dependent probe amplification
(MLPA)

DNA coming from CD34" cells of the patient and Mononuclear cells of
Healthy Donors was extracted by means of DNeasy Blood & Tissue Kit
(Qiagen, Hilden, Germany). 50 ng of DNA were analyzed through P056
MLPA kits (MRC-Holland, Amsterdam, Netherlands), following the
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manufacturer’s instructions. At least five controls were included in each
run. Fragment analysis was performed by capillary electrophoresis on the
3130xI Genetic Analyzer device (Applied Biosystems). The software
Coffalyser.net (MRC-Holland), was used to analyze all MLPA data as
previously described?®,

Single-cell RNA sequencing (10X Chromium)

Unfixed CD34" cells were subjected to single-cell RNA sequencing analysis.
Single-cell suspensions were prepared and cells were resuspended in
0.5 ml PBS 1x plus 0.04% BSA and washed once by centrifugation at 450
rcf for 7 min. After the wash cells were resuspended in 50 pl and counted
with an automatic cell counter (Countess Il, ThermoFisher) to get a precise
estimation of the total number of cells recovered and of cell concentration.
Afterward, we loaded about 10.000 cells of each sample into one channel
of the Chromium Chip B using the Single Cell reagent kit v3 (10x Genomic)
for Gel bead Emulsion generation into the Chromium system. Following
capture and lysis, cDNA was synthesized and amplified for 14 cycles
following the manufacturer’s protocol. 50 ng of the amplified cDNA were
then used for each sample to construct lllumina sequencing libraries.
Sequencing was performed on the NextSeq550 lllumina sequencing
platform using High Output Kit v2.5 chemistry and following 10xGenomics
instruction for read generation, reaching at least 50,000 reads as mean
reads per cell.

Processing and analysis of single-cell RNA sequencing data

Raw base call (BCL) files generated by NextSeq550 sequencer were
demultiplexed using Cell Ranger software (version 3.1.0). The FASTQ files
obtained were then processed using Partek” Flow” software (version 9.0).
Reads were trimmed, aligned to the human reference genome hg38
(GRCh38) then deduplicated, to obtain one alignment per unique
molecular identifier (UMI), choosing Ensemble Transcripts release 91 for
the annotation. After filtering out barcodes associated with droplets
containing no cells, aligned reads were quantified generating a single-cell
count matrix. Cells meeting the following quality control (QC) parameters
were included in the analysis: total reads between 6500 to 52,000;
expressed genes between 1000 and the maximum detected number;
mitochondrial reads percentage <15%. Following this selection, we
obtained 7717 cells that passed QC filters: 1043 for T1, 3313 for T2, and
3361 for T3. Next, features were filtered in order to include only genes
expressed in more than 0.1% of cells and 15,296 genes were retained. UMI
counts were then normalized following Partek” Flow® recommendations:
for each UMI in each sample the number of raw reads was divided by the
number of total mapped reads in that sample and multiplied by 1,000,000,
obtaining a count per million value (CPM), the normalized expression value
was log-transformed (pseudocount = 1). Starting from the normalized data
node, we performed clustering analysis for each sample separately by
means of graph-based clustering task in Partek® Flow® software which
employs the Louvain algorithm. Clustering analysis was done based on the
first 100 principal components. To visualize single cells in a two-
dimensional space, we performed a t-distributed statistical neighbor
embedding (tSNE) dimensional reduction using the first 50 principal
components for each sample separately and for the entire data set.

By means of “compute biomarker” function, we were able to identify
marker genes for each identified cell group. In Partek® Flow® software this
task performs an ANOVA test comparing each cluster to all the other cells
in the data set and returns a list of genes with FC > 1.5 ranked according to
ascending p-value. To define cluster identity in each sample we compared
the generated lists of marker genes with lineage signatures derived from
different hematopoietic data sets recently published'>?°3°, Furthermore,
we exported the normalized expression matrix from Partek® Flow®
software and classified single cells by means of SingleR R package
according to Blueprint Encode data set. We took advantage of single-cell
classification to better define cluster identity in each sample as detailed in
Supplementary Results. A cell group mainly composed of monocytes and
lymphoid cells was identified in all samples and considered as
contaminant cells, therefore it was excluded from analysis which was
performed on the remaining 7553 cells. To evaluate the activation state of
specific gene modules within our data set, we used the AUCell task
provided by Partek® Flow®. This function evaluates the activity of a gene
signature in every single cell based on its gene expression profile and
represents this activity by an AUC (area under the curve) score. By
evaluating the distribution of AUC scores, we were able to identify cells
where gene modules results activated®’. To identify differentially
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expressed genes, we performed paired sample comparison within each
cell cluster by means of ANOVA analysis and considered genes with FC > 2
or FC< —2 and step-up p-value <0.05 as differentially expressed. Core
analysis was performed by means of Ingenuity® Pathway Analysis (IPA®,
Qiagen) software in order to identify canonical pathways, upstream
regulators, and biological processes deregulated in our data set according
to differential gene expression results. Differentiation trajectory recon-
struction was performed by means of Partek® Flow® software which uses
the Monocle 2 algorithm. The analysis was performed considering only the
5000 genes with the highest variance within our data set.

T cell immunophenotyping by flow cytometry

In order to identify activated T cells up to 1 million thawed PBMCs were
washed twice in PBS and stained with the viability dye LIVE/DEAD Fixable
Aqua Dead Cell Stain Kit (ThermoFisher, Cat no. L34966, 1:100). Then, cells
were washed in PBS supplemented with 2mmM EDTA and 2% FBS,
incubated with FcR Blocking Reagent (Miltenyi Biotec, Cat no. 130-059-901,
1:50) and subsequently stained at 4 °C with antibodies against following
human antigens: CD3 (REA613, APC-Vio770, Miltenyi Biotec, Cat no.130-
113-698, 1:50), CD4 (A161A1, FITC, BioLegend, San Diego, CA, USA, Cat no.
357405, 1:40), CD8 (SK1, PerCP-Cy5.5, BioLegend, Cat no. 344709, 1:40),
CD38 (HB-7, PE-Cy7, BioLegend, Cat no. 356608, 1:80) and HLA-DR (L243,
APC, BioLegend, Cat no. 307609, 1:80). For cytometric analysis, the FACS
Canto Il (Becton Dickinson, Franklin Lakes, New Jersey, USA) was used. Data
were analyzed by FlowJo (version 10.7.1).

DATA AVAILABILITY

The data generated and/or analyzed during the related study are described in the
figshare metadata record: https://doi.org/10.6084/m9.figshare.13259285%2, Single-cell
RNA sequencing data are available via the NCBI Gene Expression Omnibus repository
with accession: https://identifiers.org/geo:GSE153319 . These scRNA sequencing
data underlie Figs. 3-4 and Supplementary Figs. 7-8, 10-11. Data supporting Fig. 3
and Supplementary Fig. 9 are contained in the file “T cells.fcs”, which is not openly
available to protect patient privacy. Data requests should be made to the
corresponding author. The patient clinical data are contained in the file “Patient
clinical data.xlsx”, which is also not available to protect patient privacy. Data requests
should be made to the corresponding author. All other data are shared openly as part
of the metadata record*2. Data supporting Figs. 1-2 and Supplementary Figs. 1-6 are
contained in the.zip file “Parenti_et_al_supporting_data.zip” and arranged in folders
named according to the figures they underlie. Data supporting Supplementary Table
4 and Supplementary Data Files 4-6 are contained in the file “Supplementary Data
File 3.xlIsx".
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Single-cell genomics analysis pipelines and codes can be obtained from the original
author’s open-source R package and are indicated in the “Methods” section. Analyses
were performed using default standard parameters. All analyses were performed
using R (version 3.6.2) and R Studio (version 1.3.959) software.
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